
1

1

JDBC Access

The Sql package

http://java.sun.com/docs/books/tutorial/jdbc/

JDBC

�
From any Java application you can access a DB through the JDBC.

(package java.sql)

You must use only ANSI SQL-2 standard.

No special references to JDBC has to be done in the code.

2

2

SW Layers to get access to a DB

�

Type 1 – JDBC-ODBC Bridge

�

Java

application

JDBC
API

JDBC-ODBC

Bridge

Data

source

ODBC
API

The standard JDK includes

sun.jdbc.odbc.JdbcOdbcDriver

3

3

Type 2 – Part Java, Part Native

�

Java

application

JDBC
API

JDBC

Driver

Data

source

Vendor

API

Type 3 – Intermediate DB Access Server

�

Java

application

JDBC
API

JDBC

Driver

Data

source

Native

Driver

JDBC

Driver

Server

See http://industry.java.com/products/jdbc/drivers

4

4

Type 4 – Pure Java

�

Java

application

JDBC
API

JDBC

Driver

Data

source

JDBC - Installation

�

A) Install a driver on your machine.
Your driver should include instructions for installing it. For JDBC drivers
written for specific DBMSs, installation consists of just copying the

driver onto your machine; there is no special configuration needed.

B) The JDBC-ODBC Bridge driver is not quite as easy to set up. If you
download either the Windows versions of JDK, you will automatically
get the JDBC-ODBC Bridge driver, which does not itself require any
special configuration. ODBC, however, does. If you do not already have
ODBC on your machine, you will need to see your ODBC driver vendor
for information on installation and configuration.

.

5

5

Setting the ODBC Control Panel

�

From the shell:
odbcad32

JDBC - Steps

�

A) Load the driver.
B) Open a connection.
C) Create Statement.

D) Retrieve Values.

Always catch exceptions!
JDBC lets you see the warnings and exceptions generated by your
DBMS and by the Java compiler. To see exceptions, you can have a
catch block print them out.

.

6

6

Reminder: Class.forName

�

static Class forName(String className)

Returns the Class object associated with the class or interface with the

given string name.

Typical use:

Object o=Class.forName("java.lang.String").newInstance();

is equivalent to:

Object o=new String();

JDBC – Steps – 1 LOAD THE DRIVER

�

Loading the driver or drivers you want to use is very simple and
involves just one line of code.
If you want to use the JDBC-ODBC Bridge driver, the following code

will load it:
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Your driver documentation will give you the class name to use. For
instance, if the class name is jdbc.DriverXYZ , you would load the
driver with the following line of code:
Class.forName("jdbc.DriverXYZ");

You do not need to create an instance of a driver and register it with
the DriverManager because calling Class.forName will do that for you

automatically. If you were to create your own instance, you would be
creating an unnecessary duplicate, but it would do no harm.

.

7

7

JDBC – Steps – 2 LOAD THE DRIVER

Connection con = DriverManager.getConnection(url, "myLogin",
"myPassword");
This step is also simple, with the hardest thing being what to supply for url .

If you are using the JDBC-ODBC Bridge driver, the JDBC URL will start with
jdbc:odbc: . The rest of the URL is generally your data source name or
database system.

If you are using a JDBC driver developed by a third party, the
documentation will tell you what subprotocol to use, that is, what to put after
jdbc: in the JDBC URL. For example, if the driver developer has registered
the name acme as the subprotocol, the first and second parts of the JDBC
URL will be jdbc:acme: . The driver documentation will also give you
guidelines for the rest of the JDBC URL. This last part of the JDBC URL

supplies information for identifying the data source.

JDBC – Steps – 3 CREATE STATEMENT

A Statement object is what sends your SQL statement to the DBMS.

For a SELECT statement, the method to use is executeQuery .

For statements that create or modify tables, the method to use is
executeUpdate.

Statement stmt = con.createStatement();
stmt.executeUpdate("CREATE TABLE COFFEES " +

"(COF_NAME VARCHAR(32), SUP_ID INTEGER, PRICE FLOAT, " +
"SALES INTEGER, TOTAL INTEGER)");

Typically you would put the SQL statement in a String (called let’s say
createTableCoffees), and then use

stmt.executeUpdate(createTableCoffees);

8

8

JDBC – Steps – 4 RETRIEVING VALUES

JDBC returns results in a ResultSet object.
ResultSet rs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM COFFEES");
In order to access the names and prices, we will go to each row and retrieve the
values according to their types. The method next moves what is called a cursor to the
next row and makes that row (called the current row) the one upon which we can
operate. Since the cursor is initially positioned just above the first row of a ResultSet
object, the first call to the method next moves the cursor to the first row and makes it
the current row. Successive invocations of the method next move the cursor down one
row at a time from top to bottom. Note that with the JDBC 2.0 API, you can move the
cursor backwards, to specific positions, and to positions relative to the current row in
addition to moving the curs or forward.
String query = "SELECT COF_NAME, PRICE FROM COFFEES"; ResultSet rs =
stmt.executeQuery(query);
while (rs.next()) {

String s = rs.getString("COF_NAME");
float n = rs.getFloat("PRICE");
System.out.println(s + " " + n);

}

JDBC – Data Types

9

9

JDBC – Prepared statements

If you want to execute a Statement object many times, it will normally
reduce execution time to use a PreparedStatement object instead.

The main feature of a PreparedStatement object is that, unlike a Statement
object, it is given an SQL statement when it is created.

The advantage to this is that in most cases, this SQL statement will be sent
to the DBMS right away, where it will be compiled. As a result, the
PreparedStatement object contains not just an SQL statement, but an SQL
statement that has been precompiled.
This means that when the PreparedStatement is executed, the DBMS can
just run the PreparedStatement 's SQL statement without having to compile
it first.

PreparedStatement updateSales = con.prepareStatement("UPDATE
COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");
updateSales.setInt(1, 75);

JDBC – Callable statements

A stored procedure is a group of SQL statements that form a logical unit and
perform a particular task. Stored procedures are used to encapsulate a set of
operations or queries to execute on a database server. For example,

operations on an employee database (hire, fire, promote, lookup) could be
coded as stored procedures executed by application code. Stored procedures
can be compiled and executed with different parameters and results, and
they may have any combination of input, output, and input/output
parameters.
Stored procedures are supported by most DBMSs, but there is a fair amount
of variation in their syntax and capabilities.

If you want to call stored procedures, you must use a CallableStatement
(subclass of PreparedStatement).

WARNING: stored procedures move the business logic WITHIN THE DB!

10

10

JDBC – Callable statements

The following SQL statement creates a stored procedure:
create procedure SHOW_SUPPLIERS as select SUPPLIERS.SUP_NAME,
COFFEES.COF_NAME from SUPPLIERS, COFFEES where SUPPLIERS.SUP_ID

= COFFEES.SUP_ID order by SUP_NAME

Let us assume that the above has been put into a String called
createProcedure

Statement stmt = con.createStatement();
stmt.executeUpdate(createProcedure);

CallableStatement cs = con.prepareCall("{call SHOW_SUPPLIERS}");
ResultSet rs = cs.executeQuery();

The java.sql Object Model

�

Applicazione

Prepared

Statement

Callable

Statement

Connection

getConnection()
creates

createStatement()

executeQuery()

ResultSet
creates

getString()

ResultSet

Metadata

DBMetaData

loadsDriver

Manager
Driver

creates

Statement

creates

11

11

The JDBC object model: the MetaData.

�

The Meta-Data Interfaces

Meta data is data about data. Java gives meta-data interfaces:

java.sql.ResultSetMetaData e java.sql.DatabaseMetaData.

ResultSetMetaData interface allows getting info about a ResultSet. For instance,

ResultSetMetaData gives info on the number of columns and on the types.

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM TABLE2");

ResultSetMetaData rsmd = rs.getMetaData();

int numberOfColumns = rsmd.getColumnCount();

see http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSetMetaData.html

The JDBC object model: the MetaData.

�

DatabaseMetaData interface allows getting info about a the Database.

For instance its getCatalogs() method retrieves the catalog names available in

this database while getDatabaseProductName() retrieves the name of this

database product.

A user for this interface is commonly a tool that needs to discover how to deal

with the underlying DBMS. LIMITED SUPPORT BY TOYS LIKE MS Access!

The class DatabaseMetaData is used by IDEs like JBuilder.

12

12

Simple Database Access Using the JDBC Interfaces

�

Scrivere una applicazione di Database usando solo chiamate JDBC

comporta i seguenti

passi:

1.Chiedi al DriverManager una implementazione di Connection.

2.Chiedi alla Connection uno Statement o una sottoclasse Statement per

eseguire il tuo SQL.

3.Per le sottoclassi di Statement, lega i parametri da passare alla prepared

statement.

4.Esegui lo statement.

5.Per le queries, processa il result set ritornato dalla query. Ripetilo per

tutti i

result set finche’ ce ne sono.

6.Per gli altri other statements, leggi il numero di righe toccate.

7.Chiudi lo statement.

8.Processa cosi’ tutti gli statement che servono e poi chiudi la connessione.

Esempio

�

package first;

import java.lang.*;

import java.util.*;

import java.sql.*;

import sun.jdbc.odbc.*;

import java.io.*;

public class first

{

public static void main(String arg[]) {

int id;

float amount;

java.sql.Date dt;

String companyName;

String result;

String item_desc;

try {

//connect to ODBC database

Class.forName(

sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:cityzoo";

// connect

Properties p = new Properties();

p.put("user", "");

p.put("password","");

Connection con =

DriverManager.getConnection(url,p);

// create Statement object

Statement stmt = con.createStatement();

String sqlselect =

"Select item_nbr, wholesale_cost, "

+ " item_desc, company_name”

+” from retail_item,company"

+ " where wholesale_cost<9 and”

+ " company.company_id=retail_item.company_id"

+ " order by wholesale_cost";

// run query

ResultSet rs = stmt.executeQuery(sqlselect);

// process results

while(rs.next()) {

result = "";

id = rs.getInt(1);

amount = rs.getFloat(2);

//dt = rs.getDate(2);

item_desc = rs.getString(3);

companyName = rs.getString(4);

result = "#"+result.valueOf(id) + " $";

result+= result.valueOf(amount) + " <";

result+= item_desc+"> <"+companyName+">";

System.out.println("Values are: " + result);

}

//close connection

con.close();

}

catch(Exception e) {

System.out.println(e.getMessage());

}

try {

Thread.sleep(20*1000);

} catch (Exception e) {}

}

}

13

13

See http://java.sun.com/docs/books/tutorial/jdbc/jdbc2dot0/index.html

JDBC 2.0

package javax.sql

New extensions

�

•Moving the Cursor in Scrollable Result Sets

•Making Updates to Updatable Result Sets

•Support for SQL3 Data types

14

14

JDBC – SQL3 Data Types

updateRefsetRefgetRefREF (structured type)

updateObjectsetObjectgetObjectStructured type

updateArraysetArraygetArrayARRAY

updateClobsetClobgetClobCLOB

updateBlobsetBlobgetBlobBLOB

updateXXX methodsetXXX methodgetXXX methodSQL3 type

Introduction

Transactions

15

15

Bank

�

package transactions_1;
import java.sql.*;
public class Bank {

public Connection getConnection(String jdbcDriverName,
String jdbcURL) {

try {
Class.forName(jdbcDriverName);
return DriverManager.getConnection(jdbcURL);

} catch (ClassNotFoundException ex) { ex.printStackTrace();
} catch (SQLException ex) { ex.printStackTrace(); }
return null;

}

public void releaseConnection(Connection conn) {
if (conn!=null)
try {
conn.close();

} catch (SQLException ex) { ex.printStackTrace(); }
}

1. getConnection/setConnection

Bank

�

public void deposit(int account, double amount, Connection conn)
throws SQLException{

String sql="UPDATE Account SET Balance = Balance + "+ amount+
"WHERE AccountId = "+account;

Statement stmt=conn.createStatement();
stmt.executeQuery(sql);
System.out.println("Deposited "+amount+" to account "+account);

}

public void withdraw(int account, double amount, Connection conn)
throws SQLException{

String sql="UPDATE Account SET Balance = Balance - "+ amount+
"WHERE AccountId = "+account;

Statement stmt=conn.createStatement();
stmt.executeQuery(sql);
System.out.println("Withdrew "+amount+" from account "+

account);
}

2. deposit/withdraw

16

16

Bank

�

public void printBalance(Connection conn) {
ResultSet rs=null;
Statement stmt=null;
try {
stmt=conn.createStatement();
rs=stmt.executeQuery("SELECT * FROM Account");
while (rs.next())
System.out.println("Account "+rs.getInt(1)+

" has a balnce of "+rs.getDouble(2));
} catch (SQLException ex) { ex.printStackTrace(); }
finally {
try {
if (rs!=null)
rs.close();

if (stmt!=null)
stmt.close();

} catch (SQLException ex) { ex.printStackTrace(); }
}

}

3. printBalance

Bank

�

public void transferFunds(int fromAccount, int toAccount,
double amount, Connection conn){

Statement stmt=null;
try {
withdraw(fromAccount, amount, conn);
deposit(toAccount,amount,conn);

}
catch (SQLException ex) {
System.out.println("An error occured!");
ex.printStackTrace();

}
}

4. trasferFunds

17

17

Bank

�

public static void main(String[] args) {
if (args.length <3) {
System.exit(1);

}
Connection conn=null;
Bank bank = new Bank();
try {
conn=bank.getConnection(args[0],args[1]);
bank.transferFunds(1,2,Double.parseDouble(args[2]),conn);
bank.printBalance(conn);

} catch (NumberFormatException ex) { ex.printStackTrace();
} finally {bank.releaseConnection(conn);}

}
}

5. main

Using transactions

�

When a connection is created, it is in auto-commit mode. This means that each

individual SQL statement is treated as a transaction and will be automatically

committed right after it is executed.

con.setAutoCommit(false);

Committing a Transaction

Once auto-commit mode is disabled, no SQL statements will be committed

until you call the method commit explicitly. All statements executed after the

previous call to the method commit will be included in the current transaction

and will be committed (or rolled back) together as a unit.

18

18

Using transactions

con.setAutoCommit(false);

PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE

?");

updateSales.setInt(1, 50);

updateSales.setString(2, "Colombian");

updateSales.executeUpdate();

PreparedStatement updateTotal = con.prepareStatement(

"UPDATE COFFEES SET TOTAL = TOTAL + ? WHERE

COF_NAME LIKE ?");

updateTotal.setInt(1, 50);

updateTotal.setString(2, "Colombian");

updateTotal.executeUpdate();

con.commit(); // con.rollback();

con.setAutoCommit(true);

Bank

�

public void transferFunds(int fromAccount, int toAccount,
double amount, Connection conn){

Statement stmt=null;
try {
conn.setAutoCommit(false);
withdraw(fromAccount, amount, conn);
deposit(toAccount,amount,conn);
conn.commit();

}
catch (SQLException ex) {
System.out.println("An error occured!");
ex.printStackTrace();
try {
conn.rollback();

} catch (SQLException e) { e.printStackTrace(); }
}

}

transferFunds – fixed version!

TR
A
N
S
A
C
TI

O
N

TR
A
N
S
A
C
TI

O
N

19

19

Actors

�

A transactional object (or transactional component) is an

application component that is involved in a transaction.
A transaction manager is responsible for managing the

transactional operations of the transactional components.

A resource is a persistent storage from which you read or

write.

A resource manager manages a resource. Resource
managers are responsible for managing all state that is
permanent.
The most popular interface for resource managers is the
X/Open XA resource manager interface (a de facto
standard): a deployment with heterogeneous resource
managers from different vendors can interoperate.

Distributed Systems

�

Local

Transaction

Manager A

Resource

Manager A

DB A DB B1a DB B1b
Messaging

Server B2a

Resource

Manager B2

Local

Transaction

Manager B

Resource

Manager B1

Distributed

Transaction

Manager

20

20

Who begins a transaction?

�

Who begins a transaction? Who issues either a commit or abort?

This is called demarcating transactional boundaries .

There are three ways to demarcate transactions:

•programmatically:
you are responsible for issuing a begin statement and either a

commit or an abort statement.

•declaratively,

the EJB container intercepts the request and starts up a

transaction automatically on behalf of your bean.
•client-initiated.

write code to start and end the transaction from the client code

outside of your bean.

Programmatic vs. declarative

�

programmatic transactions:
your bean has full control over transactional
boundaries.For instance,you can use programmatic

transactions to run a series of minitransactions within a bean

method.

When using programmatic transactions,always try to complete
your transactions in the same method that you began

them.Doing otherwise results in spaghetti code where it is

difficult to track the transactions;the performance decreases

because the transaction is held open longer.

declarative transactions:
your entire bean method must either run under a

transaction or not run under a transaction.

Transactions are simpler! (just declare them in the descriptor)

21

21

Client-initiated

�

Client initiated transactions:

A nontransactional remote client calls an enterprise bean that

performs its own transactions The bean succeeds in the

transaction,but the network or application server crashes
before the result is returned to a remote client.The remote

client would receive a Java RMI RemoteException indicating a

network error,but would not know whether the transaction that

took place in the enterprise bean was a success or a failure.

With client-controlled transactions, if anything goes
wrong,the client will know about it.
The downside to client-controlled transactions is that if the

client is located far from the server, transactions are likely to
take a longer time and the efficiency will suffer.

ACID

Transactions

22

22

The ACID Properties

�

Atomicity guarantees that many operations are bundled

together and appear as one contiguous unit of work .

Consistency guarantees that a transaction leaves the system ’s

state to be consistent after a transaction completes.

Isolation protects concurrently executing transactions from
seeing eachother ’s incomplete results.

Durability guarantees that updates to managed resources,such

as database records,survive failures. (Recoverable resources

keep a transactional log for exactly this purpose.If the resource
crashes,the permanent data can be reconstructed by reapplying

the steps in the log.)

Lost Update

�

Read A

Write A

Increm. A
Read A

Write A

Increm. A

DB
begin

commit

begin

commit

23

23

Dirty Read

�

Read A

Write A

Increm. A

Read A

Write A

Increm. A

DB
begin

rollback

begin

commit

begin

commit

Unrepeatable Read

�

Read A

Read A

Write A

Increm. A

DB
begin

commit

begin

commit

Read A

24

24

Phantom Read (ghost update)

�

Read A

Read A

Write A

A=A-1

DB
begin

commit

begin

commit

Read B Read B

Write B

B=B+1
IC=A+B

Integrity

Constraint:

A+B=100

Integrity constraint

violated!

Isolation levels

� ISOLATION

LEVEL

Dirty Read Unrepeatable

Read

Phantom Read

READ

UNCOMMITTED

SI SI SI

READ
COMMITTED

NO SI SI

REPEATABLE

READ

NO NO SI

SERIALIZABLE NO NO NO

Default level for many

DBMS

