JDBC Access

The Sql package

http://java.sun.com/docs/books/tutorial/jdbc/

JDBC

- From any Java application you can access a DB through the JDBC.
(package java.sql)

You must use only ANSI SQL-2 standard.

No special references to JDBC has to be done in the code.

SW Layers to get access to a DB

o saL

QDBEC

PMative Drivers

Diata

Figure 7.3 Database Access
Layers

Type 1 — JDBC-ODBC Bridge

The standard JDK includes
sun.jdbc.odbc.JdbcOdbcDriver

Type 2 — Part Java, Part Native

Type 3 — Intermediate DB Access Server

See http://industry.java.com/products/jdbc/drivers

Type 4 — Pure Java

JDBC - Installation

A) Install a driver on your machine.

Your driver should include instructions for installing it. For JDBC drivers
written for specific DBMSs, installation consists of just copying the
driver onto your machine; there is no special configuration needed.

B) The JDBC-ODBC Bridge driver is not quite as easy to set up. If you
download either the Windows versions of JDK, you will automatically
get the JDBC-ODBC Bridge driver, which does not itself require any
special configuration. ODBC, however, does. If you do not already have
ODBC on your machine, you will need to see your ODBC driver vendor
for information on installation and configuration.

Setting the ODBC Control Panel

€10DBC Data Source Administrator

User DS | System DSN| File DSN | 0DBC Drivers | Tracing | About |

User Data Sources: Add

Name | Driver]
Giyzom Microsaft Access Driver) Bemove

dba Microsstt Access Driver ¢*mdb)

TextFiles Microsoft Text Driver (“bd; *csu)

An ODBC User data source stores infarmation about how to connect o th

Excel Files Microsof Excel Driver (*x1s)

ODBC Microsoft Access 97 Setup

Data Source hame:

Description:

From the shell:
odbcad32

oK I

indicated data provider. A User data saurce is anly visible ta you, and ¢ Cancel |
anly be used on the curent machine. - Datab

Database: Diyjava\PraimyDemaos\DB\cityzoo. mdb Help

ok el R, Select | Create Repair Compact |
Advanced |
- System Datab
& Nong
© Detabese
Syeter Dl s ee:
Qptions>>

JDBC - Steps

A) Load the driver.
B) Open a connection.
C) Create Statement.
D) Retrieve Values.

Always catch exceptions!

JDBC lets you see the warnings and exceptions generated by your
DBMS and by the Java compiler. To see exceptions, you can have a

catch block print them out.

Reminder: Class.forName

static (className)

Returns the Class object associated with the class or interface with the
given string name.

Typical use:
Object o=Class.forName("java.lang.String").newInstance();
is equivalent to:

Object o=new String();

JDBC — Steps — 1 LOAD THE DRIVER

Loading the driver or drivers you want to use is very simple and
involves just one line of code.

If you want to use the JDBC-ODBC Bridge driver, the following code
will load it:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Your driver documentation will give you the class name to use. For
instance, if the class name is jdbc.DriverXYZ , you would load the
driver with the following line of code:
Class.forName("jdbc.DriverXYzZ");

You do not need to create an instance of a driver and register it with
the DriverManager because calling Class.forName will do that for you
automatically. If you were to create your own instance, you would be
creating an unnecessary duplicate, but it would do no harm.

JDBC — Steps — 2 LOAD THE DRIVER

Connection con = DriverManager.getConnection(url, "myLogin",
"myPassword");

This step is also simple, with the hardest thing being what to supply for url .
If you are using the JDBC-ODBC Bridge driver, the JDBC URL will start with
jdbc:odbc: . The rest of the URL is generally your data source name or
database system.

If you are using a JDBC driver developed by a third party, the
documentation will tell you what subprotocol to use, that is, what to put after
jdbc: in the JDBC URL. For example, if the driver developer has registered
the name acme as the subprotocol, the first and second parts of the JDBC
URL will be jdbc:acme: . The driver documentation will also give you
guidelines for the rest of the JDBC URL. This last part of the JDBC URL
supplies information for identifying the data source.

JDBC — Steps — 3 CREATE STATEMENT

A Statement object is what sends your SQL statement to the DBMS.

For a SELECT statement, the method to use is executeQuery .
For statements that create or modify tables, the method to use is
executeUpdate.

Statement stmt = con.createStatement();
stmt.executeUpdate("CREATE TABLE COFFEES " +
"(COF_NAME VARCHAR(32), SUP_ID INTEGER, PRICE FLOAT, " +
"SALES INTEGER, TOTAL INTEGER)");

Typically you would put the SQL statement in a String (called let’s say
createTableCoffees), and then use
stmt.executeUpdate(createTableCoffees);

JDBC — Steps — 4 RETRIEVING VALUES

JDBC returns results in a ResultSet object.
ResultSet rs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM COFFEES");
In order to access the names and prices, we will go to each row and retrieve the
values according to their types. The method next moves what is called a cursor to the
next row and makes that row (called the current row) the one upon which we can
operate. Since the cursor is initially positioned just above the first row of a ResultSet
object, the first call to the method next moves the cursor to the first row and makes it
the current row. Successive invocations of the method next move the cursor down one
row at a time from top to bottom. Note that with the JDBC 2.0 API, you can move the
cursor backwards, to specific positions, and to positions relative to the current row in
addition to moving the curs or forward.
String query = "SELECT COF_NAME, PRICE FROM COFFEES"; ResultSet rs =
stmt.executeQuery(query);
while (rs.next()) {

String s = rs.getString("COF_NAME");

float n = rs.getFloat("PRICE");

System.out.printin(s + " " + n);

JDBC — Data Types

EVE)
HZ-HFHE 2w
AEHgEHAZ—
HZ ===
I E=E-=)
HeEg-0me
PR LEEEES
[=y--]
R Ke]

A EHOEP -
AermomReraQZzor
A Z AR -
AR AR ER A0 20
HA=E
—
HErHeHZ ~H

B e e e

El

‘getﬂxt.e
lgetshort
lgetInt

getlong EE X xx
getFloat X
getDouble

X e s s

B

B

0 Y Y

E]
Bl
w

getBigDecimal

R

getBoolean

R R R

ERIE R

x

laststring

® X‘x ‘x |x |x |x |x |x

]

‘getﬂxtex

L]

‘gel’.l}ate

[&

‘ge tTime

KR

‘g&t’[“imestama

‘getﬁsc'iistbeam

laetUnicogestrean| |

‘getB'inaggStream | |

lgetopIgct

£l
T R e

JDBC — Prepared statements

If you want to execute a Statement object many times, it will normally
reduce execution time to use a PreparedStatement object instead.

The main feature of a PreparedStatement object is that, unlike a Statement
object, it is given an SQL statement when it is created.

The advantage to this is that in most cases, this SQL statement will be sent
to the DBMS right away, where it will be compiled. As a result, the
PreparedStatement object contains not just an SQL statement, but an SQL
statement that has been precompiled.

This means that when the PreparedStatement is executed, the DBMS can
just run the PreparedStatement 's SQL statement without having to compile
it first.

PreparedStatement updateSales = con.prepareStatement("UPDATE
COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");
updateSales.setint(1, 75);

JDBC — Callable statements

A stored procedure is a group of SQL statements that form a logical unit and
perform a particular task. Stored procedures are used to encapsulate a set of
operations or queries to execute on a database server. For example,
operations on an employee database (hire, fire, promote, lookup) could be
coded as stored procedures executed by application code. Stored procedures
can be compiled and executed with different parameters and results, and
they may have any combination of input, output, and input/output
parameters.

Stored procedures are supported by most DBMSs, but there is a fair amount
of variation in their syntax and capabilities.

If you want to call stored procedures, you must use a CallableStatement
(subclass of PreparedStatement).

WARNING: stored procedures move the business logic WITHIN THE DB!

JDBC — Callable statements

The following SQL statement creates a stored procedure:

create procedure SHOW_SUPPLIERS as select SUPPLIERS.SUP_NAME,
COFFEES.COF_NAME from SUPPLIERS, COFFEES where SUPPLIERS.SUP_ID
= COFFEES.SUP_ID order by SUP_NAME

Let us assume that the above has been put into a String called
createProcedure

Statement stmt = con.createStatement();
stmt.executeUpdate(createProcedure);

CallableStatement cs = con.prepareCall("{call SHOW_SUPPLIERS}");
ResultSet rs = cs.executeQuery();

The java.sql Object Model

Driver loads 1 Driver
o | Manager i
A
creates |getConnection() creates
A 4
q . createStatementy())
Applicazione » Connection
ecuteQuery() creates
getString()
v Statement
ResultSet |« creates |

10

10

The JDBC object model: the MetaData.

The Meta-Data Interfaces

Meta data is data about data. Java gives meta-data interfaces:
java.sql.ResultSetMetaData e java.sql.DatabaseMetaData.

ResultSetMetaData interface allows getting info about a ResultSet. For instance,
ResultSetMetaData gives info on the number of columns and on the types.

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM TABLE2");
ResultSetMetaData rsmd = rs.getMetaData();
int numberOfColumns = rsmd.getColumnCount();

See http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSetMetaData.html

The JDBC object model: the MetaData.

DatabaseMetaData interface allows getting info about a the Database.

For instance its getCatalogs() method retrieves the catalog names available in
this database while getDatabaseProductName() retrieves the name of this
database product.

A user for this interface is commonly a tool that needs to discover how to deal
with the underlying DBMS. LIMITED SUPPORT BY TOYS LIKE MS Access!

The class DatabaseMetaData is used by IDEs like JBuilder.

11

11

Simple Database Access Using the JDBC Interfaces

Scrivere una applicazione di Database usando solo chiamate JDBC

O comporta i seguenti
passi:

eseguire il tuo SQL.

statement.
4.Esegui lo statement.

1.Chiedi al DriverManager una implementazione di Connection.
2.Chiedi alla Connection uno Statement o una sottoclasse Statement per

3.Per le sottoclassi di Statement, lega i parametri da passare alla prepared

5.Per le queries, processa il result set ritornato dalla query. Ripetilo per

tutti i
result set finche’ ce ne sono.

6.Per gli altri other statements, leggi il numero di righe toccate.

7.Chiudi lo statement.

8.Processa cosi’ tutti gli statement che servono e poi chiudi la connessione.

Esempio

// create Statement object
Statement stmt = con.createStatement ();
String sqglselect =
"Select item nbr, wholesale_cost, "

package first;

import java.lang.¥*;
import java.util.¥*;
import java.sql.¥*;
import sun. jdbc.odbc. *;
import java.io.*;

public class first
{

public static void main(String arg[]) {
int id;

float amount;

java.sql.Date dt;

String companyName;

String result;

String item desc;

try {
//connect to ODBC database
Class.forName (
sun. jdbc.odbc.JdbcOdbcDriver") ;
String url = "jdbc:odbc:cityzoo";
// connect
Properties p = new Properties();
p.put ("user", "");
p.put ("password","");
Connection con =
DriverManager.getConnection (url, p);

+ " item_desc, company_ name”
+” from retail item, company"
+ " where wholesale_cost<9 and”
+ " company.company_ id=retail_ item.company_id"
+ " order by wholesale cost";
// run query
ResultSet rs = stmt.executeQuery(sglselect);
// process results
while(rs.next()) {

result = "";

id = rs.getInt(1l);

amount = rs.getFloat(2);

//dt = rs.getDate(2);

item_desc = rs.getString(3);
companyName = rs.getString(4);

result = "#"+result.valueOf (id) + " $";

result+= result.valueOf (amount) + " <";
result+= item_desc+"> <"+companyName+">";
System.out .println("Values are: " + result);
}
//close connection
con.close();
}
catch (Exception e) {
System.out.println(e.getMessage());
}
try {
Thread.sleep(20*1000) ;
} catch (Exception e) {}
}

}

12

12

JDBC 2.0

package javax.sql

See http://java.sun.com/docs/books/tutorial/jdbc/jdbc2dot0/index.html

New extensions

*Moving the Cursor in Scrollable Result Sets
o

*Making Updates to Updatable Result Sets

*Support for SQL3 Data types

13

13

JDBC — SQL3 Data Types

SQL3 type getXXX method setXXX method updateXXX method
BLOB getBlob setBlob updateBlob
CLOB getClob setClob updateClob
ARRAY getArray setArray updateArray
Structured type getObject setObject updateObject
REF (structured type) getRef setRef updateRef

Transactions

Introduction

1. getConnection/setConnection

Bank

package transactions_1;
import java.sql.*;
public class Bank {

public Connection getConnection(String jdbcDriverName,
String jdbcURL) {
try {
Class.forName(jdbcDriverName);
return DriverManager.getConnection(jdbcURL);
} catch (ClassNotFoundException ex) { ex.printStackTrace();
} catch (SQLException ex) { ex.printStackTrace(); }
return null;

}

public void releaseConnection(Connection conn) {
if (conn!=null)
try {
conn.close();
} catch (SQLException ex) { ex.printStackTrace(); }
>

2. deposit/withdraw

Bank

public void deposit(int account, double amount, Connection conn)
throws SQLException{
String sql="UPDATE Account SET Balance = Balance + "+ amount+
"WHERE Accountld = "+account;
Statement stmt=conn.createStatement();
stmt.executeQuery(sql);
System.out.printin("Deposited "+amount+" to account "+account);

3

public void withdraw(int account, double amount, Connection conn)
throws SQLException{

String sql="UPDATE Account SET Balance = Balance - "+ amount+
"WHERE AccountId = "+account;

Statement stmt=conn.createStatement();

stmt.executeQuery(sql);

System.out.printin("Withdrew "+amount+" from account "+
account);

15

15

Bank

3. printBalance

[m]

public void printBalance(Connection conn) {

ResultSet rs=null;
Statement stmt=null;
try {
stmt=conn.createStatement();
rs=stmt.executeQuery("SELECT * FROM Account");
while (rs.next())
System.out.printin("Account "+rs.getInt(1)+
" has a balnce of "+rs.getDouble(2));
} catch (SQLException ex) { ex.printStackTrace(); }

finally {
try {
if (rs!=null)
rs.close();

if (stmt!=null)
stmt.close();
} catch (SQLException ex) { ex.printStackTrace(); }

}

H

Bank

4. trasferFunds

public void transferFunds(int fromAccount, int toAccount,
double amount, Connection conn){
Statement stmt=null;
try {
withdraw(fromAccount, amount, conn);
deposit(toAccount,amount,conn);

catch (SQLException ex) {
System.out.printin("An error occured!");
ex.printStackTrace();
>
by

16

16

5. main

Bank

public static void main(String[] args) {
if (args.length <3) {
System.exit(1);

Connection conn=null;

Bank bank = new Bank();

try {
conn=bank.getConnection(args[0],args[1]);
bank.transferFunds(1,2,Double.parseDouble(args[2]),conn);
bank.printBalance(conn);

} catch (NumberFormatException ex) { ex.printStackTrace();

} finally {bank.releaseConnection(conn);}

>
>

Using transactions

When a connection is created, it is in auto-commit mode. This means that each
Lindividual SQL statement is treated as a transaction and will be automatically
committed right after it is executed.

con.setAutoCommit(false);
Committing a Transaction
Once auto-commit mode is disabled, no SQL statements will be committed
until you call the method commit explicitly. All statements executed after the

previous call to the method commit will be included in the current transaction
and will be committed (or rolled back) together as a unit.

17

17

Using transactions

con.setAutoCommit(false);
PreparedStatement updateSales = con.prepareStatement(
"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE
)5
updateSales.setInt(1, 50);
updateSales.setString(2, ''Colombian'');
updateSales.executeUpdate();
PreparedStatement updateTotal = con.prepareStatement(
"UPDATE COFFEES SET TOTAL = TOTAL + ? WHERE
COF_NAME LIKE ?");
updateTotal.setInt(1, 50);
updateTotal.setString(2, ''Colombian'');
updateTotal.executeUpdate();
con.commit(); // con.rollback();
con.setAutoCommit(true);

transferFunds - fixed version!

Bank

public void transferFunds(int fromAccount, int toAccount,
double amount, Connection conn){
o Statement stmt=null;
try {
conn.setAutoCommit(false);
withdraw(fromAccount, amount, conn);
deposit(toAccount,amount,conn);
conn.commit();

>
catch (SQLException ex) {

System.out.printin("An error occured!");

ex.printStackTrace();

try {

conn.rollback();

} catch (SQLException e) { e.printStackTrace(); }

>

b

18

18

Actors

A transactional object (or transactional component) is an

mapplication component that is involved in a transaction.

A transaction manager is responsible for managing the
transactional operations of the transactional components.
A resource is a persistent storage from which you read or
write.
A resource manager manages a resource. Resource

managers are responsible for managing all state that is
permanent.
The most popular interface for resource managers is the

X/Open XA resource manager interface (a de facto
standard): a deployment with heterogeneous resource
managers from different vendors can interoperate.

Distributed Systems

Distributed

i Transaction i

i Manager :

""" Local | ¢ i 7 Local |

Transaction b Transaction
Manager A : Manager B

P [

Lo |
Resource P Resource Resource
Manager A P Manager B1 Manager B2

P [‘
3 Ly Messaging

DB A [DB Bla DB B1lb

b Server B2a

> N S e

19

19

Who begins a transaction?

Who begins a transaction? Who issues either a commit or abort?
This is called demarcating transactional boundaries .

There are three ways to demarcate transactions:
sprogrammatically:
you are responsible for issuing a begin statement and either a
commit or an abort statement.
«declaratively,
the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean.
«client-initiated.
write code to start and end the transaction from the client code
outside of your bean.

Programmatic vs. declarative

programmatic transactions:

your bean has full control over transactional
boundaries.For instance,you can use programmatic
transactions to run a series of minitransactions within a bean
method.

When using programmatic transactions,always try to complete
your transactions in the same method that you began
them.Doing otherwise results in spaghetti code where it is
difficult to track the transactions;the performance decreases
because the transaction is held open longer.

declarative transactions:

your entire bean method must either run under a
transaction or not run under a transaction.

Transactions are simpler! (just declare them in the descriptor)

20

20

Client-initiated

Client initiated transactions:

i A nontransactional remote client calls an enterprise bean that
performs its own transactions The bean succeeds in the
transaction,but the network or application server crashes
before the result is returned to a remote client. The remote
client would receive a Java RMI RemoteException indicating a
network error,but would not know whether the transaction that
took place in the enterprise bean was a success or a failure.

With client-controlled transactions, if anything goes
wrong,the client will know about it.

The downside to client-controlled transactions is that if the
client is located far from the server, transactions are likely to
take a longer time and the efficiency will suffer.

Transactions

ACID

21

21

The ACID Properties

Atomicity guarantees that many operations are bundled
together and appear as one contiguous unit of work .

o

Consistency guarantees that a transaction leaves the system ’s
state to be consistent after a transaction completes.

Isolation protects concurrently executing transactions from
seeing eachother ’s incomplete results.

Durability guarantees that updates to managed resources,such
as database records,survive failures. (Recoverable resources
keep a transactional log for exactly this purpose.If the resource
crashes,the permanent data can be reconstructed by reapplying
the steps in the log.)

Lost Update

begin DB
’ Read A | Degin
" ReadA
]Increm.A <«
Increm. A [
 Write A
- commit
Write A |
commit :

22

22

Dirty Read

begin bB
Read A R
Increm. A)
begin
Write A >, Read A
rollback | Increm. A
 Write A
commit
Unrepeatable Read
begin I?B
Read A] begin
. ReadA
Increm. A
 Write A
’ commit
Read A |
commit |

23

23

Phantom Read (ghost update)

DB

begin Integrity
o ¥ begin Constraint:
« ReadA | A+B=100
A=A-1
Write A
Read A [—>
Read B '4 Read B
ICoAsB B=B+1
el | Write B L
commit
commit ¢
Integrity constraint
violated!
Isolation levels
o ISOLATION Dirty Read Unrepeatable Phantom Read
LEVEL Read
READ SI SI SI
UNCOMMITTED
READ NO SI SI
COMMITTED \
REPEATABLE NO NO SI
READ
SERIALIZABLE NO NO NO

o

24

24

