
1

1

Distributed Objects

Remote Method Invokation:

Conceptual model

Object 1 Object 2

invoke method

respond

ObjectObject OrientedOriented ParadigmParadigm

2

2

Object 1 Object 2

invoke method

respond

Client Host/Process Server Host/Process

DistributedDistributed ObjectObject OrientedOriented ParadigmParadigm

Object 1 Object 2

socket

interaction

Local –

Client Host/Process

Remote -

Server Host/Process

“Post Office” “Post Office”

DistributedDistributed ObjectObject OrientedOriented: : implementationimplementation

3

3

Object 1 Object 2

magic

Local –

Client Host/Process

Remote-

Server Host/Process

Stub of Object 2 Skeleton of Object 2

DistributedDistributed ObjectObject OrientedOriented: RMI : RMI paradigmparadigm

Distributed Objects

A “do it yourself” implementation

4

4

Un oggetto distribuito “fai da te”

�

package distributedobjectdemo;

public interface Person {
public int getAge() throws Throwable;
public String getName() throws Throwable;
}

1. Person: l’interfaccia

Un oggetto distribuito “fai da te”

�

package distributedobjectdemo;

public class PersonServer implements Person{
int age;
String name;
public PersonServer(String name,int age){
this.age=age;
this.name=name;
}
public int getAge(){
return age;
}
public String getName(){
return name;
}
public static void main(String a[]) {
PersonServer person = new PersonServer("Marko", 45);
Person_Skeleton skel = new Person_Skeleton(person);
skel.start();
System.out.println("server started");
}
}

2. Person: la classe

5

5

Un oggetto distribuito “fai da te”

�

package distributedobjectdemo;
import java.net.Socket;
import java.net.ServerSocket;
import java.io.*;

public class Person_Skeleton extends Thread {
PersonServer myServer;
int port=9000;

public Person_Skeleton(PersonServer server) {
this.myServer=server;
}
// la classe continua…

3. Person: lo skeleton

Un oggetto distribuito “fai da te”

�

public void run(){
Socket socket = null;
ServerSocket serverSocket=null;
try {
serverSocket=new ServerSocket(port);

}
catch (IOException ex) {
System.err.println("error while creating serverSocket");
ex.printStackTrace(System.err); System.exit(1);
}

while (true) {
try {
socket=serverSocket.accept();
System.out.println("Client opened connection");
}
catch (IOException ex) {
System.err.println("error accepting on serverSocket");
ex.printStackTrace(System.err); System.exit(1);
}
// il metodo continua…

3. Person: lo skeleton

6

6

Un oggetto distribuito “fai da te”

�

try {
while (socket!=null){
ObjectInputStream instream=

new ObjectInputStream(socket.getInputStream());
String method=(String)instream.readObject();
if (method.equals("age")) {
int age=myServer.getAge();
ObjectOutputStream outstream=

new ObjectOutputStream(socket.getOutputStream());
outstream.writeInt(age);
outstream.flush();
} else if (method.equals("name")) {
String name=myServer.getName();
ObjectOutputStream outstream=

new ObjectOutputStream(socket.getOutputStream());
outstream.writeObject(name);
outstream.flush();
}
}
//prosegue con il catch…

3. Person: lo skeleton

Un oggetto distribuito “fai da te”

�

} catch (IOException ex) {
if (ex.getMessage().equals("Connection reset")) {
System.out.println("Client closed connection");
} else {
System.err.println("error on the network");
ex.printStackTrace(System.err); System.exit(2);
}
} catch (ClassNotFoundException ex) {
System.err.println("error while reading object from the net");
ex.printStackTrace(System.err); System.exit(3);
}
}//fine del ciclo while(true)
} //fine del metodo run
} //fine della classe

3. Person: lo skeleton

7

7

Un oggetto distribuito “fai da te”

�

package distributedobjectdemo;
import java.net.Socket;
import java.io.*;

public class Person_Stub implements Person {
Socket socket;
String machine="localhost";
int port=9000;

public Person_Stub() throws Throwable {
socket=new Socket(machine,port);
}
protected void finalize(){
System.err.println("closing");
try { socket.close(); }
catch (IOException ex) {ex.printStackTrace(System.err); }
}
// la classe continua…

4. Person: lo stub

Un oggetto distribuito “fai da te”

�

public int getAge() throws Throwable {
ObjectOutputStream outstream=

new ObjectOutputStream(socket.getOutputStream());
outstream.writeObject("age");
outstream.flush();
ObjectInputStream instream=

new ObjectInputStream(socket.getInputStream());
return instream.readInt();
}

public String getName() throws Throwable {
ObjectOutputStream outstream=new

ObjectOutputStream(socket.getOutputStream());
outstream.writeObject("name");
outstream.flush();
ObjectInputStream instream=

new ObjectInputStream(socket.getInputStream());
return (String)instream.readObject();
}
} // fine della classe

4. Person: lo stub

8

8

Un oggetto distribuito “fai da te”

�

package distributedobjectdemo;

public class Client {

public Client() {
try {
Person person=new Person_Stub();
int age=person.getAge();
String name=person.getName();
System.out.println(name+" is "+age+" years old");
}
catch (Throwable ex) {
ex.printStackTrace(System.err);
}
}
public static void main(String[] args) {
Client client1 = new Client();
}
}

5. Person: il client

Open issues

-multiple instances

-Automatic stub and skeleton generation

-on demand server dentification

-on demand remote class activation

Client Broker Server

Registry

9

9

Distributed Objects

An RMI basic implementation

CLIENT & SERVER: iCalendar (interface)

import java.rmi.*;

public interface iCalendar extends Remote {

java.util.Date getDate () throws RemoteException;

}

1. Define the common interface

10

10

SERVER: CalendarImpl

�

import java.util.Date;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class CalendarImpl

extends UnicastRemoteObject

implements iCalendar {

public CalendarImpl() throws RemoteException {}

public Date getDate () throws RemoteException {

return new Date();

} public static void main(String args[]) {

CalendarImpl cal;

try {

LocateRegistry.createRegistry(1099);

cal = new CalendarImpl();

Naming.bind("rmi:///CalendarImpl", cal);

System.out.println("Ready for RMI's");

} catch (Exception e) {e.printStackTrace();}

}

}

2. Implement the service

SERVER: CalendarImpl

�

import java.util.Date;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class CalendarImpl

extends UnicastRemoteObject

implements iCalendar {

public CalendarImpl() throws RemoteException {}

public Date getDate () throws RemoteException {

return new Date();

} public static void main(String args[]) {

CalendarImpl cal;

try {

LocateRegistry.createRegistry(1099);

cal = new CalendarImpl();

Naming.bind("rmi:///CalendarImpl", cal);

System.out.println("Ready for RMI's");

} catch (Exception e) {e.printStackTrace()}

}

}

3. Create Registry

11

11

SERVER: CalendarImpl

�

import java.util.Date;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class CalendarImpl

extends UnicastRemoteObject

implements iCalendar {

public CalendarImpl() throws RemoteException {}

public Date getDate () throws RemoteException {

return new Date();

} public static void main(String args[]) {

CalendarImpl cal;

try {

LocateRegistry.createRegistry(1099);

cal = new CalendarImpl();

Naming.bind("rmi:///CalendarImpl", cal);

System.out.println("Ready for RMI's");

} catch (Exception e) {e.printStackTrace()}

}

}

4. Register yourself

Server

�

It is not necessary to have a thread wait to

keep the server alive. As long as there is a

reference to the CalendarImpl object in another

virtual machine, the CalendarImpl object will

not be shut down or garbage collected.

Because the program binds a reference to the

CalendarImpl in the registry, it is reachable

from a remote client, the registry itself!

The CalendarImpl is available to accept calls

and won't be reclaimed until its binding is

removed from the registry, and no remote

clients hold a remote reference to the

CalendarImpl object.

12

12

CLIENT: CalendarUser

�
import java.util.Date;

import java.rmi.*;

public class CalendarUser {

public static void main(String args[]) {

long t1=0,t2=0;

Date date;

iCalendar remoteCal;

try {

remoteCal = (iCalendar)

Naming.lookup("rmi://HOST/CalendarImpl");

t1 = remoteCal.getDate().getTime();

t2 = remoteCal.getDate().getTime();

} catch (Exception e) {e.printStackTrace();}

System.out.println("This RMI call took " + (t2-t1) +

" milliseconds");

}

}

6. Use Service

Preparing and executing

SERVER
C:dir

CalendarImpl.java

iCalendar.java

C:javac CalendarImpl.java

C:rmic CalendarImpl

C:dir

CalendarImpl.java

iCalendar.java

CalendarImpl.class

iCalendar.class

CalendarImpl_Stub.class

CalendarImpl_Skel.class

C:java CalendarImpl

CLIENT

C:dir

CalendarUser.java

iCalendar.java

C:javac CalendarUser.java

C:dir

CalendarUser.java

iCalendar.java

CalendarImpl_Stub.class

C:java CalendarUser

copy

13

13

Preparing and executing (version in package rmidemo)

SERVER
C:dir rmidemo

CalendarImpl.java

iCalendar.java

C:javac rmidemo/CalendarImpl.java

C:rmic rmidemo.CalendarImpl

C:dir rmidemo

CalendarImpl.java

iCalendar.java

CalendarImpl.class

iCalendar.class

CalendarImpl_Stub.class

CalendarImpl_Skel.class

C:java rmidemo.CalendarImpl

CLIENT

C:dir rmidemo

CalendarUser.java

iCalendar.java

C:javac rmidemo/CalendarUser.java

C:dir rmidemo

CalendarUser.java

iCalendar.java

CalendarImpl_Stub.class

C:java rmidemo.CalendarUser

copy

Distributed Objects

An RMI implementation

- Addendum -

14

14

Preparing and executing - security

�

The JDK 1.2 security model is more

sophisticated than the model used for JDK 1.1.

JDK 1.2 contains enhancements for finer-

grained security and requires code to be

granted specific permissions to be allowed to

perform certain operations.

Since JDK 1.2, you need to specify a policy

file when you run your server and client.

grant { permission java.net.SocketPermission "*:1024-65535",

"connect,accept";

permission java.io.FilePermission "c:\\…path…\\", "read"; };

java -Djava.security.policy=java.policy executableClass

Accesso alle proprietà di sistema

�

Nota: instead of specifìying a property at

runtime (-D switch of java command), You can

hardwire the property into the code:

-Djava.security.policy=java.policy

System.getProperties().put(

"java.security.policy",

"java.policy");

15

15

Preparing and executing

�

NOTE: in Java 2 the skeleton may not exist

(its functionality is absorbed by the class

file).

In order to use the Java 2 solution, one must

specify the switch –v1.2

C:rmic –v1.2 CalendarImpl

IMPORTANT: Parameter passing

�

Java Standard:
void f(int x) :

Parameter x is passed by copy

void g(Object k) :

Parameter k and return value are passed by reference

Java RMI:
void h(Object k) :

Parameter k is passed by copy!
UNLESS k is a REMOTE OBJECT (in which case it is

passed as a REMOTE REFERENCE, i.e. its stub is copied if
needed)

16

16

IMPORTANT: Parameter passing

�

Passing By-Value
When invoking a method using RMI,all parameters to the

remote method are passed by-value .This means that when a
client calls a server,all parameters are copied from one

machine to the other.

Passing by remote-reference

If you want to pass an object over the network by-reference,it
must be a remote object, and it must implement

java.rmi.Remote.A stub for the remote object is serialized and

passed to the remote host. The remote host can then use that

stub to invoke callbacks on your remote object. There is only

one copy of the object at any time,which means that all hosts
are calling the same object.

Serialization

�

•Any basic primitive type (int,char,and so on) is automatically

serialized with the object and is available when deserialized.

•Java objects can be included with the serialized or not:

•Objects marked with the transient keyword are not serialized

with the object and are not available when deserialized.

•Any object that is not marked with the transient keyword must

implement java.lang.Serializable .These objects are converted

to bit-blob format along with the original object. If your Java

objects are neither transient nor implement

java.lang.Serializable ,a NotSerializable Exception is thrown
when writeObject()is called.

17

17

When not to Serialize

�

•The object is large.Large objects may not be suitable for

serialization because operations you do with the serialized blob

may be very intensive. (one could save the blob to disk or
transporting the blob across the network)

•The object represents a resource that cannot be reconstructed

on the target machine.Some examples of such resources are

database connections and sockets.

•The object represents sensitive information that you do not

want to pass in a serialized stream..

Alternatives – starting the register

�

Instead of writing in the server code:
LocateRegistry.createRegistry(1099);

You can satrt the registry from the shell:
C: rmiregistry 1099 (port number is optional)

Note: in Java 2 you need an additional

parameter:
C: rmiregistry –J-Djava.security.policy=registerit.policy

where registerit.policy is a file containing:

grant {permission java.security.AllPermission}

Or some permission restriction. Typically the

file is kept in %USER_HOME%/.java.policy

18

18

RMI-IIOP

�

RMI-IIOP is a special version of RMI that is compliant with

CORBA and uses both java.rmi and javax.rmi .

RMI has some interesting features not available in RMI-

IIOP,such as
distributed garbage collection,

object activation,and
downloadable class files.

But EJB and J2EE mandate that you use RMI-IIOP, not
RMI.

Distributed Objects

dynamic stub loading

19

19

Alternative 2 – stub dynamic loading

�

Instead of manually copying the stub from the

Server to client, can we automatically load

the stub at runtime?

“RMI can download the bytecodes of an object's class if

the class is not defined in the receiver's virtual

machine. The types and the behavior of an object,

previously available only in a single virtual machine,

can be transmitted to another, possibly remote, virtual

machine. RMI passes objects by their true type, so the

behavior of those objects is not changed when they are

sent to another virtual machine. This allows new types

to be introduced into a remote virtual machine, thus

extending the behavior of an application dynamically.”

Alternativa 2 – caricamento dinamico dello stub

�

SERVER

rmiregistry

CLIENT

http Server STUB

VM -rmi class

VM –client code

20

20

�

This client expects a URL in the marshalling stream for the

remote object. It will load the stub class for the remote object

from the URL in the marshalling stream. Before you can load

classes from a non-local source, you need to set a security

manager.

Note, as an alternative to using the RMISecurityManager, you can

create your ownsecurity manager.

import java.util.Date;

import java.rmi.*;

public class CalendarUser {

public static void main(String args[]) {

long t1=0,t2=0; Date date; iCalendar remoteCal;

System.setSecurityManager(new RMISecurityManager());

try { remoteCal = (iCalendar)

Naming.lookup("rmi://HOST/CalendarImpl");

t1 = remoteCal.getDate().getTime();

t2 = remoteCal.getDate().getTime();

} catch (Exception e) {e.printStackTrace();}

System.out.println("This RMI call took " + (t2-t1) +

“ milliseconds“);

}

}

CLIENT:

CalendarUser-

Caric.dinamico

SERVER: CalendarImpl – Caricamento dinamico

�

import java.util.Date;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class CalendarImpl

extends UnicastRemoteObject

implements iCalendar {

public CalendarImpl() throws RemoteException {}

public Date getDate () throws RemoteException {

return new Date();

}

public static void main(String args[]) {

CalendarImpl cal;

System.setSecurityManager(new RMISecurityManager());

System.getProperties().put(

"java.rmi.server.codebase",

"http://HOST/java/classes/");

try {

LocateRegistry.createRegistry(1099);

cal = new CalendarImpl();

Naming.bind("rmi:///CalendarImpl", cal);

System.out.println("Ready for RMI's");

} catch (Exception e) {e.printStackTrace()}

}

}

The first part remains untouched

21

21

Distributed Objects

A different paradigm:

dynamic loading of a remote class

Dynamic loading of a remote class

�

Object 1

Class 21. Get class

Client Host
Server Host

Class 2

Object 2

2. Create

instance

3. Invoke

method
Different paradigm:

1. Laod at runtime a

class from a remote

machine,

2. Create a local

instance

3. Execute it.

22

22

An utility class: a quitter Window

package rmiDynamicLoadingDemo;

import java.awt.event.*;
import javax.swing.*;

public class QuitterJFrame extends JFrame {
//Overridden so we can exit when window is closed
protected void processWindowEvent(WindowEvent e) {
super.processWindowEvent(e);
if (e.getID() == WindowEvent.WINDOW_CLOSING) {
System.exit(0);
}
}
}

A remote class

package rmiDynamicLoadingDemo;
import javax.swing.*;
import java.awt.*;
public class NetworkApp implements Executable {
JFrame f;
public NetworkApp(QuitterJFrame f) {
this.f = f;
};
public void exec() {
f.setBackground(Color.DARK_GRAY);
f.setForeground(Color.white);
JLabel l = new JLabel("Latest version of your application.",

JLabel.CENTER);
f.getContentPane().add("Center",l);
f.pack();
f.repaint();
}
}

package rmiDynamicLoadingDemo;

public interface Executable {

public void exec();

}

23

23

�

package rmiDynamicLoadingDemo;
import javax.swing.*;
import java.net.URL;
import java.rmi.RMISecurityManager;
import java.rmi.server.RMIClassLoader;
import java.lang.reflect.*;
import java.security.Permission;

public class ExecutableLoader {
public static void main(String args[]) {
System.setSecurityManager(
new RMISecurityManager() {
public void checkPermission(Permission p){}
});;

Caricatore dinamico-1

�

JFrame cf = new QuitterJFrame();
cf.setTitle("NetworkApp");

// download a class from the net, and create an instance of it
try {
URL url = new URL("http://latemar.science.unitn.it/java/");
Class cl =

RMIClassLoader.loadClass(
url,"rmiDynamicLoadingDemo.NetworkApp");

Class argTypes[] = {cf.getClass()};
Object argArray[] = {cf};

// create an instance of cl using constructor cntr
Constructor cntr = cl.getConstructor(argTypes);
Executable client = (Executable)cntr.newInstance(argArray);

client.exec();
cf.show();
} catch (Exception e) {e.printStackTrace();}
}
}

Caricatore dinamico-2

