Distributed Objects

Remote Method Invokation:
Conceptual model

Object 1

invoke method

g Object 2

Client Host/Process Server Host/Process

invoke method

>

| "| Object 2

Object 1 |

Remote -
Server Host/Process

Local —
Client Host/Process

Object 1 Object 2
“Post Office” | < >| “Post Office”
socket

interaction

Remote-
Server Host/Process

Local —
Client Host/Proces

Object 1 Object 2
\ magic /
Stub of Object 2 (¢~ |- -=------~ - # Skeleton of Object 2

Distributed Objects

A “do it yourself” implementation

Un oggetto distribuito “fai da te” _

Un oggetto distribuito “fai da te”

2. Person: la classe

Un oggetto distribuito “fai da te” _

ctto distribuito “fai da tc” |SUPeISON: IO Skeleton)

Un oggetto distribuito “fai da te”

Un oggetto distribuito “fai da te”

Un oggetto distribuito “fai da te”

Un oggetto distribuito “fai da te”

Un oggetto distribuito “fai da te”

Open issues

-multiple instances

-Automatic stub and skeleton generation
-on demand server dentification

-on demand remote class activation

Distributed Objects

An RMI basic implementation

CLIENT & SERVER: iCalendar (interface)

1. Define the common interface

import java.rmi.¥*;
public interface iCalendar extends Remote {
java.util.Date getDate () throws RemoteException;

}

import java.rmi.¥*;

import java.rmi.server.*;
public class CalendarImpl
extends UnicastRemoteObject
implements iCalendar {
public CalendarImpl () throws RemoteException {}
public Date getDate () throws RemoteException ({
return new Date();

2. Implement the service

SERVER: CalendarImpl
import java.util.Date;
import java.rmi.registry.*;

} public static void main(String args[]) {
CalendarImpl cal;
try {

Naming.bind ("rmi:///CalendarImpl", cal);
System.out.println("Ready for RMI's");
} catch (Exception e) {e.printStackTrace();}

LocateRegistry.createRegistry(1099);
cal = new CalendarImpl();
}
}

SERVER: CalendarImpl

import java.util.Date;
import java.rmi.*;
import java.rmi.registry.¥*;
import java.rmi.server.¥;
public class CalendarImpl
extends UnicastRemoteObject
implements iCalendar {
public CalendarImpl () throws RemoteException {}
public Date getDate () throws RemoteException ({

return new Date();

3. Create Registry

} public static void main(String args[]) {
CalendarImpl cal;
try {

Naming.bind ("rmi:///CalendarImpl", cal);
} catch (Exception e) {e.printStackTrace()}

LocateRegistry.createRegistry (1099);
cal = new CalendarImpl();
System.out.println("Ready for RMI's");
}
}

10

10

SERVER: CalendarImpl

import java.util.Date;
import java.rmi.¥*;

import java.rmi.registry.*;
import java.rmi.server.*;
public class CalendarImpl

public CalendarImpl() throws RemoteException {}
public Date getDate () throws RemoteException ({

}

4. Register yourself

extends UnicastRemoteObject
implements iCalendar {

return new Date();

public static void main(String args[]) {

CalendarImpl cal;
try {
LocateRegistry.createRegistry(1099);
cal = new CalendarImpl();
Naming.bind("rmi:///CalendarImpl", cal);
System.out.println("Ready for RMI's");
} catch (Exception e) {e.printStackTrace()}
}

Server

It is not necessary to have a thread wait to
ke€ép the server alive. As long as there is a
reference to the Calendarimpl object in another
virtual machine, the Calendarlmpl object will
not be shut down or garbage collected.
Because the program binds a reference to the
Calendarlmpl in the registry, it is reachable
from a remote client, the registry itself!
The Calendarlmpl is available to accept calls
and won't be reclaimed until its binding is
removed from the registry, and no remote
clients hold a remote reference to the
Calendarimpl object.

11

11

CLIENT: CalendarUser

import java.util.Date;
import java.rmi.¥*;
public class CalendarUser ({

long t1=0,t2=0;
Date date;
iCalendar remoteCal;
try {
remoteCal = (iCalendar)

tl

milliseconds");

public static void main(String args[]) {

Naming.lookup ("rmi://HOST/CalendarImpl") ;
remoteCal.getDate () .getTime() ;
t2 = remoteCal.getDate() .getTime() ;
} catch (Exception e) {e.printStackTrace();}
System.out.println("This RMI call took " + (t2-tl) +

6. Use Service

Preparing and executing

SERVER
C:dir
CalendarImpl. java

C:javac CalendarImpl.java
C:rmic CalendarImpl

C:dir

CalendarImpl. java

iCalendar. java

?alendarImpl.class copy
iCalendar.class —””’,,4—”'
CalendarImpl_Stub.class
CalendarImpl_Skel.class

C:java CalendarImpl

CLIENT

C:dir
CalendarUser. java

C:javac CalendarUser. java
C:dir
CalendarUser. java

iCalendar. java
CalendarImpl_Stub.class

C:java CalendarUser

12

12

Preparing and executing (version in package rmidemo)

SERVER CLIENT

C:dir rmidemo

CalendarImpl. java C:dir rmidemo

CalendarUser. java

C:javac rmidemo/CalendarImpl. java
C:rmic rmidemo.CalendarImpl C:javac rmidemo/CalendarUser.java
C:dir rmidemo
CalendarImpl. java
iCalendar. java
CalendarImpl.class copy CalendarImpl_ Stub.class
iCalendar.class ”/”,,,1—7

CalendarImpl_Stub.class

CalendarImpl_ Skel.class

C:dir rmidemo
CalendarUser. java
iCalendar. java

C:java rmidemo.CalendarImpl C:java rmidemo.CalendarUser

Distributed Objects

An RMI implementation
- Addendum -

13

13

Preparing and executing - security

The JDK 1.2 security model is more

sophisticated than the model used for JDK 1.1.

JDK 1.2 contains enhancements for finer-
grained security and requires code to be
granted specific permissions to be allowed to
perform certain operations.

Since JDK 1.2, you need to specify a policy
file when you run your server and client.

grant { permission java.net.SocketPermission "*:1024-65535",
"connect, accept";
permission java.io.FilePermission "c:\\..path.\\", "read"; };

java -Djava.security.policy=java.policy executableClass

Accesso alle proprieta di sistema

Nota: instead of specifiying a property at
runtime (-D switch of java command), You can
hardwire the property into the code:

-Djava.security.policy=java.policy
System.getProperties () .put (

"jJava.security.policy",
"jJava.policy");

14

14

Preparing and executing

NOTE: in Java 2 the skeleton may not exist
(it's functionality is absorbed by the class
file) .

In order to use the Java 2 solution, one must
specify the switch -v1.2

C:rmic -v1.2 CalendarImpl

IMPORTANT: Parameter passing

Java Standard:

void £ (int x)

Parameter x is passed by copy

void g(Object k)

Parameter k and return value are passed by reference

Java RMI:

void h(Object k)

Parameter k is passed by copy!

UNLESS k is a REMOTE OBJECT (in which case it is
passed as a REMOTE REFERENCE, i.e. its stub is copied if
needed)

15

15

IMPORTANT: Parameter passing

Passing By-Value

When invoking a method using RMI,all parameters to the
remote method are passed by-value .This means that when a
client calls a server,all parameters are copied from one
machine to the other.

Passing by remote-reference

If you want to pass an object over the network by-reference,it
must be a remote object, and it must implement
java.rmi.Remote.A stub for the remote object is serialized and
passed to the remote host. The remote host can then use that
stub to invoke callbacks on your remote object. There is only
one copy of the object at any time,which means that all hosts
are calling the same object.

Serialization

*Any basic primitive type (int,char,and so on) is automatically
serialized with the object and is available when deserialized.

«Java objects can be included with the serialized or not:

*Objects marked with the transient keyword are not serialized
with the object and are not available when deserialized.

*Any object that is not marked with the transient keyword must
implement java.lang.Serializable .These objects are converted
to bit-blob format along with the original object. If your Java
objects are neither transient nor implement
java.lang.Serializable ,a NotSerializable Exception is thrown
when writeObject()is called.

16

16

When not to Serialize

*The object is large.Large objects may not be suitable for
serialization because operations you do with the serialized blob
may be very intensive. (one could save the blob to disk or
transporting the blob across the network)

*The object represents a resource that cannot be reconstructed
on the target machine.Some examples of such resources are
database connections and sockets.

*The object represents sensitive information that you do not
want to pass in a serialized stream..

Alternatives — starting the register

o

Instead of writing in the server code:
LocateRegistry.createRegistry(1099);

You can satrt the registry from the shell:
C: rmiregistry 1099 (port number is optional)

Note: in Java 2 you need an additional

parameter:
C: rmiregistry —-J-Djava.security.policy=registerit.policy
where registerit.policy is a file containing:

grant {permission java.security.AllPermission}
Or some permission restriction. Typically the
file is kept in %USER_HOMES%/.java.policy

17

17

RMI-IIOP

o

RMI-IIOP is a special version of RMI that is compliant with
CORBA and uses both java.rmi and javax.rmi .

RMI has some interesting features not available in RMI-
lIOP,such as

distributed garbage collection,

object activation,and

downloadable class files.

But EJB and J2EE mandate that you use RMI-IIOP, not
RML.

Distributed Objects

dynamic stub loading

18

18

Alternative 2 — stub dynamic loading

Instead of manually copying the stub from the
Server to client, can we automatically load
the stub at runtime?

“RMI can download the bytecodes of an object's class if
the class is not defined in the receiver's virtual
machine. The types and the behavior of an object,
previously available only in a single virtual machine,
can be transmitted to another, possibly remote, virtual
machine. RMI passes objects by their true type, so the
behavior of those objects is not changed when they are
sent to another virtual machine. This allows new types
to be introduced into a remote virtual machine, thus
extending the behavior of an application dynamically.”

Alternativa 2 — caricamento dinamico dello stub

CLIENT SERVER

rmiregistry]

[VM —client code]

[
< [http Server}—| STUB
[

VM -rmi class]

19

19

CLIENT:

import java.util.Date;

import java.rmi.*; CalendarUset-
public class CalendarUser ({ . . .
public static void main(String args[]) { (:ﬂflCJilfHU]llC()
long t1=0,t2=0; Date date; iCalendar remoteCal;
System.setSecurityManager (new RMISecurityManager());
try { remoteCal = (iCalendar)

Naming.lookup ("rmi://HOST/CalendarImpl") ;
tl remoteCal.getDate () .getTime () ;
t2 = remoteCal.getDate() .getTime();
} catch (Exception e) {e.printStackTrace();}
System.out.println("This RMI call took " + (t2-tl) +
“ milliseconds"“);

This client expects a URL in the marshalling stream for the
remote object. It will load the stub class for the remote object
from the URL in the marshalling stream. Before you can load
classes from a non-local source, you need to set a security
manager.

Note, as an alternative to using the RMISecurityManager, you can
create your ownsecurity manager.

SERVER: CalendarImpl — Caricamento dinamico

}

public c

1

import java.util.Date;

import java.rmi.*;
import java.rmi.registry.¥*;
import java.rmi.server.¥;

public static void main(String args[]) {
? CalendarImpl cal;
bl'l System.setSecurityManager (new RMISecurityManager());
Publ?c System.getProperties () .put (
pu tc "java.rmi.server.codebase",
retu

"http://HOST/java/classes/");
try {
LocateRegistry.createRegistry(1099);
cal = new CalendarImpl();
Naming.bind ("rmi:///CalendarImpl", cal);
System.out.println("Ready for RMI's");
} catch (Exception e) {e.printStackTrace()}

20

20

Distributed Objects

A different paradigm:
dynamic loading of a remote class

Dynamic loading of a remote class

Server Host

Client Host
1. Get/class Class 2
Object 1 |_—|
2. Create
instance Different paradigm:
Object 2 1. Laod at runtime a
class from a remote
v machine,
Class 2 2. Create a local
instance

21

21

An utility class: a quitter Window

package rmiDynamicLoadingDemo;

import java.awt.event.*;
import javax.swing.*;

public class QuitterJFrame extends JFrame {
//Overridden so we can exit when window is closed
protected void processWindowEvent(WindowEvent e) {
super.processWindowEvent(e);
if (e.getID() == WindowEvent.WINDOW_CLOSING) {
System.exit(0);
bs
by
by

A remote class package rmiDynamicLoadingDemo;

public interface Executable {

public void exec();

}

package rmiDynamicLoadingDemo;
import javax.swing.*;
import java.awt. *;
public class NetworkApp implements Executable {
JFrame f;
public NetworkApp(QuitterJFrame f) {
this.f = f;
}i
public void exec() {
f.setBackground(Color.DARK_GRAY);
f.setForeground(Color.white);

JLabel | = new JLabel("Latest version of your application."”,

JLabel.CENTER);
f.getContentPane().add("Center",l);
f.pack();
f.repaint();

package rmiDynamicLoadingDemo; Caricatore dinamico-1
import javax.swing.¥*;

import java.net.URL;

import java.rmi.RMISecurityManager;

import java.rmi.server.RMIClassLoader;

import java.lang.reflect.*;

import java.security.Permission;

public class ExecutableLoader {
public static void main(String args[]) {
System.setSecurityManager(
new RMISecurityManager() {
public void checkPermission(Permission p){}

)i

JFrame cf = new QuitterJFrame(); Caricatore dinamico-2
cf.setTitle("NetworkApp");

// download a class from the net, and create an instance of it
try {
URL url = new URL("http://latemar.science.unitn.it/java/");
Class cl =
RMIClassLoader.loadClass(
url,"rmiDynamicLoadingDemo.NetworkApp");

Class argTypes[] = {cf.getClass()};
Object argArray[] = {cf};

// create an instance of cl using constructor cntr
Constructor cntr = cl.getConstructor(argTypes);
Executable client = (Executable)cntr.newInstance(argArray);

client.exec();
cf.show();
} catch (Exception e) {e.printStackTrace();}
>
>

23

23

