Beans in JSP

http://courses.coreservlets.com/Course-
Materials/pdf/csajsp2/13-JavaBeans.pdf

Java Beans

« Java classes that follow certain conventions

- Must have a zero-argument (empty) constructor

* You can satisfy this requirement either by explicitly
defining such a constructor or by omitting all constructors

- Should have no public instance variables (fields)
* You should already follow this practice and use accessor

mathAarde inetansrd AfF sllrasiam Aireed aprrace 4/ fianlAde
IS WD 1HoUCdU U il iy Ul dueCoo W iciug

- Persistent values should be accessed through methods
called getXxx and setXxx

* |f class has method getTitle that returns a String, class is
said to have a String property named title

« Boolean properties may use isXxx instead of getXxx

Bean Properties

* Usual rule to turn method name into
pr‘ﬂpeﬁy name
- Drop the word “get” or “set” and change the next letter to
lowercase. Again, instance var name is irrelevant.

* Method name: getUserFirstName
* Property name: userFirstName

+ Exception 1: boolean properties

- If getter returns boolean or Boolean
« Method name: getPrime or isPrime
» Property name: prime
 Exception 2: consecutive uppercase letters

- If two uppercase letters in a row after “get” or “set”
* Method name: getURL
* Property name: URL (not uRL)

Examples

Method Names | Property Name |Example JSP Usage

getFirstName firstName <|sp:getProperty ... property="firstName"/>

setFirstName <jsp:setProperty ... property="firstName"/>
${customer.firstName}

isExecutive executive <jsp:getProperty ... property="executive"/>

setExecutive <|sp:setProperty ... property="executive"/>

(boolean property) ${customer.executive}

getExecutive executive <jsp:getProperty ... property="executive"/>

setExecutive <jsp:setProperty ... property="executive"/>

(boolean property) ${customer.executive}

getZIP ZIP <|sp:.getProperty ... property="ZIP"/>

setZIP <|sp:setProperty ... property="ZI|P"/>

|. ${address.ZIP}

I L]

Why Getters and setters?

To be a bean, you cannot have public fields

So, you should replace
public double speed;

with
5 Mote: in Eclipse, after you create instance variable, if you R-click and choase “Source™,
Prlva te dﬂ“h 1E EPEEd; it gives you option to generate getters and setters for you.

public double getSpeed() {
return (speed) ;

}
public void setSpeed(double newSpeed) ({

speed = newSpeed;

}

You should do this in all your Java code
anyhow. Why?

Reason 1

1) You can put constraints on values

public void setSpeed(double newSpeed) ({
if (newSpeed < 0) {

sendErrorMessage(...);
newSpeed = Math.abs (newSpeed) ;

}

speed = newSpeed;

}

— If users of your class accessed the fields directly, then
they would each be responsible for checking constraints.

Reason 2

2) You can change your internal
representation without changing interface

// Now using metric units (kph, not mph)

public void setSpeed(double newSpeed) {
speedInKPH = convert (newSpeed) ;

}

public void setSpeedInKPH (double newSpeed) {
speedInKPH = newSpeed;
}

Reason 3

3) You can perform arbitrary side effects

public double setSpeed(double newSpeed) {
speed = newSpeed;
updateSpeedometerDisplay() ;

}

- If users of your class accessed the fields directly, then

they would each be responsible for executing side effects.

v svvztmde vrremede e ed srreme logtrre wtele e ries e 30 el s
100 IMucn WOIK danad rufis nuge risxk 01 naving aispiay

mconsistent from actual values.

Basic bean tasks

* jsp:useBean
— In the simplest case, this element builds a new bean.
It 1s normally used as follows:
« <jsp:useBean id="beanName" class="package.Class" />
* jsp:setProperty
— This element modifies a bean property (i.e., calls a
setBlah method). It 1s normally used as follows:

« <jsp:setProperty name="beanName"
property="propertyName"
value="propertvValue" />

+ jsp:getProperty
— This element reads and outputs the value of a bean
property. It is used as follows:

« <jsp:getProperty name="beanName"
property="propertyName" />

Where's the advantage”?

— Simple interpretation:
<Jsp:useBean id="book1" class="coreservlets.Book" />
can be thought of as equivalent to the scriptlet
<% coreservlets.Book book1 = new coreservlets.Book(); %>

- But jsp:useBean has two additional advantages:
* |t is easier to derive object values from request parameters
« |t is easier to share objects among pages or servlets

Where do | put beans?

« Beans installed in normal Java directory

— MyEclipse: src/folderMatchingPackage
— Deployment: WEB-INF/classes/folderMatchingPackage

 Beans must always be in packages!

mn
X
=2

cit type convertion

<%

Amsialmla AT sAassaadETads = 1 N s
A LA T el ad il e AR s W o
try {

N Vel V™ il il e Tl el Sl

F

discountCode =

Double.parseDouble (discountString) ;

} catch (NumberFormatExcept

5>

ion nfe) {}

<%-- setDiscountCode expects a double --%>

<jsp:setProperty
name="entry"
property="discountCode"
value="<%= discountCode %>" />

Implicit type conversion

<jsp:useBean id="entry"
class="coreservlets.SaleEntry" />
<jsp:.:setProperty
name="entry"
property="itemID"
param="itemID" />
<jsp:.:setProperty
name="entry"
property="numItems"
param="numItems" />
<jsp:setProperty
name="entry"
property="discountCocde"
param="discountCode" />

Simple automatic conversion

» Use the param attribute of jsp:setProperty
to indicate that

— Value should come from specified request parameter

— Simple automatic type conversion should be performed
for properties that expect values of standard types

* boolean, Boolean, byte, Byte, char, Character, double,
Double, int, Integer, float, Float, long, or Long.

Select all

» Use "*" for the value of the property
attribute of jsp:setProperty to indicate that

— Value should come from request parameter whose name
matches property name
— Simple automatic type conversion should be performed

* This is extremely convenient for making
"form beans" -- objects whose properties
are filied in from a form submission.

— You can even divide the process up across multiple
forms, where each submission fills in part of the object.

Setting the scope

* You can use the scope attribute to specify
additional places where bean is stored
— Still also bound to local variable in _jspService
— <jsp:useBean id="..." class="..."
scope="..." >
* Lets multiple servlets or JSP pages

share data

* Also permits conditional bean creation
— Creates new object only if it can't find existing one

Page, application

» page (<jsp:useBean ... scope="page"/> or
<jsp:useBean...>)
— Default value. Bean object should be placed in the

A HEHUUJ.I.WI\.I.! UUJ"HI'\.-'I.- AAnFL A% SR L LELAARTL WL B Wl L WL

request. Lets methods in same servlet access bean
« application
(<jsp:useBean ... scope="application"/>)

- Bean will be stored in ServletContext (available through
the application variable or by call to getServietContexi()).
ServletContext is shared by all servlets in the same Web
application (or all servlets on server if no explicit Web

applications are defined).

Session, request

* session
(<jsp:useBean ... scope="session"/>)
— Bean will be stored in the HttpSession object associated
with the current request, where 1t can be accessed from

regular servlet code with getAttribute and setAttribute, as
with normal session objects.

* request
(<jsp:useBean ... scope="request"/>)

— Bean object should be placed 1n the ServietRequest object
for the duration of the current request, where it is
available by means of getAttribute

Accessing and setting existing
beans

+ Bean conditionally created

— Jsp:useBean results in new bean being instantiated only if

no bean w1th same 1d and scope can be found.
) Tf o lhann tir

1l d oCdl

o frmd tha atin
1 \"l'l.l.l..l. L LW LA Hn.l.l.\..l- DUUIJU I.ﬂ' AW, I.-I..I.I.\...l-, L % }JJ. bhﬁlﬂLlllE

bean is simply bound to variable referenced by id

 Bean properties conditionally set
— <jsp:useBean ... />
replaced by

1 1“'11E'|l:ln = Tnh o l."+ﬂ mﬂ“+r‘ ‘ D H""I-
~]Op .- udvivall ...~ statements "=.'J .:l_.r LUSC OO~

- The statements (jsp:setProperty elements) are executed
only if a new bean is created, not if an existing bean is

found.

Example

<jsp:useBean i1d="counter"
class="coreservlets.AccessCountBean"
scope="application">
<jsp:setProperty name="counter"
property="firstPage"
value="SharedCountsl . 9sp" />
</9sp:useBean>
Of SharedCountsl.jsp (this page),
SharedCounts2.jsp, and
SharedCounts3. jsp,
<jsp:getProperty name="counter" property="firstPage" />
was the first page accessed.
<P>
Collectively, the three pages have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.
<jsp:setProperty name="counter"
property="accessCountIncrement"
k value="1" />

JSP & Beans summary

» Benefits of jsp:useBean
— Hides the Java syntax

— Makes it easier to associate request parameters with Java
objects (bean properties)

- Simplifies sharing objects among multiple requests or
servlets/JSPs

JSP Expression Language

http://courses.coreservilets.com/Course-
Materials/pdf/csajsp2/15-Expression-Language.pdf

JSP Expression Language

The JSP 2 EL provides concise,
easy-to-read access to

— Scoped variables

— Bean properties

— Collection elements

— Standard HT TP elements such as request parameters,
request headers, and cookies

Code semplification

* When in JSP 2.x-compliant server with
current web.xml version, change:

<jsp:useBean 1d="someName"
type="somePackage.someClass"
scope="request, session, or application"/>

<jsp:getProperty name="someName"
property="someProperty"/>

* TO:

$ {someName.someProperty}

Invoking EL

- Basic form: ${expression}

— These EL elements can appear in ordinary text or in JSP
tag attributes, provided that those attributes permit regular
JSP expressions. For example:

o <Yl

Name: ${expression1}

= Address: ${expressionz}</ii>

« <jsp:include page="%{expression3}"/>

 The EL in tag attributes

— You can use multiple expressions (possibly intermixed
vxrithh ofatin fawtl and tha sacniléo ara Annernad +0 ot oo oA
YYLIUL Sldllv Al dliud Wl oy div Vil iviedd LW oLl e s dlivl

concatenated. For example:
« <jsp:include page="%{expri1}blah${expr2}"/>

Scope?

« ${varName}

— Searches the PageContext, the HttpServletRequest, the
HttpSession, and the ServletContext, in that order, and
output the object with that attribute name.

|

Dot and Array notation

+ Equivalent forms

— ${name.property}
~ ${name["property"]}
* Reasons for using array notation

— To access arrays, lists, and other collections
« See upcoming slides

— To calculate the property name at request time.
 {namei[name2]} (no quotes around name2)

— To use names that are illegal as Java variable names
« {foo["bar-baz"]}
 {foo["bar.baz")}

Accessing collections

- ${attributeName[entryName]}

- Works for
— Array. Equivalent to
« theArray[index]
— List. Equivalent to
« theList.get(index)
— Map. Equivalent to
» theMap.get(keyName)
* Equivalent forms (for HashMap)
— ${stateCapitals["maryland"]}
— ${stateCapitals.maryland}

— But the following is illegal since 2 is not a legal var name
« ${listVar.2}

|

Implicit objects
pageCnntext The PageCnntext object.

T s
- J_.n 5 wJ]_HI:I-EL'L.-UJ.IWAL SCS51011. l.\..l.-_l"

param and paramValues. Request params.
- E.g. S{pa:ram custID}

L-._.J.-._ .-._ .-..-.J_.-‘.' ------
HHeaucl diild 11caulel 'H’ﬂll.ll:ﬂ HEL'LIEHI.

i
— E.g. §{header.Accept} or § {header["Accept"]}
_ ${header["ﬂccﬂpt Enm}ding"]}

cookie. Cookie uu]t:t..l UIUI. COOKie 'v'ﬁqu}

— E.g. §{cookie.userCookie.value} or
${cookie["userCookie"].value}

Tt 4 = M mmboaved tenidimlimemdi -~

iNnitrairaim. wonext inivaliZ£auion Pl‘.‘ll aini.

pageScope, requestScope, sessionScope,

appllcatlunécnpe

— Instead of searching scopes.

I- -..-..-.-.—-
ICaAUTl .

e

EL Operators

* Arithmetic
—+-*/div % mod
* Relational
—==¢ql=ne<lt>gt<=le>=ge
* Logical
— && and || or ! Not
 Empty
— Empty

— True for null, empty string, empty array, empty list,
empty map. False otherwise.

r CAUTION

— Use extremely sparingly to preserve MVC model

Activating EL

» Available only in servers that support JSP

AN e DA Jamwmladea N A D E)
L.V Ul £.1 |9oCIVICLO L.% Ul L£.J)

— E.g., Tomcat 5 or later, WebLogic 9 or later, WS 6+,
» Not Tomcat 4 or WebLogic 8 or WebSphere 5

— For a full list of compliant servers, see
http://theserverside.com/reviews/matrix.tss

e You must use the ISP 2. x webh.xml file

— Download from coreservlets.com, use one from Tomcat 5
or 6, or Eclipse/MyEclipse will build one for you

<?xml wversion="1.0" encoding="IS0-8859-1"7>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
x2i :schemal.ocation=
"http://java.sun.com/xml/ns/j2ee web-app 2 4.xsd"
version="2.4"> o

/web-app>

|

(Selectively) Deactivate EL

What if JSP page contains ${ ?
— Perhaps by accident, perhaps if you make a custom tag library that also uses
${...} notation and evaluates it directly (as with first release of JISTL).
Deactivating the EL in an entire Web application.
— Use a web.xml file that refers to servlets 2.3 (JSP 1.2) or earlier.
Deactivating the expression language in multiple JSP pages.
— Use the jsp-property-group web.xml element
Deactivating the expression language in individual JSP pages.
— Use <%(@ page isELIgnored="true" %>
Deactivating individual EL statements.

— In JSP 1.2 pages that need to be ported unmodified across multiple JSP
versions (with no web.xml changes), you can replace $ with $, the
HTML character entity for 5.

— In JSP 2.0 pages that contain both EL statements and literal ${ strings, you
can use \${ when you want ${ in the output

Communication Servlet-dSP

Bean
— public String getFirstName(...) { ... }

Serviet
— Customer someCust = lookupService.findCustomer(...);
— request.setAttribute("customer”, someCust);
— (Use RequestDispatcher.forward to go to JSP page)

JSP

— <h1>First name is $ {customer.firstName}</h1>

MVC with Servlets and JSP

http://courses.coreservlets.com/Course-
Materials/pdf/csajsp2/14-MVC.pdf

Servlets or JSPs?

« Servlet only. Works well when:
— Output 18 a binary type. E.g.: an image
— There is no output. E.g.: you are doing forwarding or redirection as
in Search Engine example.
— Format/layout of page is highly variable. E.g.: portal.

* JSP only. Works well when:
— Qutput 1s mostly character data. E.e.: HTML
— Format/layout mostly fixed.

« Combination (MVC architecture). Needed when:
— A single request will result in multipie substantially differeni-
looking results.
— You have a large development team with different team members
doing the Web development and the busiiness logic.
k — You perform complicated data processing, but have a relatively
fixed layout.

Servlets or JSPs?

» Typical picture: use JSP to make it easier to
develop and maintain the HTML content

- For simple dynamic code, call servlet code from

21T ™Iir FIIP‘I"'I"'IP'I"'I)
s L J.lJ In.l.l..l.EI o L% L% LD

- For slightly more complex applications, use custom
classes called from scripting elements

- For moderately complex applications,

use beans and custom tags

= Busd dlamadda camd Avsonsne | =9
T BUL, Lildl o 11IVL C1HIVUg>ILl

- For complex processing, starting with JSP 1s awkward

- Despite the ease of separating the real code into separate
classes, beans, and custom tags, the assumption behind
k JSP is that a single page gives a single basic look

MVC

* Use MVC (Model 2) approach when:

— One submission will result in more than one basic look

— Several pages have substantial common processing
— Your application is moderately complex

 Approach
— A servlet answers the original request
— Servlet calls business logic and stores resuits in beans

« Beans stored in HttpServietRequest, HttpSession, or
ServietContext

— Servlet invokes JSP page via RequestDispatcher.forward
— JSP page reads data from beans
* Most modern servers: ${beanName.propertyName}

« JSP 1.2 servers: jsp:useBean with appropriate scope
(request, session, or application) plus jsp:getProperty

MVC

Cusharer cumenbGusiomer =
IpakuzSamvicn indCuslomensuiloserid);

Java Code
HTML or JSP (Business Logic)

Pais
ST O i
1010 AngUments| | Resyfis cu,',::
kalup [rasad on P ST 1T
- o) el Jum_l d-a|i === T ket ham
Send customer D he I
submit form SE rvi
T oum ks macher et
Form [Fﬂ::::;,;;”:l “ {Stora beans in reques

saszion, or spoication scope)

requesi.setALrioutel "customer”,
currentCustomer);

JSP,
JSP,
JSP,

[Exiract data fom besns
and put in outpud]

${customer.firsthama}
${customer.balance)

Parts in blue are examples for a banking application.

MVC misconception

* An elaborate framework is necessary

— Frameworks are often useful
- JSF (JavaServer Faces)

— You should strongly consider JSF 2.0 for medium/large projects!

« Struts
— They are not required!

works very well for most simple and even moderately
complex applications

(0

MVC in 6 steps

Define beans to represent result data
Ordinary Java classes with at least one getBlah method

Use a serviet to handle requests

Servlet reads request parameters, checks for missing
and malformed data, calls business logic, etc.

Obtain bean instances

The servlet invokes business logic (application-specific
code) or data-access code to obtain the results.

Store the bean in the request, session, or
serviet context

The serviet calls setAttribute on the request, session, or
servlet context objects to store a reference to the beans
that represent the results of the request.

MVC in 6 steps

5. Forward the request to a JSP page.

The servlet determines which JSP page is appropriate to
the situation and uses the forward method of
RequestDispatcher to transfer control to that page.

6. Extract the data from the beans.
JSP 1.2 (Old!)

« The JSP page accesses beans with jsp:useBean and a
scope matching the location of step 4. The page then
uses jsp:getProperty to output the bean properties.

JSP 2.0 (Preferred!)

« The JSP page uses ${nameFromServiet.property} to
\ output bean properties

Either way, JSP page does not create or modify bean; it
merely extracts and displays data that servlet created.

Example

* Bean
— public String getFirstName(...) { ... }

» Servlet
— Customer someCust = lookupService.findCustomer(...);
— request.setAttribute("customer”, someCust);
— (Use ReguestDispatcher.forward to go to JSP page)

- JSP

— <h1>First name 1s $ {customer.firstName}</h1>

Example

 Serviet

ValueObject value = LookupService.findResult(...);
HttpSession session = request.getSession();
session.setAttribute (" ", wvalue) ;
RegquestDispatcher dispatcher =
request.getRequestDispatcher
("/WEB-INF/SomePage.jsp") ;

dispatcher. forward(request, response) ;

- JSP 1.2

<jsp:useBean id=" " type="somePackage.ValueObject"
scope="session" />
<jsp:getProperty name=" " property="someProperty" />

- JSP 2.0

{ .someProperty}

Beware of forward!

* |ssue:

— Forwarding with a request dispatcher 1s transparent to the
client. Original URL (i.e., the form action URL) is only
URL browser knows about.

 Why does this matter?
— What will browser do with tags like the following?

<link rel="stylesheet"
href="my-styles.css"
type="text/css">

...

k — Browser treats addresses as relative to serviet URL

Forward or redirect?

Redirect to page instead of forwarding to it
— Use response.sendRedirect instead of RequestDispatcher.forward

Distinctions: with sendRedirect:

— User sees JSP URL (user sees only servliet URL with
RequestDispatcher.forward)

— Two round trips to client (only one with forward)

Advantage of sendRedirect
— User can visit JSP page separately
« User can bookmark JSP page
Disadvantages of sendRedirect
— Two round trips to server 1s more expensive

— Since user can visit JSP page without going through servlet first,
bean data might not be available
* S0, JSP page needs code to detect this situation

Example

« See the Bank Balance lookup example
In

http://courses.coreserviets.com/Course-
Materials/pdf/csajsp2/14-MVC.pdf

(slide 30-42)

