
 ORM
Object-Relational Mapping

is NOT serialization!

You can perform queries on each field!

Using hibernate stand-alone

• http://www.hibernatetutorial.com/

Introduction to Entities

The Sun Java Data Objects (JDO) specification, defines
portable APIs to a persistence layer that is conceptually
neutral to the database technology used to support it. It
can thus be implemented by vendors of relational and
object-oriented databases.

The new Java Persistence specification finally defines a
standardized object-relational mapping and requires
compliant products to implement it. There is now a broad
industry consensus on a portable programming model
for persistent Java objects.

Entities

• Entities have a client-visible, persistent identity
(the primary key) that is distinct from their object
reference.

• Entities have persistent, client-visible state.
• Entities are not remotely accessible.
• An entity’s lifetime may be completely

independent of an application’s lifetime.
• Entities can be used in both Java EE and J2SE

environments

Entities - example
package examples.entity.intro;
import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;
@Entity
public class Account implements Serializable {

// The account number is the primary key
@Id
public int accountNumber;
public int balance;
private String ownerName;
String getOwnerName() {return ownerName;}
void setOwnerName(String s) {ownerName=s;}

/** Entities must have a public no-arg constructor */
public Account() {

// our own simple primary key generation
accountNumber = (int) System.nanoTime();

}

 This demo entity represents a Bank Account.
The entity is not a remote object and can only
be accessed locally by clients. However, it is
made serializable so that instances can be
passed by value to remote clients for local
inspection. Access to persistent state is by
direct field access.

Entities - example
public void deposit(int amount) {

balance += amount;
}
public int withdraw(int amount) {

if (amount > balance) {
return 0;

} else {
balance -= amount;
return amount;

}
}

} The entity can expose business methods, such
as a method to decrease a bank account
balance, to manipulate or access that data. Like
a session bean class, an entity class can also
declare some standard callback methods or a
callback listener class. The persistence provider
will call these methods appropriately to manage
the entity.

Access to the entity’s persistent state is by direct
field access. An entity’s state can also be
accessed using JavaBean-style set and get
methods.

The persistence provider can determine which
access style is used by looking at how
annotations are applied. In the source, the @Id
annotation is applied to a field, so we have field
access.

Access to the Entity
package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@Remote(Bank.class)
public class BankBean implements Bank {

@PersistenceContext
private EntityManager manager;
public List<Account> listAccounts() {

Query query = manager.createQuery ("SELECT a FROM Account a");
return query.getResultList();

}
public Account openAccount(String ownerName) {

Account account = new Account();
account.ownerName = ownerName;
manager.persist(account);
return account;

}

Access to the Entity
public int getBalance(int accountNumber) {

Account account = manager.find(Account.class, accountNumber);
return account.balance;

}
public void deposit(int accountNumber, int amount) {

Account account = manager.find(Account.class, accountNumber);
account.deposit(amount);

}
public int withdraw(int accountNumber, int amount) {

Account account = manager.find(Account.class, accountNumber);
return account.withdraw(amount);

}
public void close(int accountNumber) {

Account account = manager.find(Account.class, accountNumber);
manager.remove(account);

}
}

Persistence.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<persistence xmlns=”http://java.sun.com/xml/ns/persistence”>

<persistence-unit name=”intro”/>
</persistence>

• A persistence unit is defined in a special descriptor file,
the persistence.xml file, which is simply added to the
META-INF directory of an arbitrary archive, such as an
Ejb-jar, .ear, or .war file, or in a plain .jar file.

Advanced Persistency

Inheritance

Mapping inheritance

SINGLE TABLE PER CLASS

NULLHORSE
CART

261

Id make modelnumWhee
ls

numPass

THROTTLEHRC7HONDA212

Id make accelerat
orType

modelnumWhee
ls

numPass

etc.

Problems with polymorphism – how do you find
“all RoadVehicles that have less than 3 passenger?”

SINGLE TABLE PER CLASS HIERARCHY

NULLNULLNULLROAD
VEHI
CLE

NULLHORS
ECAR
T

261

NULLNULLTHROTTLEMOTO
RCYC
LE

HRC7HOND
A

212

NULLNULLPEDALCARPUNTOFIAT443

NULL1PEDALCOUP
E

F70FERR
ARI

424

1

CoolF
actor

NULL

Boring
Factor

5

Id

FORD

make

PEDALROAD
STER

KA42

accelera
tortype

DISCmodelnumWhe
els

numPass

•Space inefficiency
•Impossible to set “NON-NULL” constraints on fields of the subclasses.

JOINED TABLES

ROADSTER

COUPE

CAR

MOTORCYCLE

ROADVEHICLE

DTYPE

NULLHORSECART261

HRC7HONDA212

PUNTOFIAT443

F70FERRARI424

5

Id

FORD

make

KA42

modelnumWheel
s

numPas
s

PEDAL3

PEDAL4

PEDAL5

acceleratortypeId

Many joins in a deep inheritance hierarchy – time inefficiency.

14

boringFactorId

RoadVehicle

Car Coupe

The base class
package examples.entity.single_table;
// imports go here
@Entity(name=”RoadVehicleSingle”)
@Table(name=”ROADVEHICLE”) //optional, it’s the default
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name=”DISC”,

discriminatorType=DiscriminatorType.STRING)
@DiscriminatorValue(“ROADVEHICLE”)
// @Inheritance(strategy=InheritanceType.JOINED)
public class RoadVehicle implements Serializable {

public enum AcceleratorType {PEDAL,THROTTLE};
@Id
protected int id;
protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;
public RoadVehicle() {

id = (int) System.nanoTime();
}
// setters and getters go here
...

}

The derived class
package examples.entity.single_table;
// imports go here
@Entity
@DiscriminatorValue(“MOTORCYCLE”) //not needed for joined
public class Motorcycle extends RoadVehicle implements

Serializable {
public final AcceleratorType acceleratorType

=AcceleratorType.THROTTLE;
public Motorcycle() {

super();
numWheels = 2;
numPassengers = 2;

}
}

Advanced Persistency

Relationships

Multiplicity and Directionality – 7 types

Unidirectional Bidirectional

1:1

1:N

N:1

N:M

Watch out for side effects!

a oneBefore

b two

rel

a.setRel(two)

a oneAfter

b two

rel

Let rel be a 1:1 relationship

a one

two

b three

four

Let r be a 1:N relationship

a one

two

b three

four

a.setR(three)

r

r

Cascade-delete

a one

two

three

Order

When we delete “a”,
should also one,two e three
be canceled?

Shipment

Relation – 1:1 unidir – “from”
@Entity(name=”OrderUni”)
public class Order implements Serializable {

private int id;
private String orderName;
private Shipment shipment;
public Order() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) {
this.id = id;
}
...
// other setters and getters go here
...
@OneToOne(cascade={CascadeType.PERSIST})
public Shipment getShipment() {

return shipment;
}
public void setShipment(Shipment shipment) {

this.shipment = shipment;
}

}

Relation – 1:1 unidir – “to”
...
@Entity(name=”ShipmentUni”)
public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }
...
// other setters and getters go here

}

Relation – 1:1 unidir – client
...
@Stateless
public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext
EntityManager em;
public void doSomeStuff() {

Shipment s = new Shipment();
s.setCity(“Austin”);
s.setZipcode(“78727”);
Order o = new Order();
o.setOrderName(“Software Order”);
o.setShipment(s);
em.persist(o);

}
public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);
return q.getResultList();

}
}

Relation – 1:1 bidir – “to”
...
@Entity(name=”ShipmentUni”)
public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
private Order order;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }
...
// other setters and getters go here
...
@OneToOne(mappedBy=”shipment”)
// shipmentproperty from the Order entity
public Order getOrder() {

return order;
}
public void setOrder(Order order) {

this.order = order;
}

}

Relation – 1:1 bidir – client
...
@Stateless
public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext
EntityManager em;
public void doSomeStuff() {

Shipment s = new Shipment();
s.setCity(“Austin”);
s.setZipcode(“78727”);
Order o = new Order();
o.setOrderName(“Software Order”);
o.setShipment(s);
em.persist(o);

}
public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);
return q.getResultList();

}
..
public List getShipments() {

Query q = em.createQuery(“SELECT s FROM Shipment s”);
return q.getResultList();

}
}

Relation – 1:N unidir – “from”
...
@Entity(name=”CompanyOMUni”)
public class Company implements Serializable {

private int id;
private String name;
private Collection<Employee> employees;
...
// other getters and setters go here
// including the Id
...
@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {

this.employees = employees;
}

}

Relation – 1:N unidir – “to”
...
@Entity(name=”EmployeeOMUni”)
public class Employee implements Serializable {

private int id;
private String name;
private char sex;
...
// other getters and setters go here
// including the Id
...

}

Relation – 1:N unidir – client

Company c = new Company();
c.setName(“M*Power Internet Services, Inc.”);Collection<Employee>

employees = new ArrayList<Employee>();
Employee e = new Employee();
e.setName(“Micah Silverman”); e.setSex(‘M’); employees.add(e);
e = new Employee();
e.setName(“Tes Silverman”); e.setSex(‘F’); employees.add(e);
c.setEmployees(employees);
em.persist(c);
c = new Company();
c.setName(“Sun Microsystems”);
employees = new ArrayList<Employee>();
e = new Employee();
e.setName(“Rima Patel”); e.setSex(‘F’); employees.add(e);
e = new Employee();
e.setName(“James Gosling”); e.setSex(‘M’); employees.add(e);
c.setEmployees(employees);
em.persist(c);

Relation – 1:N bidir – “from”
...
@Entity(name=”CompanyOMUni”)
public class Company implements Serializable {

private int id;
private String name;
private Collection<Employee> employees;
...
// other getters and setters go here
// including the Id
...
@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER,
mappedBy=”company”)

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {

this.employees = employees;
}

}

Relation – 1:N bidir – “to”
...
@Entity(name=”EmployeeOMUni”)
public class Employee implements Serializable {

private int id;
private String name;
private char sex;
private Company company;
...
// other getters and setters go here
// including the Id
@ManyToOne
public Company getCompany() {

return company;
}
public void setCompany(Company company) {

this.company = company;
}

}

Relation – M:N
The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity,
followed by an underscore (_), followed by the name of the target
entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

Relation – M:N unidir – “from”
...
@Entity(name=”StudentUni”)
public class Student implements Serializable {

private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();
public Student() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
...
//other setters and getters go here
...
@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)
@JoinTable(name=”STUDENTUNI_COURSEUNI”)
public Collection<Course> getCourses() {

return courses;
}
public void setCourses(Collection<Course> courses) {

this.courses = courses;
}

}

Relation – M:N unidir – “to”
...
@Entity(name=”CourseUni”)
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();
...
//setters and getters go here
...
}

Relation – M:N bidir – “from”
...
@Entity(name=”StudentUni”)
public class Student implements Serializable {

private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();
public Student() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
...
//other setters and getters go here
...
@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)
@JoinTable(name=”STUDENTUNI_COURSEUNI”)
public Collection<Course> getCourses() {

return courses;
}
public void setCourses(Collection<Course> courses) {

this.courses = courses;
}

}

Relation – M:N bidir – “to”
...
@Entity(name=”CourseBid”)
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();

...
//getters and setters go here
...
@ManyToMany(cascade={CascadeType.ALL},
fetch=FetchType.EAGER,mappedBy=”courses”)

public Collection<Student> getStudents() {
return students;

}
public void setStudents(Collection<Student> students) {

this.students = students;
}

}

