Bank Account

String account|D
String ownerMame
double balance

-

Database API \“__
Such as IDBC or |
QL) /

Bank Account
Table

Relational Database

ORM

Object-Relational Mapping
is NOT serialization!

You can perform queries on each field!

Account Class

String accountlD
String ownerMame
double balance

Account Instance

ri
A= = _
accountlD | ownerMName halance accountlD =1
1 ownerMame = Ray Combs

__E___-—S—f—— balance = 1000
| <= RayCombs <1000 <=

2 Bob Barker | 500

3 Maonty Haul 2750

Account Table

Relational Database

Using hibernate stand-alone

* http://www.hibernatetutorial.com/

Introduction to Entities

The Sun Java Data Objects (JDO) specification, defines
portable APIs to a persistence layer that is conceptually
neutral to the database technology used to support it. It
can thus be implemented by vendors of relational and
object-oriented databases.

The new Java Persistence specification finally defines a
standardized object-relational mapping and requires
compliant products to implement it. There is now a broad
iIndustry consensus on a portable programming model
for persistent Java objects.

Entities

Entities have a client-visible, persistent identity
(the primary key) that is distinct from their object
reference.

Entities have persistent, client-visible stafe.
Entities are not remotely accessible.

An entity’s /ifetime may be completely
independent of an application’s lifetime.

Entities can be used in both Java EE and J2SE
environments

Entities - example

This demo entity represents a Bank Account.
The entity is not a remote object and can only

package examples.entity.intro; be accessed locally by clients. However, it is
import java.io.Serializable; made serializable so that instances can be
import javax.persistence.Entity; passed by value to remote clients for local
import javax.persistence.Id; inspection. Access to persistent state is by
@Entity direct field access.

public class Account implements Serializable ({
// The account number is the primary key
@Id
public int accountNumber;
public int balance;
private String ownerName;
String getOwnerName () {return ownerName;}
void setOwnerName (String s) {ownerName=s;}

/** Entities must have a public no-arg constructor */
public Account() ({
// our own simple primary key generation
accountNumber = (int) System.nanoTime() ;

Entities - example

public void deposit(int amount) {
balance += amount;
}
public int withdraw(int amount) {
if (amount > balance) {
return O;
} else {
balance -= amount;
return amount;

The entity can expose business methods, such
as a method to decrease a bank account
balance, to manipulate or access that data. Like
a session bean class, an entity class can also
declare some standard callback methods or a
callback listener class. The persistence provider
will call these methods appropriately to manage
the entity.

Access to the entity’s persistent state is by direct
field access. An entity’s state can also be
accessed using JavaBean-style set and get
methods.

The persistence provider can determine which
access style is used by looking at how
annotations are applied. In the source, the @Id
annotation is applied to a field, so we have field
access.

Access to the Entity

package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@QRemote (Bank.class)
public class BankBean implements Bank ({
@PersistenceContext
private EntityManager manager;
public List<Account> listAccounts() {
Query query = manager.createQuery ("SELECT a FROM Account a");
return query.getResultList() ;
}
public Account openAccount (String ownerName) ({
Account account = new Account();
account.ownerName = ownerName;
manager .persist (account) ;
return account;

Access to the Entity

public int getBalance (int accountNumber) {
Account account = manager.find(Account.class, accountNumber) ;
return account.balance;

}

public void deposit(int accountNumber, int amount) ({
Account account = manager.find(Account.class, accountNumber) ;
account.deposit (amount) ;

}

public int withdraw(int accountNumber, int amount) ({
Account account = manager.find(Account.class, accountNumber) ;
return account.withdraw (amount) ;

}

public void close(int accountNumber) ({
Account account = manager.find(Account.class, accountNumber) ;
manager .remove (account) ;

Persistence.xml

<?xml version="1.0" encoding="UTF-8"7>

<persistence xmlns="http://java.sun.com/xml/ns/persistence™
<persistence-unit name="intro"/>

</persistence>

» A persistence unit is defined in a special descriptor file,
the persistence.xml file, which is simply added to the
META-INF directory of an arbitrary archive, such as an
Ejb-jar, .ear, or .war file, or in a plain .jar file.

Advanced Persistency

Inheritance

Mapping inheritance

RoadVehicle

numpPassengers : int
numWheels : int
make : string
model : string

Motorcycle Car

acceleratorType: AcceleratorType acceleratorType: AcceleratorType

4 A

Coupe Roadster

boringFactor: BoringFactor coolFactor: CoolFactor

SINGLE TABLE

PER CLASS

Id numPass numWhee | make model
1ls
1 6 2 HORSE | NULL
CART
Id numPass numWhee | make model accelerat
1s orType
2 1 2 HONDA | HRC7 THROTTLE
etc.

Problems with polymorphism — how do you find
“all RoadVehicles that have less than 3 passenger?”

SINGLE TABLE PER CLASS HIERARCHY

Id | numPass | numWhe | make |model |DISC | accelera |Boring | CoolF
els tortype Factor | actor
1 6 2 HORS | NULL ROAD | NULL NULL NULL
ECAR VEHI
T CLE
2 1 2 HOND | HRC7 MOTO | THROTTLE | NULL NULL
A RCYC
LE
3 4 4 FIAT | PUNTO | CAR PEDAL NULL NULL
4 2 4 FERR | F70 COUP | PEDAL 1 NULL
ART E
5 2 4 FORD | KA ROAD | PEDAL NULL 1
STER

*Space inefficiency
‘Impossible to set “NON-NULL” constraints on fields of the subclasses.

JOINED TABLES

RoadVehicle
Id DTYPE numPas | numWheel |make model
s s
1 ROADVEHICLE | 6 2 HORSECART NULL
2 MOTORCYCLE 1 2 HONDA HRC7
3 CAR 4 4 FIAT PUNTO
4 COUPE 2 4 FERRARI F70
5 ROADSTER 2 4 FORD KA
Car Coupe
Id acceleratortype Id boringFactor
3 PEDAL 4 1
PEDAL
5 PEDAL

Many joins in a deep inheritance hierarchy — time inefficiency.

The base class

package examples.entity.single table;

// imports go here

@Entity (name="RoadVehicleSingle”)

@Table (name="ROADVEHICLE”) //optional, it’s the default
@Inheritance (strategy=InheritanceType.SINGLE TABLE)

@DiscriminatorColumn (name="DISC”,
discriminatorType=DiscriminatorType.STRING)

@DiscriminatorValue (“ROADVEHICLE”)
// @Inheritance (strategy=InheritanceType.JOINED)
public class RoadVehicle implements Serializable ({
public enum AcceleratorType {PEDAL,THROTTLE}
@Id
protected int id;
protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;
public RoadVehicle() {
id = (int) System.nanoTime() ;
}

// setters and getters go here

The derived class

package examples.entity.single table;
// imports go here
@Entity

@DiscriminatorValue ("MOTORCYCLE”) //not needed for joined

public class Motorcycle extends RoadVehicle implements
Serializable {

public final AcceleratorType acceleratorType
=AcceleratorType. THROTTLE

public Motorcycle() {

numWheels = 2;
numPassengers = 2;

Advanced Persistency

Relationships

Multiplicity and Directionality — 7 types

Unidirectional Bidirectional

1:1 —» <4—>

<
——

Watch out for side effects!

Let rel be a 1:1 relationship Let r be a 1:N relationship

rel
Before a 4’f one
r :
e
a.setRel(two)
rel a.setR(three)
After a \ one
b two

i

Cascade-delete

Order Shipment

d one

When we delete “a”,
should also one,two e three two
be canceled?

three

Relation — 1:1 unidir — “from”

@Entity (name="0OrderUni”)
public class Order implements Serializable ({
private int id;
private String orderName;
private Shipment shipment;
public Order () { id = (int)System.nanoTime (), }
@Id
public int getId() { return id; }
public void setId(int id) {
this.id = id;
}

// other setters and getters go here

@OneToOne (cascade={CascadeType.PERSIST})
public Shipment getShipment () ({
return shipment;
}
public void setShipment (Shipment shipment) ({
this.shipment = shipment;

}

Relation — 1:1 unidir — “to”

@Entity (name="ShipmentUni”)
public class Shipment implements Serializable {
private int id;
private String city;
private String zipcode;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }

// other setters and getters go here

Relation — 1:1 unidir — client

@Stateless
public class OrderShipmentUniBean implements OrderShipment {
@PersistenceContext
EntityManager em;
public void doSomeStuff () {
Shipment s = new Shipment() ;
s.setCity (“Austin”) ;
s.setZipcode (“78727") ;
Order o = new Order() ;
o.setOrderName (“Software Order”) ;
o.setShipment (s) ;
em.persist (o) ;
}
public List getOrders () {
Query gq = em.createQuery (“SELECT o FROM OrderUni o0”);
return q.getResultList() ;

Relation — 1:1 bidir — “to”

@Entity (name="ShipmentUni”)
public class Shipment implements Serializable {
private int id;
private String city;
private String zipcode;
private Order order;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }

// other setters and getters go here

@OneToOne (mappedBy="shipment”)
// shipmentproperty from the Order entity
public Order getOrder() {
return order;
}
public void setOrder (Order order) {
this.order = order;

}

Relation — 1:1 bidir — client

@Stateless
public class OrderShipmentUniBean implements OrderShipment {
@PersistenceContext
EntityManager em;
public void doSomeStuff () {
Shipment s = new Shipment() ;
s.setCity (“Austin”) ;
s.setZipcode (“78727") ;
Order o = new Order() ;
o.setOrderName (“"Software Order”) ;
o.setShipment (s) ;
em.persist (o) ;
}
public List getOrders () {
Query q = em.createQuery (“SELECT o FROM OrderUni o0”);
return q.getResultList() ;

}

public List getShipments () {
Query q = em.createQuery (“SELECT s FROM Shipment s”);
return g.getResultList() ;

Relation — 1:N unidir — “from”

@Entity (name="CompanyOMUni”)

public class Company implements Serializable ({
private int id;
private String name;
private Collection<Employee> employees;

// other getters and setters go here
// including the Id

@OneToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER)

public Collection<Employee> getEmployees () ({
return employees;

}

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

}

Relation — 1:N unidir — “to”

@Entity (name="EmployeeOMUni”)

public class Employee implements Serializable {
private int id;
private String name;
private char sex;

// other getters and setters go here
// including the Id

Relation — 1:N unidir — client

Company c¢ = new Company () ;

c.setName ("M*Power Internet Services, Inc.”) ;Collection<Employee>
employees = new ArrayList<Employee>() ;

Employee e = new Employee() ;

e.setName ("Micah Silverman”); e.setSex('M’); employees.add(e);
e = new Employee() ;

e.setName (“"Tes Silverman”); e.setSex(‘F’); employees.add(e);
c.setEmployees (employees) ;

em.persist(c) ;

c = new Company () ;

c.setName (“"Sun Microsystems”) ;

employees = new ArrayList<Employee>() ;

e = new Employee() ;

e.setName ("Rima Patel”); e.setSex(‘'F’); employees.add(e)

e = new Employee() ;

e.setName (“James Gosling”); e.setSex('M’'); employees.add(e) ;
c.setEmployees (employees) ;

em.persist(c) ;

Relation — 1:N bidir — “from”

@Entity (name="CompanyOMUni”)

public class Company implements Serializable {
private int id;
private String name;
private Collection<Employee> employees;

// other getters and setters go here
// including the Id

@OneToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER,
mappedBy="company”’)

public Collection<Employee> getEmployees () ({

return employees;

}

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

}

Relation — 1:N bidir — “to”

@Entity (name="EmployeeOMUni")
public class Employee implements Serializable {
private int id;
private String name;
private char sex;
private Company company;

// other getters and setters go here
// including the Id
@ManyToOne
public Company getCompany () {
return company;

}
public void setCompany (Company company) {
this.company = company;

}

Relation — M:N

The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity,
followed by an underscore (), followed by the name of the target
entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

Relation — M:N unidir — “from”

@Entity (name="StudentUni”)

public class Student implements Serializable ({
private int id;
private String name;

private Collection<Course> courses = new ArrayList<Course>() ;
public Student() { id = (int)System.nanoTime(); }
@QId

public int getId() { return id; }
//other setters and getters go here

@ManyToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER)
@JoinTable (name="STUDENTUNI COURSEUNI")

public Collection<Course> getCourses () ({
return courses;

}

public void setCourses (Collection<Course> courses) {
this.courses = courses;

Relation — M:N unidir — “to”

@Entity (name="CourseUni”)

public class Course implements Serializable {

private int id;

private String courseName;

private Collection<Student> students = new ArrayList<Student>() ;

//setters and getters go here

}

Relation — M:N bidir — “from”

@Entity (name="StudentUni”)
public class Student implements Serializable ({
private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>() ;
public Student() { id = (int)System.nanoTime(); }
@QId
public int getId() { return id; }

//other setters and getters go here

@ManyToMany (cascade={CascadeType.ALL}, fetch=FetchType.EAGER)
@JoinTable (name="STUDENTUNI COURSEUNI")

public Collection<Course> getCourses() {
return courses;

}

public void setCourses (Collection<Course> courses) {
this.courses = courses;

}

Relation — M:N bidir — “to”

@Entity (name="CourseBid”)

public class Course implements Serializable {

private int id;

private String courseName;

private Collection<Student> students = new ArrayList<Student> () ;

//getters and setters go here

@ManyToMany (cascade={CascadeType.ALL},
fetch=FetchType . EAGER, mappedBy="courses”)
public Collection<Student> getStudents () ({

return students;

}
public void setStudents (Collection<Student> students) ({

this.students = students;

}

