JSP

Common patterns

Common |SP patterns

Page-centric (client-server)

CLIENT <

CLIENT

SERVER

Common |SP patterns

Page-centric 1 (client-server)

Page View

request

-
response

Common |SP patterns

Page-centric 2 (client-server)

Page View with Bean

request

-
response

Common |SP patterns

Dispatcher (n-tier) Mediator - View

request

_
response

SERVLETS:
Dispatching, monitoring, filtering

Dispatching

RequestDispatcher dispatch =

cntx.getRequestDispatcher(”/SecondServiet");
dispatch.forward(req,res);

RequestDispatcher dispatch =

cntx.getRequestDispatcher(”/SecondServiet");
dispatch.include(req,res);

Dispatching example

package servlets;

import javax.servlet.http.HttpServietRequest;
import javax.servlet.http.HttpServietResponse;
import javax.servlet.http.HttpServlet;

import javax.servlet.ServietConfig;

import javax.servlet.ServletContext;

import java.io.lOException;

import javax.servlet.ServietException;

import javax.servlet.ServletContext;

import javax.serviet.RequestDispatcher;

public class SecondServlet extends HttpServlet {
public void doGet(HttpServiletRequest req,HttpServietResponse res)

throws IOException,ServiletException {
Printer out=res.getWriter();

System.out.printin("Second Servlet Called");

}
}

Disoatching example

package serviets;
import javax.servlet.http.HttpServietRequest;
import javax.serviet.http.HttpServietResponse;
import javax.serviet.http.HttpServiet;
import javax.servlet.ServletConfig;
import javax.servlet.ServietContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServietContext;
import javax.serviet.RequestDispatcher;

public class FirstServlet extends HttpServiet {
public void doGet(HttpServietRequest req,HttpServletResponse res)
throws IOException,ServietException {
Printer out=res.getWriter();

out.printin("First Servlet Called");

ServiletConfig config = getServietConfig();
ServietContext cntx = config.getServietContext();
RequestDispatcher dispatch =

cntx.‘getRequestDispatcher("/SecondServIet");
dispatch.forward(req,res);

Dispatching example

<servlet>
<servlet-name>FirstServiet</servilet-name>
<servlet-class>servlets.FirstServiet</servlet-class>
</serviet>

<serviet>
<servlet-name>SecondServilet</servilet-name>
<serviet-class>servilets.SecondServilet</servlet-class>
</serviet>

<serviet-mapping>
<servlet-name>FirstServiet</servilet-name>
<url-pattern>/firstservilet/ *</url-pattern>
</servilet-mapping>

<serviet-mapping>
<servlet-name>SecondServilet</servilet-name>
<url-pattern>/SecondServlet/ *</url-pattern>
</servilet-mapping>

Monitoring Servlets Litecycle

Web Initialization and ServletContextListener ServletContextEvent
context | Destruction
Attribute added, ServletContextAttributeListener | ServiletContextAttribu
removed, or teEvent
replaced
Session | Creation, HttpSessionListenerHttpSession | HttpSessionEvent
invalidation, ActivationListener
activation,
passivation, and
timeout
Attribute added, HttpSessionAttributeListener HttpSessionBindingEv
removed, or ent
replaced
Request | A servlet request ServletRequestListener ServletRequestEvent

has started being
processed by Web
components

Attribute added,
removed, or
replaced

ServletRequestAttributeListener

ServletRequestAttribu
teEvent

Monitoring Servlets Lifecycle - Example

/* File : ApplicationWatch.java */

import javax.servlet.ServietContextListener;

import javax.servlet.ServietContextEvent;

public class ApplicationWatch implements ServietContextListener {
public static long applicationInitialized = OL;

/* Application Startup Event */

public void contextInitialized(ServietContextEvent ce) {
applicationlnitialized = System.currentTimeMillis(); }

/* Application Shutdown Event */
public void contextDestroyed(ServietContextEvent ce) {}

}

Monitoring Servlets Lifecycle - Example

/ * File : SessionCounter.java */

import javax.serviet.http.HttpSessionlListener;

import javax.serviet.http.HttpSessionEvent;

public class SessionCounter implements HttpSessionListener {
private static int activeSessions = 0;

/* Session Creation Event */

public void sessionCreated(HttpSessionEvent se) {
activeSessions++; }

/* Session Invalidation Event */

public void sessionDestroyed(HttpSessionEvent se) {
if(activeSessions > 0) activeSessions--; }

public static int getActiveSessions() { return activeSessions; }

}

Monitoring Servlets Lifecycle - Example

<l-- Web.xml -->

<?xml version="1.0" encoding="1S0-8859-1"?>

<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3/ /EN" "http://java.sun.com/j2ee/dtds/web-
app_2.3.dtd">

<web-app>
<I-- Listeners -->
<listener>

<listener-class> com.stardeveloper.web.listener.SessionCounter
</listener-class>

</listener>
<listener>

<listener-class> com.stardeveloper.web.listener.ApplicationWatch
</listener-class>

</listener>
</web-app>

Scope Objects

Web ServletContext Web components within web context

context .getServletConfig().getServletCon
text

Session HttpSession Web components handling requests that
belong to a session

Request ServletRequest Web component handling the request

Page PageContext Web component in the JSP page

Main Methods:

Object getAttribute(String name)
void setAttribute(String name, Object 0)
Enumeration getAttributeNames()

AQOP

The programming paradigms of aspect-oriented programming
(AOP), and aspect-oriented software development (AOSD)
attempt to aid programmers 1n the separation of concerns,
specifically cross-cutting concerns, as an advance in
modularization.

Logging and authorization offer two examples of crosscutting
concerns:

a logging strategy necessarily affects every single logged part
of the system. Logging thereby crosscuts all logged classes and
methods.

Same 1s true for authorization.

Filters (javax.servlet.tilter)

Other classes that preprocess/postprocess request/response

A filter is an object than perform filtering tasks on either the request to a
resI;)urI::e %a servlet or static content), or on the response from a resource,
or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
Authentication Filters

Logging and Auditing Filters

Image conversion Filters

Data compression Filters

Encryption Filters

Tokenizing Filters

Filters that trigger resource access events
XSL/T filters

Mime-type chain Filter

OONGOUILAWNE

http://java.sun.com/products/serviet/Filters.html

Filters

Filters are important for a number of reasons. First, they provide the
ability to encapsulate recurring tasks in reusable units.

Second, filters can be used to transform the response from a servlet or
a JSP page. A common task for the web application is to format data

sent back to the client. Increasingly the clients require formats (for
example, WML) other than just HTML.

Filters

Filters can perform many different types of functions.

* Authentication-Blocking requests based on user 1dentity.

* Logging and auditing-Tracking users of a web application.

* Image conversion-Scaling maps, and so on.

* Data compression-Making downloads smaller.

* Localization-Targeting the request and response to a particular
locale.

* XSL/T transformations of XML content-Targeting web
application responses to more that one type of client.

These are just a few of the applications of filters. There are many
more, such as encryption, tokenizing, triggering resource access
events, mime-type chaining, and caching.

Filters

The filtering API 1s defined by the Filter, FilterChain, and FilterConfig
interfaces in the javax.servlet package. You define a filter by
implementing the Filter interface.

The most important method 1n this interface 1s doFilter, which 1s
passed request, response, and filter chain objects. This method can
perform the following actions:

1. Examine the request headers.
Customize the request object and response objects if needed
3. Invoke the next entity in the filter chain (configured in the

WAR). The filter invokes the next entity by calling the doFilter
method on the chain object (passing in the request and response it
was called with, or the wrapped versions it may have created).

Filter example

import javax.servlet.®; import javax.servlet.http.*; import java.io.*;

public class LoginFilter implements Filter {

protected FilterConfig filterConfig;

public void mit(FilterConfig filterConfig) throws ServletException
{this.filterConfig = filterConfig; }

public void destroy() { this.filterConfig = null; }

public void doFilter(ServletRequest req, ServlietResponse res,

FilterChain chain) throws java.i0.IOException, ServlietException {

String username = req.getParameter(") username");
1f (1sUserOk(username)) chain.doFilter(request, response);

res.sendError(
javax.servlet.http.HttpServletResponse.SC UNAUTHORIZED);,

h
// 1mplement here 1sUserOk(). ..

b

Example

<filter 1id="Filter 1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>

<description>Performs pre-login and post-login operation</description>
<</filter-1d>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

Filters and sessions

public void doFilter(ServletRequest req, ServletResponse res,
FilterChain chain) throws java.i0.IOException, ServletException {
HttpSession session = req.getSession(false);
1f (null == session || !(Boolean)session.getAttribute("auth")) {
1f (1sUserOk(req.getParameter("user")))
session=req(.getSession(true);
session.setAttribute("auth",new Boolean(true));
} else res.sendError(
javax.servlet.http.HttpServletResponse.SC UNAUTHORIZED);
+ chain.doFilter(request, response);

Filters and parameters

java.util.ArrayList userList=null;
public void init(FilterConfig fc) throws ServletException ({
BufferedReader in;
this.filterConfig = fc;
userList = new java.util.ArrayList();
if (£fc !'= null) {
try {
String filename = fc.getInitParameter ("Users");
in = new BufferedReader(new FileReader (filename)) ;
} catch (FileNotFoundException fnfe) {
writeErrorMessage () ;return;

}

String userName;
try {
while ((userName = in.readLine()) !'= null)
userList.add (userName) ;
} catch (IOException ioe) {writeErrorMessage() ;return;}

}
public void destroy() { this.filterConfig = null; userlList = null;

}

Filters and parameters

<filter 1id="Filter 1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>

<description>Performs pre-login and post-login operation</description>
<init-param>

<param-name>Users</param-name>
<param-value>c:\mydir\Users.Ist</param-value>

</init-param>

</filter-1d>

Filter sequencing

<filter>

<filter-name>Uncompress</filter-name>
<filter-class>compressFilters.createUncompress</filter-class>
</filter>
<filter>
<filter-name>Authenticate</filter-name>
<filter-class>authentication.create Authenticate</filter-class>
</filter>
<filter-mapping>
<filter-name>Uncompress</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>Authenticate</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>

Both Uncompress and Authenticate appear on the filter chain for servlets located at
/status/compressed/*. The Uncompress filter precedes the Authenticate filter in the chain
because the Uncompress filter appears before the Authenticate filter in the web.xml file.

JSP

Tag Extension

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

JSTL

Area

Function

Tags

Prefix

Core tags

<% (@ taglib
uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<c:set var="foo" scope="session" value="..."/>

${foo}

Core

Variable support

remove
set

Flow contro

choose
when
otherwise
forEach
forTokens
if

URL management

import
param
redirect
param
url
param

Miscellaneous

catch
out

See http://download.oracle.com/javaee/5/tutorial/doc/bnakh.html

Area | Function Tags Prefix
JSTL - xml :
out
parse
set
XML tags Flow control
choose
when
<0 taclib otherwise
A)@ & . . . " fortach
uri="http://java.sun.com/jsp/jstl/xml if
—_Ny" 0
preﬁx X A)> Transformation
transform
param
<c:if test="${applicationScope:booklist == null}" >

<c:import url="${initParam.booksURL}" var="xml" />
<x:parse doc="${xml}" var="booklist" scope="application" />

</c:if>

<x:set wvar="abook"
select="$applicationScope.booklist/

books/book[@id=$param:bookId]" />
<h2><x:out select="$abook/title"/></h2>

See http://download.oracle.com/javaee/5/tutorial/doc/bnakqg.html

Area

Function

Tags

Prefix

JSTL - sqgl

XML tags

Setting the data source

setDataSource

SQL

query
dateParam
param

transaction

update
dateParam
param

sgl

<% (@ taglib

uri="http://java.sun.com/jsp/jstl/sql"

prefix="sql" %>

<sqgl:setDataSource dataSource="jdbc/BookDB" />

<c:set var="bid" value="${param.Add}"/>
<sql:query var="books" >
select * from PUBLIC.books where id =
<sql:param value="${bid}" />
</sql:query>

See http://download.oracle.com/javaee/5/tutorial/doc/bnald.html

?

Area Function

Tags

length

JS I I _fn Functions Collection length

String manipulation

function tags

<% (@ taglib

tolUpperCase, toLowerCase

substring, substringAfter, substringBefore
trim

replace

index0f, startsWith, endsWith, contains,
containsIgnoreCase

split, join

escapeXml

uri="http://java.sun.com/jsp/jstl/functions"
prefix="n" %>

<c:if test="${fn:length(param.username) > 0}" >
<%@include file="response.jsp" %>
</c:if>

See http://download.oracle.com/javaee/S/tutorial/doc/bnalg.html

JSTL-tmt

Area

Function

Tags

Prefix

i18n tags

<% (@ taglib

118N

Setting Locale

setlLocale
requestEncoding

Messaging

bundle

message
param

setBundle

Mumber and Date Formatting

formatNumber
formatDate
parselate
parseNumber
setTimeZone
timeZone

Frt

uri="http://java.sun.com/jsp/jstl/fmt"

prefix="fmt" %>

<h3><fmt:message key="Choose"/></h3>

See http://download.oracle.com/javaee/S/tutorial/doc/bnakw.html

JSP custom tag

Ideally, JSP pages should contain no code written in the
Java programming language (that is, no expressions or

scriptlets). Anything a JSP page needs to do with Java
code can be done from a

custom tag

Separation of form and function.

Separation of developer skill sets and activities.
Code reusability.

Clarified system design.

a JSP custom tag

<% @ taglib uri="/hello" prefix="example" %>
<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>
<BODY>

This is static output
<p />
<i><example:hello>HELLO THERE</example:hello></i>
This is static output

</BODY>

</HTML>

hello.doStartTag()

hello.doEndTag()

a JSP custom tag

package jsptags;

import java.io.lOException;
import java.util. Date;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.”;

public class HelloTag extends TagSupport {
public int doStartTag() throws JspTagException {
try {
pageContext.getOut().write("Start tag found here
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");

}
return EVAL_BODY _INCLUDE: // return SKIP_BODY:;

}

a JSP custom tag

public class HelloTag extends TagSupport {

public int doEndTag() throws JspTagException {
try {
pageContext.getOut().write("End tag found
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");
}
return EVAL_PAGE; // return SKIP_PAGE;
}
}

Javax.servlet.jsp.tagext. Tag interface

setPageContext(PageContext) >
setParent(enclosingTag) >
setAttribute] (pageContext) >
doStartTag() >
doEndTag() >
release() >

Class Diagram

<< |nterface==
Tag

%doStart(Tag)
%doEnd(Tag)
%getParent()
%release()
%setPageContent()
SsetParent()

API

TagSupport

YourOwnBodyTag

%<static> findAncestorWithClass()

i

<<Interface>>
BodyTag

2

BodyTagSupport

A BodyTag can

manipulate its body,
using its BodyContent
object, while a normal

Tag cannot.

BodyTags are useful
when you want to use
or transform the contents

of the tag.

SdoAfterBody()
SdolnitBody()
%setBodyContent()

%getBodyContent()
“getPreviousOut()

YourOwnBodyTag

a JSP custom tag

<%@ taglib uri="/hello" prefix="example" %>
<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>

<BODY> hello.doStartTag()
This is static output hello.dolnitBody()
<p />
<i><example:hello>HELLO THERE</example:hello></i>
This is static output

</BODY>

</HTML>

hello.doAfterBody()

hello.doEndTag()

a JSP custom tag

package jsptags;

public class HelloTag extends BodyTagSupport {
public int doStartTag() throws JspTagException {

}
public void dolnitBody() throws JspTagException {

try {
pageContext.getOut().write("Init Body
");
} catch (IOException e) {
throw new JspTagException("Fatal error: could not write to JSP out");

}
}

a |]SP custom tag

public int doAfterBody() throws JspTagException {
try {
pageContext.getOut().write("After Body
");
} catch (IOException e) {

throw new JspTagException("Fatal error: could not write to JSP out");

}

return EVAL_BODY_TAG,; // return SKIP_BODY;
+
public int doEndTag() throws JspTagException {

Javax.servlet.jsp.tagext.BodyTag interface

 setPageContext(pageContext)
setParent(enclosmgTag)
setAttributel() T
doStartTag()

 pushB ody()
setBodyContent(out)
doInitBody()
doAfterBody/()

 popBody() >
doEndTag()

Yvyy

Yyvy

A 4

release()

v 4 v

reversing body content

import java.io.lOException; import javax.servlet.jsp.*; import javax.serviet.jsp.tagext.*;
public class ReverseTag extends BodyTagSupport {
public int doEndTag() throws JspTagException {
BodyContent bodyContent = getBodyContent();
if (bodyContent != null) {// Do nothing if there was no body content
StringBuffer output = new StringBuffer(bodyContent.getString());
output.reverse();

try {
bodyContent.getEnclosingWriter().write(output.toString());

} catch (IOException ex) {
throw new JspTagException("Fatal 10 error");

}
} return EVAL_PAGE;

structure of the war file

A war file is a jar file with special directories and
a file named web.xml in the WEB-INF directory

e ‘ T
- hello.jsp -

RS

hello.tld HelloTag.class

MANIFEST.MF

web.xml

TLD

<?xml version="1.0" encoding="1S0O-8859-1" 7>
<IDOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shorthame>examples</shortname>
<info>Simple example library.</info>
<tag>
<name>reverse</name>
<tagclass>tagext.ReverseTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Simple example</info>
</tag>
</taglib>

web.xml

<?xml version="1.0" encoding="UTF-8"7?>

<IDOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN’
'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<display-name>tagext</display-name>
<description>Tag extensions examples</description>
<session-config>
<session-timeout>0</session-timeout>
</session-config>

<taglib>
<taglib-uri>/hello</taglib-uri>
<taglib-location>/WEB-INF/tlds/hello.tid</taglib-location>
</taglib>

</web-app>

