
Common patterns

JSP

SERVER

Common JSP patterns

JSP
or

Servlet

Enterprise
JavaBeans

Page-centric (client-server)

DB

CLIENT

CLIENT

Common JSP patterns

JSP Business
Processing

Page View

request

response

Page-centric 1 (client-server)

Common JSP patterns

JSP Business
Processing

Page View with Bean

request

response

Worker
Bean

Page-centric 2 (client-server)

Common JSP patterns

Mediating
JSP

Presentation JSP

Dispatcher (n-tier)

Worker bean

Presentation JSP Worker bean

Presentation JSP

request

response

service

service

service

Business
Processing

Mediator - View

SERVLETS:
Dispatching, monitoring, filtering

Dispatching

RequestDispatcher dispatch =
 cntx.getRequestDispatcher("/SecondServlet");

 dispatch.forward(req,res);

RequestDispatcher dispatch =
 cntx.getRequestDispatcher("/SecondServlet");

 dispatch.include(req,res);

Dispatching example

package servlets;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

 public class SecondServlet extends HttpServlet {
 public void doGet(HttpServletRequest req,HttpServletResponse res)

 throws IOException,ServletException {
 Printer out=res.getWriter();

 System.out.println("Second Servlet Called");
 }
}

Dispatching example
package servlets;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletContext;
import javax.servlet.RequestDispatcher;

 public class FirstServlet extends HttpServlet {
public void doGet(HttpServletRequest req,HttpServletResponse res)
throws IOException,ServletException {
 Printer out=res.getWriter();

 out.println("First Servlet Called");
 ServletConfig config = getServletConfig();

 ServletContext cntx = config.getServletContext();
 RequestDispatcher dispatch =

 cntx.getRequestDispatcher("/SecondServlet");
 dispatch.forward(req,res);
}

}

Dispatching example
 <servlet>

<servlet-name>FirstServlet</servlet-name>
<servlet-class>servlets.FirstServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>SecondServlet</servlet-name>
<servlet-class>servlets.SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FirstServlet</servlet-name>
<url-pattern>/firstservlet/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>SecondServlet</servlet-name>
<url-pattern>/SecondServlet/*</url-pattern>
</servlet-mapping>

Monitoring Servlets Lifecycle

ServletRequestAttribu
teEvent

ServletRequestAttributeListenerAttribute added,
removed, or
replaced

ServletRequestEventServletRequestListenerA servlet request
has started being
processed by Web
components

Request

HttpSessionBindingEv
ent

HttpSessionAttributeListenerAttribute added,
removed, or
replaced

HttpSessionEventHttpSessionListenerHttpSession
ActivationListener

Creation,
invalidation,
activation,
passivation, and
timeout

Session

ServletContextAttribu
teEvent

ServletContextAttributeListenerAttribute added,
removed, or
replaced

ServletContextEventServletContextListenerInitialization and
Destruction

Web
context

Monitoring Servlets Lifecycle - Example
/* File : ApplicationWatch.java */
import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;
public class ApplicationWatch implements ServletContextListener {
public static long applicationInitialized = 0L;
/* Application Startup Event */
public void contextInitialized(ServletContextEvent ce) {

applicationInitialized = System.currentTimeMillis(); }
/* Application Shutdown Event */
public void contextDestroyed(ServletContextEvent ce) {}
}

Monitoring Servlets Lifecycle - Example
 /* File : SessionCounter.java */

import javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionEvent;
public class SessionCounter implements HttpSessionListener {
private static int activeSessions = 0;
/* Session Creation Event */
public void sessionCreated(HttpSessionEvent se) {

activeSessions++; }
/* Session Invalidation Event */
public void sessionDestroyed(HttpSessionEvent se) {

if(activeSessions > 0) activeSessions--; }
public static int getActiveSessions() { return activeSessions; }
}

Monitoring Servlets Lifecycle - Example
 <!-- Web.xml -->

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN" "http://java.sun.com/j2ee/dtds/web-
app_2.3.dtd">

<web-app>
<!-- Listeners -->
<listener>

<listener-class> com.stardeveloper.web.listener.SessionCounter
</listener-class>

</listener>
<listener>

<listener-class> com.stardeveloper.web.listener.ApplicationWatch
</listener-class>

</listener>
</web-app>

Scope Objects

Page Web component in the JSP pagePageContext

Web component handling the requestServletRequestRequest

Web components handling requests that
belong to a session

HttpSessionSession

Web components within web context
servlet.getServletConfig().getServletCon
text

ServletContextWeb
context

Main Methods:
Object getAttribute(String name)
void setAttribute(String name, Object o)
Enumeration getAttributeNames()

AOP

The programming paradigms of aspect-oriented programming
(AOP), and aspect-oriented software development (AOSD)
attempt to aid programmers in the separation of concerns,
specifically cross-cutting concerns, as an advance in
modularization.

Logging and authorization offer two examples of crosscutting
concerns:
a logging strategy necessarily affects every single logged part
of the system. Logging thereby crosscuts all logged classes and
methods.

Same is true for authorization.

Filters (javax.servlet.filter)

Other classes that preprocess/postprocess request/response

A filter is an object than perform filtering tasks on either the request to a
resource (a servlet or static content), or on the response from a resource,
or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
1) Authentication Filters
2) Logging and Auditing Filters
3) Image conversion Filters
4) Data compression Filters
5) Encryption Filters
6) Tokenizing Filters
7) Filters that trigger resource access events
8) XSL/T filters
9) Mime-type chain Filter

http://java.sun.com/products/servlet/Filters.html

Filters

Filters are important for a number of reasons. First, they provide the
ability to encapsulate recurring tasks in reusable units.

Second, filters can be used to transform the response from a servlet or
a JSP page. A common task for the web application is to format data
sent back to the client. Increasingly the clients require formats (for
example, WML) other than just HTML.

Filters

Filters can perform many different types of functions.
 * Authentication-Blocking requests based on user identity.
 * Logging and auditing-Tracking users of a web application.
 * Image conversion-Scaling maps, and so on.
 * Data compression-Making downloads smaller.
 * Localization-Targeting the request and response to a particular
locale.
 * XSL/T transformations of XML content-Targeting web
application responses to more that one type of client.

These are just a few of the applications of filters. There are many
more, such as encryption, tokenizing, triggering resource access
events, mime-type chaining, and caching.

Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig
interfaces in the javax.servlet package. You define a filter by
implementing the Filter interface.

The most important method in this interface is doFilter, which is
passed request, response, and filter chain objects. This method can
perform the following actions:

1. Examine the request headers.
2. Customize the request object and response objects if needed
3. Invoke the next entity in the filter chain (configured in the

WAR). The filter invokes the next entity by calling the doFilter
method on the chain object (passing in the request and response it
was called with, or the wrapped versions it may have created).

Filter example

import javax.servlet.*; import javax.servlet.http.*; import java.io.*;
public class LoginFilter implements Filter {
protected FilterConfig filterConfig;
public void init(FilterConfig filterConfig) throws ServletException

{this.filterConfig = filterConfig; }
public void destroy() { this.filterConfig = null; }
public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain chain) throws java.io.IOException, ServletException {

String username = req.getParameter("j_username");
if (isUserOk(username)) chain.doFilter(request, response);
res.sendError(
javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

 }
 // implement here isUserOk()…
}

Example

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login operation</description>
<</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

Filters and sessions

public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain chain) throws java.io.IOException, ServletException {
 HttpSession session = req.getSession(false);
 if (null == session || !(Boolean)session.getAttribute("auth")) {
 if (isUserOk(req.getParameter("user")))
 session=req(.getSession(true);
 session.setAttribute("auth",new Boolean(true));

 } else res.sendError(
javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

 } chain.doFilter(request, response);
 }

Filters and parameters
java.util.ArrayList userList=null;
public void init(FilterConfig fc) throws ServletException {
 BufferedReader in;
 this.filterConfig = fc;
 userList = new java.util.ArrayList();
 if (fc != null) {
 try {
 String filename = fc.getInitParameter("Users");
 in = new BufferedReader(new FileReader(filename));
 } catch (FileNotFoundException fnfe) {
 writeErrorMessage();return;
 }
 String userName;
 try {
 while ((userName = in.readLine()) != null)
 userList.add(userName);
 } catch (IOException ioe) {writeErrorMessage();return;}
 }
}
public void destroy() { this.filterConfig = null; userList = null; }

Filters and parameters

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>Users</param-name>
<param-value>c:\mydir\Users.lst</param-value>
</init-param>
</filter-id>

Filter sequencing
 <filter>
 <filter-name>Uncompress</filter-name>
 <filter-class>compressFilters.createUncompress</filter-class>
 </filter>
 <filter>
 <filter-name>Authenticate</filter-name>
 <filter-class>authentication.createAuthenticate</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>Uncompress</filter-name>
 <url-pattern>/status/compressed/*</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>Authenticate</filter-name>
 <url-pattern>/status/compressed/*</url-pattern>
 </filter-mapping>

Both Uncompress and Authenticate appear on the filter chain for servlets located at
 /status/compressed/*. The Uncompress filter precedes the Authenticate filter in the chain
 because the Uncompress filter appears before the Authenticate filter in the web.xml file.

Tag Extension

JSP

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

JSTL

Core tags

<%@ taglib
uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

See http://download.oracle.com/javaee/5/tutorial/doc/bnakh.html

<c:set var="foo" scope="session" value="..."/>

${foo}

JSTL - xml

XML tags

<%@ taglib
uri="http://java.sun.com/jsp/jstl/xml"
prefix="x" %>

See http://download.oracle.com/javaee/5/tutorial/doc/bnakq.html

<c:if test="${applicationScope:booklist == null}" >
 <c:import url="${initParam.booksURL}" var="xml" />
 <x:parse doc="${xml}" var="booklist" scope="application" />
</c:if>
<x:set var="abook"
 select="$applicationScope.booklist/
 books/book[@id=$param:bookId]" />
 <h2><x:out select="$abook/title"/></h2>

JSTL - sql

XML tags

<%@ taglib
uri="http://java.sun.com/jsp/jstl/sql"
prefix="sql" %>

See http://download.oracle.com/javaee/5/tutorial/doc/bnald.html

<sql:setDataSource dataSource="jdbc/BookDB" />
<c:set var="bid" value="${param.Add}"/>
<sql:query var="books" >
 select * from PUBLIC.books where id = ?
 <sql:param value="${bid}" />
</sql:query>

JSTL-fn

function tags

<%@ taglib
uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

See http://download.oracle.com/javaee/5/tutorial/doc/bnalg.html

<c:if test="${fn:length(param.username) > 0}" >
 <%@include file="response.jsp" %>
</c:if>

JSTL-fmt

i18n tags

<%@ taglib
uri="http://java.sun.com/jsp/jstl/fmt"
prefix="fmt" %>

See http://download.oracle.com/javaee/5/tutorial/doc/bnakw.html

<h3><fmt:message key="Choose"/></h3>

Ideally, JSP pages should contain no code written in the
Java programming language (that is, no expressions or
scriptlets). Anything a JSP page needs to do with Java
code can be done from a

custom tag
 Separation of form and function.
 Separation of developer skill sets and activities.
 Code reusability.
 Clarified system design.

 JSP custom tag

<%@ taglib uri="/hello" prefix="example" %>
<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>
<BODY>
This is static output
<p />
<i><example:hello>HELLO THERE</example:hello></i>
This is static output
</BODY>
</HTML>

 a JSP custom tag

hello.doStartTag()

hello.doEndTag()

package jsptags;
import java.io.IOException;
import java.util.Date;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class HelloTag extends TagSupport {
 public int doStartTag() throws JspTagException {
 try {
 pageContext.getOut().write("Start tag found here
");
 } catch (IOException e) {
 throw new JspTagException("Fatal error: could not write to JSP out");
 }
 return EVAL_BODY_INCLUDE; // return SKIP_BODY;
 }

 a JSP custom tag

…
public class HelloTag extends TagSupport {
…
 public int doEndTag() throws JspTagException {
 try {
 pageContext.getOut().write("End tag found
");
 } catch (IOException e) {
 throw new JspTagException("Fatal error: could not write to JSP out");
 }
 return EVAL_PAGE; // return SKIP_PAGE;
 }
}

 a JSP custom tag

Javax.servlet.jsp.tagext.Tag interface

TagPagina JSP
setPageContext(pageContext)

setParent(enclosingTag)

setAttribute1(pageContext)

doStartTag()

doEndTag()

release()

Class Diagram

API

A BodyTag can
manipulate its body,
using its BodyContent
object, while a normal
Tag cannot.
BodyTags are useful
when you want to use
or transform the contents
of the tag.

<%@ taglib uri="/hello" prefix="example" %>
<HTML><HEAD><TITLE>First custom tag</TITLE></HEAD>
<BODY>
This is static output
<p />
<i><example:hello>HELLO THERE</example:hello></i>
This is static output
</BODY>
</HTML>

 a JSP custom tag

hello.doInitBody()

hello.doEndTag()

hello.doStartTag()

hello.doAfterBody()

package jsptags;
…
public class HelloTag extends BodyTagSupport {
 public int doStartTag() throws JspTagException {
 …
 }
public void doInitBody() throws JspTagException {
 try {
 pageContext.getOut().write("Init Body
");
 } catch (IOException e) {
 throw new JspTagException("Fatal error: could not write to JSP out");
 }
 }

 a JSP custom tag

 public int doAfterBody() throws JspTagException {
 try {
 pageContext.getOut().write("After Body
");
 } catch (IOException e) {
 throw new JspTagException("Fatal error: could not write to JSP out");
 }
 return EVAL_BODY_TAG; // return SKIP_BODY;
 } */
 public int doEndTag() throws JspTagException {
 …
 }
}

 a JSP custom tag

Javax.servlet.jsp.tagext.BodyTag interface

TagPagina JSP
setPageContext(pageContext)
setParent(enclosingTag)
setAttribute1()
doStartTag()

setBodyContent(out)

release()

PageContext

pushBody()

doInitBody()

doEndTag()

doAfterBody()
popBody()

import java.io.IOException; import javax.servlet.jsp.*; import javax.servlet.jsp.tagext.*;
public class ReverseTag extends BodyTagSupport {

public int doEndTag() throws JspTagException {
BodyContent bodyContent = getBodyContent();
if (bodyContent != null) {// Do nothing if there was no body content
 StringBuffer output = new StringBuffer(bodyContent.getString());
 output.reverse();
 try {
 bodyContent.getEnclosingWriter().write(output.toString());
 } catch (IOException ex) {
 throw new JspTagException("Fatal IO error");
 }
} return EVAL_PAGE;

}
}

 reversing body content

 structure of the war file

hello

hello.jsp META-INFWEB-INF

MANIFEST.MFweb.xmltlds classes

hello.tld HelloTag.class

A war file is a jar file with special directories and
a file named web.xml in the WEB-INF directory

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>examples</shortname>
 <info>Simple example library.</info>
 <tag>
 <name>reverse</name>
 <tagclass>tagext.ReverseTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple example</info>
 </tag>
</taglib>

 TLD

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN'

'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd'>
<web-app>
 <display-name>tagext</display-name>
 <description>Tag extensions examples</description>
 <session-config>
 <session-timeout>0</session-timeout>
 </session-config>

 <taglib>
 <taglib-uri>/hello</taglib-uri>
 <taglib-location>/WEB-INF/tlds/hello.tld</taglib-location>
 </taglib>

 </web-app>

 web.xml

