
A crash course on Servlets

Servlets
Servlets are modules that extend Java-enabled web servers. For example, a

servlet might be responsible for taking data in an HTML order-entry form
and applying the business logic used to update a company's order
database.

A Servlet's job

Servlet Lifecycle

init()

destroy()

service(HttpServletRequest r,
HttpServletResponse p)

Called only the first time a servlet is
loaded into memory!

doGet()

doPost()

doXXX()

Used only when memory is freed

If the Servlet implements SingleThreadModel
there will be no mutithreading

Get vs Post

What are "Get" and "Post"?

Get and Post are methods used to send data to the server:
With the Get method, the browser appends the data onto the URL.
With the Post method, the data is sent as "standard input.“

Why Do I Care?

It's important for you to know which method you are using. The
Get method is the default, so if you do not specify a method, the
Get method will be used automatically.

The Get method has several disadvantages:

 There is a limit on the number of characters which can be sent to
the server, generally around 100 - 150 characters.

 Your user will see the "messy codes" when the data is sent.

service()

This code is part of the class HttpServlet
 protected void service (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {

 String method = req.getMethod ();
 if (method.equals ("GET")) {
 long ifModifiedSince; long lastModified; long now;
 ifModifiedSince = req.getDateHeader ("If-Modified-Since");
 lastModified = getLastModified (req);
 maybeSetLastModified (resp, lastModified);
 if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);
 else {
 now = System.currentTimeMillis ();
 if (now < ifModifiedSince || ifModifiedSince < lastModified)
 doGet (req, resp);
 else
 resp.sendError (HttpServletResponse.SC_NOT_MODIFIED);
 }

service()

This code is part of the class HttpServlet
 protected void service (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {

 String method = req.getMethod ();
 if (method.equals ("GET")) {
 long ifModifiedSince; long lastModified; long now;
 ifModifiedSince = req.getDateHeader ("If-Modified-Since");
 lastModified = getLastModified (req);
 maybeSetLastModified (resp, lastModified);
 if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);
 else {
 now = System.currentTimeMillis ();
 if (now < ifModifiedSince || ifModifiedSince < lastModified)
 doGet (req, resp);
 else
 resp.sendError (HttpServletResponse.SC_NOT_MODIFIED);
 }

service()
 } else if (method.equals ("HEAD")) {
 long lastModified;
 lastModified = getLastModified (req);
 maybeSetLastModified (resp, lastModified);
 doHead (req, resp);
 } else if (method.equals ("POST")) {
 doPost (req, resp);
 } else if (method.equals ("PUT")) {
 doPut(req, resp);
 } else if (method.equals ("DELETE")) {
 doDelete(req, resp);
 } else if (method.equals ("OPTIONS")) {
 doOptions(req,resp);
 } else if (method.equals ("TRACE")) {
 doTrace(req,resp);
 } else {
 resp.sendError (HttpServletResponse.SC_NOT_IMPLEMENTED,

 "Method '" + method + "' is not defined in RFC 2068");
 }

 }

A taste of servlet
 programming

Handling doPost
public void doPost (HttpServletRequest rq,

HttpServletResponse rp)
throws ServletException,IOException

{
doGet(rq,rp);

}

Configuring with web.xml

WebApps
(Tomcat configuration)

Static pages

To let Tomcat serve static pages, we must define a “Web
Application”.
That is, in the Tomcat Document Root (by default
$CATALINA_HOME/webapps/) we must create a folder named
after our Web Application (e.g. myApp).

In that “myApp” folder, we MUST create a WEB-INF folder
(that can be empy).

In the myApp folder we can then depost the static html files.
On our Tomcat server, the URL for the hello.html file becomes:
http://machine/port/myApp/hello.html

To actually see the webapp, we might have to restart Tomcat

myApp

hello.htmlWEB-INF

webapps

web.xml

Static pages

A web.xml file MUST be provided:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN“
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
</web-app>

myApp

hello.htmlWEB-INF

webapps

web.xml

Servlets
To let Tomcat serve servlet, we need add some info. The compiled servlets (.class) must
be stored in a “classes” directory in WEB-INF.
Moreover, the web.xml file MUST contain at least:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/magic/*</url-pattern>
 </servlet-mapping>
</web-app>
The “magic” word is the servlet activation keyword (you can of course customize this word).
To execute the servlet called MyServlet.class, the URL will be:
http://machine/port/myApp/magic/MyServlet

Servlets
The web.xml file CAN contain many additional info.
For instance, it can contain a section defining an alias
name for the servlet:
…
 <servlet>
 <servlet-name>pippo</servlet-name>
 <servlet-class>Servlet1</servlet-class>
 </servlet>
…
In such case, the servlet called MyServlet.class
Can be activated ALSO by the URL:
http://machine/port/myApp/magic/pippo

myApp

web.xml

WEB-INF

webapps

classes

MyServlet.class

Forms (a quick overview)

See also: http://www.cs.tut.fi/~jkorpela/forms/

Forms
Give to the user the possibility to di
send information to the Web server

The FORM tag defines a form and has the following attributes:
•ACTION identifies the processing engine
•ENCTYPE specificies the MIME type used to pass data
to the server (Es. Text/html)

FORM contains the sub-tag:
•several tags for collecting data
•An INPUT tag must be of type SUBMIT for sending the data
•An INPUT can be of tye RESET to cancel all the gathered data

Form - input

<FORM method="POST" action="/cgi-bin/elabora">
 Scrivi il tuo nome
 <Input type="text" size“=25" maxlength="15“ name=“a”>
 <Input type="submit" value="spedisci">
 <Input type="reset" value="annulla">
</FORM>

Sends a url of type
http://…/cgi-bin/elabora?a=MarcoRonchetti&b=…

Reading parameters

Examples
For examples, see

http://courses.coreservlets.com/Course-
Materials/pdf/csajsp2/03-Form-Data.pdf

Check for missing or wrong parameters!
1. Do not assume user will give the expected

data
2. Do not show the user Java error messages!

p Use default values
p Redisplay the form

Tags for font aestetics

Tags for font aestetics

HTTP Header & Status code

Request and response

HTTP Header

Reading HTTP header

Resist!

Resist the temptation to adapt your page to the
user's agent (i.e. the browser!)

Remember: headers can be faked!

Example
See
http://courses.coreservlets.com/Course-

Materials/pdf/csajsp2/04-Request-Headers.pdf

For an example of a choice based on the HTTP
header (wheater to send compressed or
uncompressed data)

Common status codes

Common status codes

How to set the status code

Setting the response header

Mimetypes

Mimetypes
See examples in
http://courses.coreservlets.com/Course-

Materials/pdf/csajsp2/06-Response-
Headers.pdf

- How to generate an excel sheet
- How to generate a jpeg on the flight

Cookies

Writing cookies

Reading cookies

Setting cookie properties

setAge
setAge(x); x>0 set Time To Live (in sec)

setAge(0); tell the browser to delete the cookie

setAge(-1); use a session cookie

Replace a cookie value

Sessions

Home-made sessions

Java HttpSessions

Using sessions (with cookies)

Session methods

Session methods

Session methods

Using sessions (with URL rewriting)

