
Introduction

Transactions

Bank

package transactions_1;
import java.sql.*;
public class Bank {

 public Connection getConnection(String jdbcDriverName,
 String jdbcURL) {
 try {
 Class.forName(jdbcDriverName);
 return DriverManager.getConnection(jdbcURL);
 } catch (ClassNotFoundException ex) { ex.printStackTrace();
 } catch (SQLException ex) { ex.printStackTrace(); }
 return null;
 }

 public void releaseConnection(Connection conn) {
 if (conn!=null)
 try {
 conn.close();
 } catch (SQLException ex) { ex.printStackTrace(); }
 }

1. getConnection/setConnection

Bank
 public void deposit(int account, double amount, Connection conn)
 throws SQLException{
 String sql="UPDATE Account SET Balance = Balance + "+ amount+
 "WHERE AccountId = "+account;
 Statement stmt=conn.createStatement();
 stmt.executeQuery(sql);
 System.out.println("Deposited "+amount+" to account "+account);
 }

 public void withdraw(int account, double amount, Connection conn)
 throws SQLException{
 String sql="UPDATE Account SET Balance = Balance - "+ amount+
 "WHERE AccountId = "+account;
 Statement stmt=conn.createStatement();
 stmt.executeQuery(sql);
 System.out.println("Withdrew "+amount+" from account "+
 account);
 }

2. deposit/withdraw

Bank

public void printBalance(Connection conn) {
 ResultSet rs=null;
 Statement stmt=null;
 try {
 stmt=conn.createStatement();
 rs=stmt.executeQuery("SELECT * FROM Account");
 while (rs.next())
 System.out.println("Account "+rs.getInt(1)+
 " has a balnce of "+rs.getDouble(2));
 } catch (SQLException ex) { ex.printStackTrace(); }
 finally {
 try {
 if (rs!=null)
 rs.close();
 if (stmt!=null)
 stmt.close();
 } catch (SQLException ex) { ex.printStackTrace(); }
 }
 }

3. printBalance

Bank

 public void transferFunds(int fromAccount, int toAccount,
 double amount, Connection conn){
 Statement stmt=null;
 try {
 withdraw(fromAccount, amount, conn);
 deposit(toAccount,amount,conn);
 }
 catch (SQLException ex) {
 System.out.println("An error occured!");
 ex.printStackTrace();
 }
 }

4. trasferFunds

Bank

 public static void main(String[] args) {
 if (args.length <3) {
 System.exit(1);
 }
 Connection conn=null;
 Bank bank = new Bank();
 try {
 conn=bank.getConnection(args[0],args[1]);
 bank.transferFunds(1,2,Double.parseDouble(args[2]),conn);
 bank.printBalance(conn);
 } catch (NumberFormatException ex) { ex.printStackTrace();
 } finally {bank.releaseConnection(conn);}
 }
}

5. main

Bank

 public void transferFunds(int fromAccount, int toAccount,
 double amount, Connection conn){
 Statement stmt=null;
 try {
 conn.setAutoCommit(false);
 withdraw(fromAccount, amount, conn);
 deposit(toAccount,amount,conn);
 conn.commit();
 }
 catch (SQLException ex) {
 System.out.println("An error occured!");
 ex.printStackTrace();
 try {
 conn.rollback();
 } catch (SQLException e) { e.printStackTrace(); }
 }
 }

transferFunds – fixed version!

TR
ANSACTIO

N

TR
ANSACTIO

N

Actors

A transactional object (or transactional component) is an
application component that is involved in a transaction.
A transaction manager is responsible for managing the
transactional operations of the transactional components.
A resource is a persistent storage from which you read or
write.
A resource manager manages a resource. Resource
managers are responsible for managing all state that is
permanent.
The most popular interface for resource managers is the
X/Open XA resource manager interface (a de facto
standard): a deployment with heterogeneous resource
managers from different vendors can interoperate.

Distributed Systems

Local
Transaction
Manager A

Resource
Manager A

DB A DB B1a DB B1b
Messaging
Server B2a

Resource
Manager B2

Local
Transaction
Manager B

Resource
Manager B1

Distributed
Transaction

Manager

Who begins a transaction?

Who begins a transaction? Who issues either a commit or abort?
This is called demarcating transactional boundaries .

There are three ways to demarcate transactions:
•programmatically:

you are responsible for issuing a begin statement and either a
commit or an abort statement.

•declaratively,
the EJB container intercepts the request and starts up a
transaction automatically on behalf of your bean.

•client-initiated.
write code to start and end the transaction from the client code
outside of your bean.

Programmatic vs. declarative

programmatic transactions:
your bean has full control over transactional
boundaries.For instance,you can use programmatic
transactions to run a series of minitransactions within a bean
method.
When using programmatic transactions,always try to complete
your transactions in the same method that you began
them.Doing otherwise results in spaghetti code where it is
difficult to track the transactions;the performance decreases
because the transaction is held open longer.
declarative transactions:
your entire bean method must either run under a
transaction or not run under a transaction.
Transactions are simpler! (just declare them in the descriptor)

Client-initiated

Client initiated transactions:
A nontransactional remote client calls an enterprise bean that
performs its own transactions The bean succeeds in the
transaction,but the network or application server crashes
before the result is returned to a remote client.The remote
client would receive a Java RMI RemoteException indicating a
network error,but would not know whether the transaction that
took place in the enterprise bean was a success or a failure.

With client-controlled transactions, if anything goes
wrong,the client will know about it.
The downside to client-controlled transactions is that if the
client is located far from the server, transactions are likely to
take a longer time and the efficiency will suffer.

ACID

Transactions

The ACID Properties
Atomicity guarantees that many operations are bundled
together and appear as one contiguous unit of work .

Consistency guarantees that a transaction leaves the system ’s
state to be consistent after a transaction completes.

Isolation protects concurrently executing transactions from
seeing eachother ’s incomplete results.

Durability guarantees that updates to managed resources,such
as database records,survive failures. (Recoverable resources
keep a transactional log for exactly this purpose.If the resource
crashes,the permanent data can be reconstructed by reapplying
the steps in the log.)

Lost Update

Read A

Write A

Increm. A
Read A

Write A

Increm. A

DBbegin

commit

begin

commit

Dirty Read

Read A

Write A

Increm. A

Read A

Write A

Increm. A

DBbegin

rollback

begin

commit

begin

commit

Unrepeatable Read

Read A

Read A

Write A

Increm. A

DBbegin

commit

begin

commit
Read A

Phantom Read (ghost update)

Read A

Read A

Write A
A=A-1

DBbegin

commit

begin

commit

Read B Read B

Write B
B=B+1

IC=A+B

Integrity
Constraint:
A+B=100

Integrity constraint
 violated!

Isolation levels

ISOLATION
LEVEL

Dirty Read Unrepeatable
Read

Phantom Read

READ
UNCOMMITTED

SI SI SI

READ
COMMITTED

NO SI SI

REPEATABLE
READ

NO NO SI

SERIALIZABLE NO NO NO

Default level for many
DBMS

Isolation levels

BMT:
you specify isolation levels with your resource manager API (such as
JDBC).
For example,you could call java.sql.Connection.SetTransactionIsolation(...).

CMT:
there is no way to specify isolation levels in the deployment descriptor.
You need to either use resource manager APIs (such as JDBC),or rely on
your container ’s tools or database ’s tools to specify isolation.

Isolation portability problems

Unfortunately, there is no way to specify isolation for
container-managed transactional beans in a portable
way—you are reliant on container and database tools.

This means if you have written an application, you cannot ship that
application with built-in isolation. The deployer now needs to know
about transaction isolation when he uses the container’s tools, and
the deployer might not know a whole lot about your application’s
transactional behavior.

Pessimistic and Optimistic Concurrency Control Strategies

TIPO Dimension Concurrency Problems

Pessimistic —Your EJB locks the
source data for the entire time it
needs data, not allowing anything
else to potentially update the data
until it completes its transaction.

Small Systems Low Does not scale well

Optimistic - Your EJB implements
a strategy to detect whether a
change has occurred to the source
data between the time it was read
and the time it now needs to be
updated. Locks are placed on the
data only for the small periods of
time the EJB interacts with the
database.

Large Systems High Complexity of the
collision detection
code

Transactions e EJB

Transactions

Transactional Models
A flat transaction is the simplest transactional model to
understand.A flat transaction is a series of operations
that are performed atomically as a single unit of work .

A nested transaction allows you to embed atomic units of
work within other units of work.The unit of work that is
nested within another unit of work can roll back without
forcing the entire transaction to roll back.
(subtransactions can independently roll back without
affecting higher transactions in the tree)
(Not currently mandated by the EJB specification)

Other models: chained transactions and sagas.
(Not supported by the EJB specification)

EJB Transaction Attribute Values

Required
You want your method to always run in a transaction.
If a transaction is already running,your bean joins in on that
transaction. If no transaction is running,the EJB container
starts one for you.

Never
Your bean cannot be involved in a transaction.
If the client calls your bean in a transaction,the container
throws an exception back to the client
(java.rmi.RemoteException if
remote, javax.ejb.EJBException if local).

EJB Transaction Attribute Values

Supports
The method runs only in a transaction if the client had
one running already —it joins that transaction.
If the client does not have a transaction,the bean runs with no
transaction at all.

Mandatory
a transaction must be already running when your bean
method is called. If a transaction isn ’t running,
javax.ejb.TransactionRequiredException is thrown back to the
caller (or javax.ejb.TransactionRequiredLocalException if the
client is local).

EJB Transaction Attribute Values

NotSupported
your bean cannot be involved in a transaction at all.
For example,assume we have two enterprise beans,A and
B.Let ’s assume bean A begins a transaction and then calls
bean B. If bean B is using the NotSupported attribute,the
transaction that A started is suspended. None of B’s
operations are transactional,such as reads/writes to
databases. When B completes,A ’s transaction is resumed.

EJB Transaction Attribute Values

RequiresNew

You should use the RequiresNew attribute if you always want
a new transaction to begin when your bean is called. If a
transaction is already underway when your bean is called,that
transaction is suspended during the bean invocation.

The container then launches a new transaction and delegates
the call to the bean.The bean performs its operations and
eventually completes.The container then commits or aborts
the transaction and finally resumes the old transaction. If no
transaction is running when your bean is called,there is
nothing to suspend or resume.

EJB Transaction Attribute Values

TIPO PRECONDIZIONE POSTCONDIZIONE

Required Nessuna transazione NUOVA
PRE-ESISTENTE PRE-ESISTENTE

RequiresNew Nessuna transazione NUOVA
PRE-ESISTENTE NUOVA

Supports Nessuna transazione Nessuna transazione
PRE-ESISTENTE PRE-ESISTENTE

Mandatory Nessuna transazione error
PRE-ESISTENTE PRE-ESISTENTE

NotSupported Nessuna transazione Nessuna transazione
PRE-ESISTENTE Nessuna transazione

Never Nessuna transazione Nessuna transazione
PRE-ESISTENTE error

EJB Transaction Attribute Values
<assembly-descriptor>
 <container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

 </container-transaction>
 <container-transaction>

<method>
<ejb-name>Employee</ejb-name>
<method-name>setName</method-name>
<method-param>String</method-param>

</method>
<trans-attribute>Required</trans-attribute>

 </container-transaction>
</assembly-descriptor>

Transactions and Session Beans

stateful session beans:
it is possible that the business method that started a transaction
completes without committing or rolling back the transaction. In
such a case, the Container must retain the association between the
transaction and the instance across multiple client calls until the
instance commits or rolls back the transaction. When the client
invokes the next business method, the Container must invoke the
business method in this transaction context.

If a stateless session bean instance starts a transaction in a business
method, it must commit the transaction before the business method
returns.

Java Transactions

Transactions

Object Transaction Service

Object Management Group (OMG) developed a
standardized Object Transaction Service (OTS) as an
optional CORBA service.

OTS improved on earlier transaction systems that didn ’t
support multiple parties participating in a transaction.

OTS is a suite of well-defined interfaces that specify how
transactions can run behind the scenes —interfaces that
the transaction manager,resource manager, and
transactional objects use to collaborate.

Object Transaction Service

OTS is decomposed into two parts:

The CosTransactions interfaces are the basic interfaces
that transactional objects/components, resources,
resource managers, and transaction managers use to
interoperate. These interfaces ensure that any
combination of these parties is possible.

The CosTSPortability interface offers a portable way to
perform transactions with many participants.

Java Transaction Service

Sun has split up OTS into two sub-APIs:the Java
Transaction Service (JTS)and the Java Transaction API
(JTA).

The Java Transaction Service (JTS)is a Java mapping of
CORBA OTS for system-level vendors. JTS defines the
interfaces used by transaction managers and resource
managers behind the scenes.
It is used to have various vendors ’ products interoperate.
It also defines various objects passed around and used by
transaction managers and resource managers.

As an application programmer, you should not care about
most of OTS,and you should not care about JTS at all. What
you should care about is the Java Transaction API (JTA).

Java Transaction API

JTA consists of two sets of interfaces:

•one for X/Open XA resource managers (which you don ’t
need to worry about)

•one that we will use to support programmatic transaction
control: javax.transaction.UserTransaction .

javax.transaction.UserTransaction
Methods for Transactional Boundary Interaction

begin()
Begins a new transaction.This transaction becomes
associated with the current thread.
commit()
Runs the two-phase commit protocol on an existing
transaction associated with the current thread. Each resource
manager will make its updates durable

getStatus()
Retrieves the status of the transaction associated with this
thread.
rollback()
Forces a rollback of the transaction associated with the
current thread.

javax.transaction.UserTransaction
Methods for Transactional Boundary Interaction

setRollbackOnly()
Calls this to force the current transaction to roll back.
This will eventually force the transaction to abort.

setTransactionTimeout(int)
The transaction timeout is the maximum amount of time that a
transaction can run before it ’s aborted.This is useful to avoid
deadlock situations,when precious resources are being held
by a transaction that is currently running.

The javax.transaction.Status Constants

STATUS_ACTIVE
A transaction is currently happening and is active.
STATUS_NO_TRANSACTION
No transaction is currently happening.
STATUS_MARKED_ROLLBACK The current transaction
will eventually abort because it ’s been marked for
rollback.This could be because some party called
UserTransaction.setRollbackOnly().
STATUS_ROLLING_BACK The current transaction is in
the process of rolling back.
STATUS_ROLLEDBACK The current transaction has been
rolled back.
STATUS_UNKNOWN The status of the current transaction
cannot be determined.

The javax.transaction.Status Constants

STATUS_PREPARING The current transaction is
preparing to be committed (during Phase One of the two-
phase commit protocol).

STATUS_PREPARED The current transaction has been
prepared to be committed (Phase One is complete).

STATUS_COMMITTING The current transaction is in the
process of being com mitted right now (during Phase
Two).

STATUS_COMMITTED The current transaction has been
committed (Phase Two is complete).

The javax.transaction.Status Constants

import javax.transaction.UserTransaction;
…
UserTransaction userTran
try {
 java.util.Properties env =...
 // Get the JNDI initial context
 Context ctx =new InitialContext(env);
 userTran=(javax.transaction.UserTransaction)
 ctx.lookup("java:comp/UserTransaction");
 // Execute the transaction
 userTran.begin();
 /* perform business operations */
 userTran.commit();
}
catch (Exception e){
 //deal with any exceptions}

Set environment up.You
must set the JNDI
InitialContext
factory,the Provider
URL,and any login names
or passwords necessary
to access JNDI.

Look up the JTA
UserTransaction interface
via JNDI.The container is
required to make the JTA
available at the location
java:comp/UserTransaction

Dooming transactions
If you ’re performing programmatic or client-initiated transactions, you
are calling the begin() and commit() methods.You can easily doom a
transaction by calling rollback() on the JTA, rather than commit().

The best way to doom a transaction from a bean with container-
managed transactions is to call setRollbackOnly() on your EJB context
object.
If the transaction participant is not an Container Managed EJB
component, you can doom a transaction by looking up the JTA and
calling the JTA ’s setRollbackOnly() method,

Container-managed transactional beans can detect doomed
transactions by calling the getRollbackOnly()method on the EJB
context object. If this method returns true ,the transaction is doomed.
Other participants,such as bean-managed transactional beans,can call
the JTA ’s getStatus() method.

Two Phases Commit

Transactions

Distributed Systems

Local
Transaction
Manager A

Resource
Manager A

DB A DB B1a DB B1b
Messaging
Server B2a

Resource
Manager B2

Local
Transaction
Manager B

Resource
Manager B1

Distributed
Transaction

Manager

Distributed Systems: Two Phase commit

Phase One begins by sending a “before commit” message to all resources
involved in the transaction. At this time,the resources involved in a
transaction have a final chance to abort the transaction. If any resource
involved decides to abort, the entire transaction is cancelled and no
resource updates are performed. Otherwise, the transaction proceeds on
course and cannot be stopped, unless a catastrophic failure occurs.To
prevent catastrophic failures,all resource updates are written to a
transactional log or journal. This journal is persistent,so it survives
crashes and can be consulted after a crash to reapply all resource
updates.

Phase Two occurs only if Phase One completed without an abort. At this
time,all of the resource managers, which can all be located and controlled
separately, perform the actual data updates.

Distributed Systems: Two Phase commit
In the distributed two-phase commit, there is one master transaction
manager called the distributed transaction coordinator .

1.The transaction coordinator sends a prepare to commit message to each
transaction manager involved.

2.Each transaction manager may propagate this message to the resource
managers that are tied to that transaction manager.

3.Each transaction manager reports back to the transaction coordinator.If
everyone agrees to commit, the commit operation that’s about to happen
is logged in case of a crash.

4.Finally,the transaction coordinator tells each transaction manager to
commit. Each transaction manager in turn calls each resource
manager,which makes all resource updates permanent and durable. If
anything goes wrong,the log entry can be used to reapply this last step.

