“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

DOM architecture

p

- 2008

Marco Ronchetti

JO
17

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlinstance();
dbf.setValidating(true); // optional — default is non-validating

DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(file);

[l
=

Document

(DOM)

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

¥

DOM packages

- 2008

Marco Ronchetti

JO
18

Package

org.w3c.dom

javax.xml.parsers

Description

Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C.

Defines the DocumentBuilderFactory class and the
DocumentBuilder class, which returns an object that implements
the W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system property,
which can be set from the command line or overridden when
invoking the newlnstance method. This package also defines the
ParserConfigurationException class for reporting errors.

- 2008

Marco Ronchetti

JO
19

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

The Node interface poﬂs‘x

public interface Node

The Node interface is the primary datatype for the entire DOM. It

represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with
children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and
adding children to such nodes results in a DOMEXxception being

raised.

The attributes nodeName, nodeValue and attributes are included as a

mechanism to get at node information without casting down to the
specific derived interface. In cases where there is no obvious
mapping of these attributes for a specific nodeType (e.g.,
nodeValue for an Element or attributes for a Comment), this returns
null. Note that the specialized interfaces may contain additional and
more convenient mechanisms to get and set the relevant
information.

- 2008

Marco Ronchetti

JO
20

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

The Document interface poﬂs‘x

public interface Document extends Node

The Document interface represents the entire HTML or XML document.
Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within

whose context they were created.

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

The Node hierarchy p()l‘s‘f

Marco Ronchetti - 2008

— Node
/\

Document Entity CharacterData

ZF

I I
Comment Text

mydocument

I
<l-- Demo --> I |

hello comment A =3 |

Demo hello

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

The Node hierarchy polﬁ‘r

- 2008

Marco Ronchetti

JO
22

—>

Node

AN

Document | | | DocumentType || |EntityReference

DocumentFragment Entity

?

Attr

Processinglnstruction

Notation||CharacterData

Comment

Text

AN

CDATASection

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Node: WARNING! g

Marco Ronchetti - 2008

The implied semantic of this model 1s
WRONG!

You might deduce that a comment might contain another comment, or
a document, or any other node!

The integrity 1s delegated to a series of Node’s attributes, that the
programmer should check.

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Node: main methods polﬁ‘r

- 2008

Marco Ronchetti

JO
24

NAVIGATION

The parent of this node.

A NodelList that contains all children of this node.
The first child of this node.

The last child of this node.

The node immediately following this node

The node immediately preceding this node.

- 2008

Marco Ronchetti

JO
25

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

The Node interface

s

Interface nodeName nodeValue attributes
Attr name of attribute value of attribute null
CDATASection "#cdata-section” content of the CDATA null
Section
Comment "#fcomment” content of the comment | null
Document "#document” null null
DocumentFragment "#document-fragment” | null null
DocumentType document type name | null null
Element tag name null NamedNodeMap
Entity entity name null null
EntityReference name of entity null null
referenced
Notation notation name null null
Processinglinstruction | target entire content excluding | null
the target
Text "#text” content of the text node | null

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Node: main methods

- 2008

Marco Ronchetti

JO
26

INSPECTION

The name of this node, depending on its type; see table.

A code representing the type of the underlying object.

The value of this node, depending on its type; see the table.
The Document object associated with this node.

Returns whether this node (if it is an element) has any attributes.

Returns whether this node has any children.

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Node: main methods polﬁ‘r

- 2008

Marco Ronchetti

JO
27

EDITING NODES

Returns a duplicate of this node, i.e., serves as a generic copy constructor
for nodes.

The value of this node, depending on its type; see the table.

- 2008

Marco Ronchetti

JO
28

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Node: main methods poﬂs‘x

EDITING STRUCTURE
Adds the node newChild to the end of the list of children of this node.

Removes the child node indicated by oldChild from the list of children, and
returns it.

Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.

Inserts the node newChild before the existing child node refChild.

Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal” form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references)
separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text

nodes.

- 2008

Marco Ronchetti

JO
29

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

NODE: determining the type

switch (node.getNodeType()) {
case Node.ELEMENT_NODE; ...; break;
case Node.ATTRIBUTE_NODE; ...; break;
case Node.TEXT_NODE; ...; break;
case Node.CDATA_SECTION_NODE; ...; break;
case Node.ENTITY_REFERENCE_NODE; ...; break;
case Node.PROCESSING_INSTRUCTION; ...; break;
case Node.COMMENT_NODE; ...; break;
case Node.DOCUMENT_NODE; ...; break;
case Node.DOCUMENT_TYPE_NODE; ...; break;
case Node.DOCUMENT_FRAGMENT_NODE; ...; break;
case Node.NOTATION_NODE; ...; break;
default: throw (new Exception());

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

p

DOM example

- 2008

Marco Ronchetti

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

public class CountDom ({
public static void main(String[] arg) throws Exception {
if (arg.length !'=1) {
System.err.printin("Usage: cmd filename (file must exist)");
System.exit(1);

}
readFile(new File(arg[0]))

getElementCount(node)

JO
30

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

v

DOM example

- 2008

Marco Ronchetti

public static Document readFile(File file) throws Exception {

Document doc; Parse File,
try { Return Document

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlnstance();
dbf.setValidating(false);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(file);
return doc;
} catch (SAXParseException ex) {
throw (ex);
} catch (SAXException ex) {
Exception x = ex.getException(); // get underlying Exception
throw ((x == null) ? ex : x);

}

JO
31

- 2008

Marco Ronchetti

JO
32

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

"

DOM example

public static int getElementCount(Node node) {
if (null == node) return 0;
int sum = 0;
boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
if (isElement) sum = 1;
NodelList children = node.getChildNodes();
if (null == children) return sum;

for (inti = 0; i < children.getLength(); i++) {
sum += getElementCount(children.item(i)); // recursive call

}
] use DOM methods to count elements:
return sum; i !
for each subtree if the root is an Element,
} set sum to 1, else to 0;
} add element count of all children of the root to sum

—_—

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

DOM References poNSAx=

Marco Ronchetti - 2008

http:/ /docs.oracle.com/javase/tutorial /jaxp/

JO
33

dom/index.html

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Alternatives to DOM pOI‘sAx

Marco Ronchetti - 2008

JO
34

"Build a better mousetrap, and the world will
beat a path to your door."
--Emerson

- 2008

Marco Ronchetti

JO
35

“Web architectures” - Laurea Specialistica in Informatica - Universita di Trento

Alternatives to DOM pOI‘sAx

If you are dealing with simple data structures and if XML Schema isn't a big part of
your plans, then you may find that one of the more object-oriented standards,
such as JDOM and dom4;j, is better suited for your purpose.

JDOM: (see).

The standard DOM is a very simple data structure that intermixes text nodes,
element nodes, processing instruction nodes, CDATA nodes, entity references,
and several other kinds of nodes. That makes it difficult to work with in practice,
because you are always sifting through collections of nodes, discarding the
ones you don't need into order to process the ones you are interested in. JDOM,
on the other hand, creates a tree of objects from an XML structure. The resulting
tree is much easier to use, and it can be created from an XML structure without a

compilation step.

DOM4J: (see)

domdj is an easy to use, open source library for working with XML, XPath and
XSLT on the Java platform using the Java Collections Framework and with full

support for DOM, SAX and JAXP.

