
J0
17

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

DOM architecture
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(true); // optional – default is non-validating
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(file);

J0
18

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

DOM packages
Package Description
org.w3c.dom

Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C.

javax.xml.parsers

Defines the DocumentBuilderFactory class and the
DocumentBuilder class, which returns an object that implements
the W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system property,
which can be set from the command line or overridden when
invoking the newInstance method. This package also defines the
ParserConfigurationException class for reporting errors.

J0
19

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

public interface Node
The Node interface is the primary datatype for the entire DOM. It

represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with
children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and
adding children to such nodes results in a DOMException being
raised.

The attributes nodeName, nodeValue and attributes are included as a
mechanism to get at node information without casting down to the
specific derived interface. In cases where there is no obvious
mapping of these attributes for a specific nodeType (e.g.,
nodeValue for an Element or attributes for a Comment), this returns
null. Note that the specialized interfaces may contain additional and
more convenient mechanisms to get and set the relevant
information.

The Node interface

J0
20

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

public interface Document extends Node
The Document interface represents the entire HTML or XML document.

Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within
whose context they were created.

The Document interface

J0
21

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

The Node hierarchy

<!-- Demo -->
hello

mydocument

comment

Demo

A id=“3”

hello

Document

Comment Text

Entity

Attr

Node

CharacterData

J0
22

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

The Node hierarchy

EntityReference ProcessingInstruction DocumentType

DocumentFragment Notation

CDATASection

Document

Comment Text

Entity

Attr

Node

CharacterData

J0
23

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

Node: WARNING!

The implied semantic of this model is
WRONG!

You might deduce that a comment might contain another comment, or
a document, or any other node!

The integrity is delegated to a series of Node’s attributes, that the

programmer should check.

J0
24

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods

NAVIGATION
Node getParentNode() The parent of this node.

NodeList getChildNodes() A NodeList that contains all children of this node.

Node getFirstChild() The first child of this node.

Node getLastChild() The last child of this node.

Node getNextSibling() The node immediately following this node
.
Node getPreviousSibling() The node immediately preceding this node.

J0
25

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

The Node interface
Interface nodeName nodeValue attributes
Attr name of attribute value of attribute null
CDATASection "#cdata-section“ content of the CDATA

Section
null

Comment "#comment“ content of the comment null

Document "#document“ null null

DocumentFragment "#document-fragment“ null null

DocumentType document type name null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity
referenced

null null

Notation notation name null null

ProcessingInstruction target entire content excluding
the target

null

Text "#text“ content of the text node null

J0
26

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods

INSPECTION

java.lang.String getNodeName()

 The name of this node, depending on its type; see table.
short getNodeType()

 A code representing the type of the underlying object.
java.lang.String getNodeValue()

 The value of this node, depending on its type; see the table.
Document getOwnerDocument()

 The Document object associated with this node.
Boolean hasAttributes()

 Returns whether this node (if it is an element) has any attributes.
Boolean hasChildNodes()

 Returns whether this node has any children.

J0
27

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods
EDITING NODES
Node cloneNode(boolean deep)

 Returns a duplicate of this node, i.e., serves as a generic copy constructor
for nodes.

void setNodeValue(java.lang.String nodeValue)

 The value of this node, depending on its type; see the table.

J0
28

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

Node: main methods
EDITING STRUCTURE
Node appendChild(Node newChild)

 Adds the node newChild to the end of the list of children of this node.
Node removeChild(Node oldChild)

 Removes the child node indicated by oldChild from the list of children, and
returns it.
Node replaceChild(Node newChild, Node oldChild)

 Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.
Node insertBefore(Node newChild, Node refChild)

 Inserts the node newChild before the existing child node refChild.

void normalize()

 Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references)
separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text
nodes.

J0
29

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

switch (node.getNodeType()) {
 case Node.ELEMENT_NODE; …; break;
 case Node.ATTRIBUTE_NODE; …; break;
 case Node.TEXT_NODE; …; break;
 case Node.CDATA_SECTION_NODE; …; break;
 case Node.ENTITY_REFERENCE_NODE; …; break;
 case Node.PROCESSING_INSTRUCTION; …; break;
 case Node.COMMENT_NODE; …; break;
 case Node.DOCUMENT_NODE; …; break;
 case Node.DOCUMENT_TYPE_NODE; …; break;
 case Node.DOCUMENT_FRAGMENT_NODE; …; break;
 case Node.NOTATION_NODE; …; break;
 default: throw (new Exception());
}

NODE: determining the type

J0
30

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class CountDom {
 public static void main(String[] arg) throws Exception {
 if (arg.length != 1) {
 System.err.println("Usage: cmd filename (file must exist)");
 System.exit(1);
 }
 Node node = readFile(new File(arg[0]));
 System.out.println(arg + " elementCount: " + getElementCount(node));
 }
 }

DOM example

J0
31

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

public static Document readFile(File file) throws Exception {
 Document doc;
 try {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 DocumentBuilder db = dbf.newDocumentBuilder();
 doc = db.parse(file);
 return doc;
 } catch (SAXParseException ex) {
 throw (ex);
 } catch (SAXException ex) {
 Exception x = ex.getException(); // get underlying Exception
 throw ((x == null) ? ex : x);
 }
 }

DOM example

Parse File,
Return Document

J0
32

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

 public static int getElementCount(Node node) {
 if (null == node) return 0;
 int sum = 0;
 boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
 if (isElement) sum = 1;
 NodeList children = node.getChildNodes();
 if (null == children) return sum;

 for (int i = 0; i < children.getLength(); i++) {
 sum += getElementCount(children.item(i)); // recursive call
 }
 return sum;
 }
}

DOM example

use DOM methods to count elements:
for each subtree if the root is an Element,
 set sum to 1, else to 0;
 add element count of all children of the root to sum

J0
33

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

DOM References

http://docs.oracle.com/javase/tutorial/jaxp/
dom/index.html

J0
34

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

"Build a better mousetrap, and the world will
beat a path to your door."

--Emerson

Alternatives to DOM

J0
35

M
ar

co
 R

on
ch

et
ti

 -
 2
00
8	

“Web architectures” – Laurea Specialistica in Informatica – Università di Trento

If you are dealing with simple data structures and if XML Schema isn't a big part of
your plans, then you may find that one of the more object-oriented standards,

such as JDOM and dom4j, is better suited for your purpose.

JDOM: Java DOM (see http://www.jdom.org).
The standard DOM is a very simple data structure that intermixes text nodes,

element nodes, processing instruction nodes, CDATA nodes, entity references,
and several other kinds of nodes. That makes it difficult to work with in practice,
because you are always sifting through collections of nodes, discarding the
ones you don't need into order to process the ones you are interested in. JDOM,
on the other hand, creates a tree of objects from an XML structure. The resulting
tree is much easier to use, and it can be created from an XML structure without a
compilation step.

DOM4J: DOM for Java (see http://www.dom4j.org/)

dom4j is an easy to use, open source library for working with XML, XPath and
XSLT on the Java platform using the Java Collections Framework and with full
support for DOM, SAX and JAXP.

Alternatives to DOM

