Accessing to the Entity from a Stateful

package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateful
@QRemote (AccountInterface.class)
public class AccountBean implements AccountInterface{
@PersistenceContext (type=PersistentContentType.EXTENDED)
private EntityManager manager;
private Account account =null;
public void open (int accountNumber) {
account=manager. find (Account.class, accountNumber) ;
if (account=null) {
account=new Account() ;
account. accountNumber=accountNumber;
manager .persist (account) ;

Access to the saved Entity
reference

public int getBalance (int accountNumber) {
//Account account = manager.find(Account.class, accountNumber) ;
If (account==null) throw new IllegalStateException() ;
return account.balance;

}

public void deposit(int accountNumber, int amount) ({

}

public int withdraw(int accountNumber, int amount) ({

}

Persistence.xml

<?xml version="1.0" encoding="UTF-8"7?>

<persistence xmins="http://java.sun.com/xml/ns/persistence”>
<persistence-unit name="intro” />

</persistence>

* A persistence unit is defined in a special descriptor file,
the persistence.xml file, which is simply added to the
META-INF directory of an arbitrary archive, such as an
Ejb-jar, .ear, or .war file, or in a plain .jar file.

Persistence fields

<description>
<provider>
<mapping-file>
Etc.

Entity lifecycle

new()

persist()
refresh()

managed

remove()
removed
persist()

Persistence
context
ends

merge()

Life Cycle Callbacks

PrePersist
PostPersist
PreRemove
PostRemove
PreUpdate
PostUpdate
PostlLoad

@PrePersist
void prePersist() {

}

Extended persistence Context

package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateful;
import javax.ejb.Remote;
import Jjavax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@QRemote (Bank.class)
public class BankBean implements Bank {
@PersistenceContext
private EntityManager manager;
public List<Account> listAccounts() ({
Query query = manager.createQuery ("SELECT a FROM Account
a");
return query.getResultList();
}
public Account openAccount (String ownerName) {
Account account = new Account() ;
account.ownerName = ownerName;
manager .persist (account) ;
return account;

Access to the saved Entity
reference

public int getBalance (int accountNumber) {
//Account account = manager.find(Account.class, accountNumber) ;
If (account==null) throw new IllegalStateException() ;
return account.balance;

}

public void deposit(int accountNumber, int amount) ({

}

public int withdraw(int accountNumber, int amount) ({

}

Database synchronization

public interface EntityManager {
[** Synchronize the persistence context to the underlying database. */
public void flush();

I** Set the flush mode that applies to all objects contained in the persistence
context. */

public void setFlushMode(FlushModeType flushMode); // COMMIT or AUTO

I** Get the flush mode that applies to all objects contained in the persistence
context. */

public FlushModeType getFlushMode();

I** Refresh the state of the instance from the database, overwriting changes made
to the entity, if any. */

public void refresh(Object entity);
}

Advanced Persistency

Inheritance

Mapping inheritance

RoadVehicle

numpPassengers : int
numWheels : int
make : string
model : string

Motorcycle

Car

acceleratorType: AcceleratorType

acceleratorType: AcceleratorType

A

-,

Coupe

Roadster

boringFactor: BoringFactor

coolFactor: CoolFactor

S

NGLE TABLE

PER CLASS

Id numPass numWhee | make model
1ls
1 6 2 HORSE | NULL
CART
Id numPass numWhee | make model accelerat
1s orType
2 1 2 HONDA | HRC7 THROTTLE
etc.

Problems with polymorphism — how do you find
“all RoadVehicles that have less than 3 passenger?”

SINGLE TABLE PER CLASS HIERARCHY

Id | numPass | numWhe | make |model |DISC |accelera |Boring | CoolF
els tortype Factor | actor
1 6 2 HORS | NULL ROAD | NULL NULL NULL
ECAR VEHI
T CLE
2 1 2 HOND | HRC7 MOTO | THROTTLE | NULL NULL
A RCYC
LE
3 4 4 FIAT | PUNTO |CAR PEDAL NULL NULL
4 2 4 FERR | F70 COUP | PEDAL 1 NULL
ART E
5 2 4 FORD | KA ROAD | PEDAL NULL 1
STER

*Space inefficiency
‘Impossible to set “NON-NULL” constraints on fields of the subclasses.

JOINED TABLES

RoadVehicle
Id DTYPE numPass | numWheel | make model
s
1 ROADVEHICLE | 6 2 HORSECART NULL
2 MOTORCYCLE 1 2 HONDA HRC7
3 CAR 4 4 FIAT PUNTO
4 COUPE 2 4 FERRARI F70
5 ROADSTER 2 4 FORD KA
Car Coupe
Id acceleratortype Id boringFactor
3 PEDAL 4 1
4 PEDAL
5 PEDAL

Many joins in a deep inheritance hierarchy — time inefficiency.

The base class

package examples.entity.single table;

// imports go here

QEntity (name="RoadVehicleSingle”)

@Table (name="ROADVEHICLE"”) //optional, it’s the default
@Inheritance (strategy=InheritanceType.SINGLE TABLE)

@DiscriminatorColumn (name="DISC”,
discriminatorType=DiscriminatorType.STRING)

@DiscriminatorValue (“ROADVEHICLE”)
// @Inheritance (strategy=InheritanceType.JOINED)
public class RoadVehicle implements Serializable {
public enum AcceleratorType {PEDAL,THROTTLE} ;
@Id
protected int id;
protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;
public RoadVehicle() {
id = (int) System.nanoTime() ;
}

// setters and getters go here

The derived class

package examples.entity.single table;
// imports go here
GEntity

@DiscriminatorValue (“MOTORCYCLE”) //not needed for joined

public class Motorcycle extends RoadVehicle implements
Serializable {

public final AcceleratorType acceleratorType
=AcceleratorType. THROTTLE

public Motorcycle() {

numWheels = 2;
numPassengers = 2;

Advanced Persistency

Relationships

Multiplicity and Directionality — 7 types

Unidirectional Bidirectional

1:1 —> <>

<
——

Watch out for side effects!

Let rel be a 1:1 relationship Let r be a 1:N relationship

rel a one
Before a —'| one

r two
b —’} two b }i three
a.setRel(two) four

rel a.setR(three)

After a \ one 3 —.
b two two
b y\rA three

four

Cascade-delete

Order Shipment

a one

When we delete “a”,
should also one,two e three two
be canceled?

three

Relation — 1:1 unidir — “from”

QEntity (name="OrderUni”)
public class Order implements Serializable {
private int id;
private String orderName;
private Shipment shipment;
public Order() { id = (int)System.nanoTime (), }
@Id
public int getId() { return id; }
public void setId(int id) ({
this.id = id;
}

// other setters and getters go here

@OneToOne (cascade={CascadeType.PERSIST})
public Shipment getShipment() {
return shipment;
}
public void setShipment (Shipment shipment) ({
this.shipment = shipment;

}

Relation — 1:1 unidir — “to”

QEntity (name="ShipmentUni”)
public class Shipment implements Serializable ({
private int id;
private String city;
private String zipcode;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }

// other setters and getters go here

Relation — 1:1 unidir — client

@Stateless
public class OrderShipmentUniBean implements OrderShipment {
@QPersistenceContext
EntityManager em;
public void doSomeStuff () ({
Shipment s = new Shipment() ;
s.setCity (“Austin”) ;
s.setZipcode (“787277) ;
Order o = new Order () ;
o.setOrderName (“Software Order”) ;
o.setShipment (s) ;
em.persist (o) ;
}
public List getOrders () {
Query q = em.createQuery (“SELECT o FROM OrderUni o) ;
return q.getResultList() ;

Relation — 1:1 bidir — “to”

QEntity (name="ShipmentUni”)
public class Shipment implements Serializable {
private int id;
private String city;
private String zipcode;
private Order order;
public Shipment() { id = (int)System.nanoTime (), }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }

// other setters and getters go here

QOneToOne (mappedBy="shipment”)
// shipmentproperty from the Order entity
public Order getOrder () {

return order;

}

public void setOrder (Order order) {
this.order = order;

}

Relation — 1:1 bidir — client
@Stateless
public class OrderShipmentUniBean implements OrderShipment ({
@PersistenceContext
EntityManager em;
public void doSomeStuff () ({
Shipment s = new Shipment() ;
s.setCity (“Austin”) ;
s.setZipcode (“787277) ;
Order o = new Order () ;
o.setOrderName (“Software Order”) ;
o.setShipment (s) ;
em.persist (o) ;
}
public List getOrders () {
Query q = em.createQuery (“SELECT o FROM OrderUni o) ;
return gq.getResultList() ;

}

public List getShipments() ({
Query q = em.createQuery (“SELECT s FROM Shipment s”);
return q.getResultList() ;

Relation — 1:N unidir — “from”

QEntity (name="CompanyOMUni”)

public class Company implements Serializable {
private int id;
private String name;
private Collection<Employee> employees;

// other getters and setters go here
// including the Id

@OneToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER)

public Collection<Employee> getEmployees () {
return employees;

}

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

Relation — 1:N unidir — “to”

QEntity (name="EmployeeOMUni”)

public class Employee implements Serializable ({
private int id;
private String name;
private char sex;

// other getters and setters go here
// including the Id

Relation — 1:N unidir — client

Company ¢ = new Company () ;
c.setName (“M*Power Internet Services, Inc.’);Collection<Employee>
employees = new ArraylList<Employee> () ;

Employee e = new Employee() ;

e.setName (“Micah Silverman”); e.setSex (‘M); employees.add (e);
e = new Employee() ;

e.setName (“Tes Silverman”); e.setSex('F); employees.add(e);
c.setEmployees (employees) ;

em.persist(c) ;

c = new Company () ;

c.setName (“Sun Microsystems”) ;

employees = new ArrayList<Employee>() ;

e = new Employee() ;

e.setName (‘Rima Patel”); e.setSex(‘F); employees.add(e) ;

e = new Employee() ;

e.setName (“James Gosling); e.setSex('M); employees.add(e) ;
c.setEmployees (employees) ;

em.persist(c) ;

Relation — 1:N bidir — “from”

QEntity (name="CompanyOMUni”)

public class Company implements Serializable {
private int id;
private String name;
private Collection<Employee> employees;

// other getters and setters go here
// including the Id

@OneToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER,
mappedBy="company’)

public Collection<Employee> getEmployees () {

return employees;

}
public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

}

Relation — 1:N bidir — “to”

QEntity (name="EmployeeOMUni”)
public class Employee implements Serializable ({
private int id;
private String name;
private char sex;
private Company company;

// other getters and setters go here

// including the Id

@ManyToOne

public Company getCompany () {
return company;

}

public void setCompany (Company company) {
this.company = company;

}

Relation — M:N

The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity,
followed by an underscore (_), followed by the name of the target
entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

Relation — M:N unidir — “from”

QEntity (name="StudentUni”)
public class Student implements Serializable {
private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>() ;

public Student() { id = (int)System.nanoTime (), }
@QId

public int getId() { return id; }
//other setters and getters go here

@ManyToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER)
@JoinTable (name="STUDENTUNI COURSEUNI")
public Collection<Course> getCourses () ({
return courses;
}
public void setCourses (Collection<Course> courses) {
this.courses = courses;

}

Relation — M:N unidir — “to”

QEntity (name="CourseUni’)

public class Course implements Serializable ({

private int id;

private String courseName;

private Collection<Student> students = new ArrayList<Student>() ;

//setters and getters go here

}

Relation — M:N bidir — “from”

QEntity (name="StudentUni”)
public class Student implements Serializable {
private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>() ;

public Student() { id = (int)System.nanoTime (), }
@QId

public int getId() { return id; }
//other setters and getters go here

@ManyToMany (cascade={CascadeType.ALL} , fetch=FetchType.EAGER)
@JoinTable (name="STUDENTUNI COURSEUNI")
public Collection<Course> getCourses () ({
return courses;
}

public void setCourses (Collection<Course> courses) {
this.courses = courses;

}

Relation — M:N bidir — “to”

QEntity (name="CourseBid")

public class Course implements Serializable {

private int id;

private String courseName;

private Collection<Student> students = new ArraylList<Student>() ;

//getters and setters go here

@ManyToMany (cascade={CascadeType.ALL},
fetch=FetchType .EAGER,mappedBy="courses’)
public Collection<Student> getStudents () {

return students;

}
public void setStudents (Collection<Student> students) ({

this.students = students;

