
Accessing to the Entity from a Stateful
package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateful
@Remote(AccountInterface.class)
public class AccountBean implements AccountInterface{

@PersistenceContext(type=PersistentContentType.EXTENDED)
private EntityManager manager;
private Account account =null;
public void open(int accountNumber) {
 account=manager.find(Account.class, accountNumber);
 if (account=null){
 account=new Account();
 account.accountNumber=accountNumber;

 manager.persist(account);
 }
}

Access to the saved Entity
reference

public int getBalance(int accountNumber) {
//Account account = manager.find(Account.class, accountNumber);
If (account==null) throw new IllegalStateException();
return account.balance;

}
public void deposit(int accountNumber, int amount) {

…
}
public int withdraw(int accountNumber, int amount) {

…
}

}

Persistence.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<persistence xmlns=”http://java.sun.com/xml/ns/persistence”>

<persistence-unit name=”intro”/>
</persistence>

•  A persistence unit is defined in a special descriptor file,
the persistence.xml file, which is simply added to the
META-INF directory of an arbitrary archive, such as an
Ejb-jar, .ear, or .war file, or in a plain .jar file.

Persistence fields

•  <description>
•  <provider>
•  <mapping-file>
•  Etc.

Entity lifecycle

Life Cycle Callbacks

•  PrePersist
•  PostPersist
•  PreRemove
•  PostRemove
•  PreUpdate
•  PostUpdate
•  PostLoad

@PrePersist
void prePersist() {
 …
}

Extended persistence Context
package examples.entity.intro;
import java.util.List;
import javax.ejb.Stateful;
import javax.ejb.Remote;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;
@Stateless
@Remote(Bank.class)
public class BankBean implements Bank {

@PersistenceContext
private EntityManager manager;
public List<Account> listAccounts() {

Query query = manager.createQuery ("SELECT a FROM Account
a");

return query.getResultList();
}
public Account openAccount(String ownerName) {

Account account = new Account();
account.ownerName = ownerName;
manager.persist(account);
return account;

}

Access to the saved Entity
reference

public int getBalance(int accountNumber) {
//Account account = manager.find(Account.class, accountNumber);
If (account==null) throw new IllegalStateException();
return account.balance;

}
public void deposit(int accountNumber, int amount) {

…
}
public int withdraw(int accountNumber, int amount) {

…
}

}

Database synchronization
public interface EntityManager {
/** Synchronize the persistence context to the underlying database. */
public void flush();
/** Set the flush mode that applies to all objects contained in the persistence
context. */
public void setFlushMode(FlushModeType flushMode); // COMMIT or AUTO
/** Get the flush mode that applies to all objects contained in the persistence
context. */
public FlushModeType getFlushMode();
/** Refresh the state of the instance from the database, overwriting changes made
to the entity, if any. */
public void refresh(Object entity);
}

Advanced Persistency

Inheritance

Mapping inheritance

SINGLE TABLE PER CLASS
Id numPass numWhee

ls
make model

1 6 2 HORSE
CART

NULL

Id numPass numWhee
ls

make model accelerat
orType

2 1 2 HONDA HRC7 THROTTLE

etc.

Problems with polymorphism – how do you find
“all RoadVehicles that have less than 3 passenger?”

SINGLE TABLE PER CLASS HIERARCHY

Id numPass numWhe
els

make model DISC accelera
tortype

Boring
Factor

CoolF
actor

1 6 2 HORS
ECAR
T

NULL ROAD
VEHI
CLE

NULL NULL NULL

2 1 2 HOND
A

HRC7 MOTO
RCYC
LE

THROTTLE NULL NULL

3 4 4 FIAT PUNTO CAR PEDAL NULL NULL

4 2 4 FERR
ARI

F70 COUP
E

PEDAL 1 NULL

5 2 4 FORD KA ROAD
STER

PEDAL NULL 1

• Space inefficiency
• Impossible to set “NON-NULL” constraints on fields of the subclasses.

JOINED TABLES

Id DTYPE numPass numWheel
s

make model

1 ROADVEHICLE 6 2 HORSECART NULL

2 MOTORCYCLE 1 2 HONDA HRC7

3 CAR 4 4 FIAT PUNTO

4 COUPE 2 4 FERRARI F70

5 ROADSTER 2 4 FORD KA

Id acceleratortype

3 PEDAL

4 PEDAL

5 PEDAL

Many joins in a deep inheritance hierarchy – time inefficiency.

Id boringFactor

4 1

RoadVehicle

Car Coupe

The base class
package examples.entity.single_table;
// imports go here
@Entity(name=”RoadVehicleSingle”)
@Table(name=”ROADVEHICLE”) //optional, it’s the default
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name=”DISC”,

discriminatorType=DiscriminatorType.STRING)
@DiscriminatorValue(“ROADVEHICLE”)
// @Inheritance(strategy=InheritanceType.JOINED)
public class RoadVehicle implements Serializable {

public enum AcceleratorType {PEDAL,THROTTLE};
@Id
protected int id;
protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;
public RoadVehicle() {

id = (int) System.nanoTime();
}
// setters and getters go here
...

}

The derived class
package examples.entity.single_table;
// imports go here
@Entity
@DiscriminatorValue(“MOTORCYCLE”) //not needed for joined
public class Motorcycle extends RoadVehicle implements

Serializable {
public final AcceleratorType acceleratorType

=AcceleratorType.THROTTLE;
public Motorcycle() {

super();
numWheels = 2;
numPassengers = 2;

}
}

Advanced Persistency

Relationships

Multiplicity and Directionality – 7 types
Unidirectional Bidirectional

1:1

1:N

N:1

N:M

Watch out for side effects!

a one Before

b two

rel

a.setRel(two)

a one After

b two

rel

Let rel be a 1:1 relationship

a one

two

b three

four

Let r be a 1:N relationship

a one

two

b three

four

a.setR(three)

r

r

Cascade-delete

a one

two

three

Order

When we delete “a”,
should also one,two e three
be canceled?

Shipment

Relation – 1:1 unidir – “from”
@Entity(name=”OrderUni”)
public class Order implements Serializable {

private int id;
private String orderName;
private Shipment shipment;
public Order() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) {
this.id = id;
}
...
// other setters and getters go here
...
@OneToOne(cascade={CascadeType.PERSIST})
public Shipment getShipment() {

return shipment;
}
public void setShipment(Shipment shipment) {

this.shipment = shipment;
}

}

Relation – 1:1 unidir – “to”
...
@Entity(name=”ShipmentUni”)
public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }
...
// other setters and getters go here

}

Relation – 1:1 unidir – client
...
@Stateless
public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext
EntityManager em;
public void doSomeStuff() {

Shipment s = new Shipment();
s.setCity(“Austin”);
s.setZipcode(“78727”);
Order o = new Order();
o.setOrderName(“Software Order”);
o.setShipment(s);
em.persist(o);

}
public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);
return q.getResultList();

}
}

Relation – 1:1 bidir – “to”
...
@Entity(name=”ShipmentUni”)
public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
private Order order;
public Shipment() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
public void setId(int id) { this.id = id; }
...
// other setters and getters go here
...
@OneToOne(mappedBy=”shipment”)
// shipmentproperty from the Order entity
public Order getOrder() {

return order;
}
public void setOrder(Order order) {

this.order = order;
}

}

Relation – 1:1 bidir – client ...
@Stateless
public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext
EntityManager em;
public void doSomeStuff() {

Shipment s = new Shipment();
s.setCity(“Austin”);
s.setZipcode(“78727”);
Order o = new Order();
o.setOrderName(“Software Order”);
o.setShipment(s);
em.persist(o);

}
public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);
return q.getResultList();

}
..
public List getShipments() {

Query q = em.createQuery(“SELECT s FROM Shipment s”);
return q.getResultList();

}
}

Relation – 1:N unidir – “from”
...
@Entity(name=”CompanyOMUni”)
public class Company implements Serializable {

private int id;
private String name;
private Collection<Employee> employees;
...
// other getters and setters go here
// including the Id
...
@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {

this.employees = employees;
}

}

Relation – 1:N unidir – “to”
...
@Entity(name=”EmployeeOMUni”)
public class Employee implements Serializable {

private int id;
private String name;
private char sex;
...
// other getters and setters go here
// including the Id
...

}

Relation – 1:N unidir – client

Company c = new Company();
c.setName(“M*Power Internet Services, Inc.”);Collection<Employee>

employees = new ArrayList<Employee>();
Employee e = new Employee();
e.setName(“Micah Silverman”); e.setSex(‘M’); employees.add(e);
e = new Employee();
e.setName(“Tes Silverman”); e.setSex(‘F’); employees.add(e);
c.setEmployees(employees);
em.persist(c);
c = new Company();
c.setName(“Sun Microsystems”);
employees = new ArrayList<Employee>();
e = new Employee();
e.setName(“Rima Patel”); e.setSex(‘F’); employees.add(e);
e = new Employee();
e.setName(“James Gosling”); e.setSex(‘M’); employees.add(e);
c.setEmployees(employees);
em.persist(c);

Relation – 1:N bidir – “from”
...
@Entity(name=”CompanyOMUni”)
public class Company implements Serializable {

private int id;
private String name;
private Collection<Employee> employees;
...
// other getters and setters go here
// including the Id
...
@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER,
mappedBy=”company”)

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {

this.employees = employees;
}

}

Relation – 1:N bidir – “to”
...
@Entity(name=”EmployeeOMUni”)
public class Employee implements Serializable {

private int id;
private String name;
private char sex;
private Company company;
...
// other getters and setters go here
// including the Id
@ManyToOne
public Company getCompany() {
 return company;

}
public void setCompany(Company company) {
 this.company = company;

}
}

Relation – M:N
The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity,

followed by an underscore (_), followed by the name of the target
entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

Relation – M:N unidir – “from”
...
@Entity(name=”StudentUni”)
public class Student implements Serializable {

private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();
public Student() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
...
//other setters and getters go here
...
@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)
@JoinTable(name=”STUDENTUNI_COURSEUNI”)
public Collection<Course> getCourses() {

return courses;
}
public void setCourses(Collection<Course> courses) {

this.courses = courses;
}

}

Relation – M:N unidir – “to”
...
@Entity(name=”CourseUni”)
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();
...
//setters and getters go here
...
}

Relation – M:N bidir – “from”
...
@Entity(name=”StudentUni”)
public class Student implements Serializable {

private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();
public Student() { id = (int)System.nanoTime(); }
@Id
public int getId() { return id; }
...
//other setters and getters go here
...
@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)
@JoinTable(name=”STUDENTUNI_COURSEUNI”)
public Collection<Course> getCourses() {

return courses;
}
public void setCourses(Collection<Course> courses) {

this.courses = courses;
}

}

Relation – M:N bidir – “to”
...
@Entity(name=”CourseBid”)
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();

...
//getters and setters go here
...
@ManyToMany(cascade={CascadeType.ALL},
fetch=FetchType.EAGER,mappedBy=”courses”)

public Collection<Student> getStudents() {
return students;

}
public void setStudents(Collection<Student> students) {

this.students = students;
}

}

