
Introduction to Session beans

EJB

Architecture

Stateless session Beans

• 

A stateless session bean does not maintain a
conversational state for a particular client.

 When a client invokes the method of a
stateless bean, the bean's instance variables
may contain a state, but only for the
duration of the invocation. When the method
is finished, the state is no longer retained.

Stateless vs. stateful session Beans

• 

All instances of a stateless bean are
equivalent, allowing the EJB container to
assign an instance to any client.

=> Stateless session beans can support
multiple clients, and offer better
scalability for applications that require
large numbers of clients.
Typically, an application requires fewer stateless session
beans than stateful session beans to support the same number
of clients.

EJB ingredients

• 

Interfaces: The remote and home interfaces are
required for remote access. For local access,
the local and local home interfaces are
required.

Enterprise bean class: Implements the methods

defined in the interfaces.

Helper classes: Other classes needed by the
enterprise bean class, such as exception and
utility classes.

Deployment descriptor: see later

Remote Interface
/**
* This is the HelloBean remote interface.
*
* This interface is what clients operate on when
* they interact with EJB objects. The container
* vendor will implement this interface; the
* implemented object is the EJB object, which
* delegates invocations to the actual bean.
*/
public interface Hello extends javax.ejb.EJBObject
{
/**
* The one method - hello - returns a greeting to the client.
*/
 public String hello() throws java.rmi.RemoteException;
}

 Must throw
RemoteException

Home Interface
/**
* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the
* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.
*
* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/
public interface HelloHome extends javax.ejb.EJBHome
{
/*
* This method creates the EJB Object.
*
* @return The newly created EJB Object.
*/
 Hello create() throws java.rmi.RemoteException,
 javax.ejb.CreateException;
}

Bean Implementation
/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext ctx;
//
// EJB-required methods
//
public void ejbCreate() { System.out.println(“ejbCreate()”); }
public void ejbRemove() { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”);}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx; }
//
// Business methods
//
public String hello() {

System.out.println(“hello()”);
return “Hello, World!”;

}
}

Client Implementation
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;
/**
* This class is an example of client code that invokes
* methods on a simple stateless session bean.
*/
public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Setup properties for JNDI initialization.
* These properties will be read in from the command line.
*/
Properties props = System.getProperties();
/*
* Obtain the JNDI initial context.
* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/
Context ctx = new InitialContext(props);

Client Implementation
/* Get a reference to the home object - the
* factory for Hello EJB Objects
*/
Object obj = ctx.lookup(“HelloHome”);
/* Home objects are RMI-IIOP objects, and so they must be cast
* into RMI-IIOP objects using a special RMI-IIOP cast.
*/
HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject.narrow(obj, HelloHome.class);
/* Use the factory to create the Hello EJB Object
*/
Hello hello = home.create();
/*Call the hello() method on the EJB object. The
* EJB object will delegate the call to the bean,
* receive the result, and return it to us.
* We then print the result to the screen.
*/
System.out.println(hello.hello());
/*
* Done with EJB Object, so remove it.
* The container will destroy the EJB object.
*/
hello.remove();

}
}

NamingService

Directory
Machine

Client

Client
Machine

The logical architecture

• 
Pool

App server (container)
Machine

HomeInterface

Find the
Home interface

Give me an instance

Istanza

Create or fetch
An instance

Find

Method()

Deployment Descriptor

• 

Deployment descriptor: An XML file that
specifies information about the bean such as
its transaction attributes.

•  You package the files in the preceding list

into an EJB JAR file, the module that stores
the enterprise bean.

•  To assemble a J2EE application, you package
one or more modules--such as EJB JAR files--
into an EAR file, the archive file that holds
the application.

ejb-jar.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<ejb-jar

xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”
version=”2.1”>
<enterprise-beans>

<session>
<ejb-name>HelloWorldEJB</ejb-name>
<home>examples.ejb21.HelloHome</home>
<remote>examples.ejb21.Hello</remote>
<local-home>examples.ejb21.HelloLocalHome</local-home>
<local>examples.ejb21.HelloLocal</local>
<ejb-class>examples.ejb21.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>
...

</ejb-jar>

ejb-jar.xml (continued)
<assembly-descriptor>
 <security-role>
 <description> This role represents everyone who is allowed
 full access to the HelloWorldEJB. </description>
 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>HelloWorldEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>HelloWorldEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

Jboss

The file structure

packages

packages

.class

.java

ejb-jar.xml
jboss.xml

jndi.properties

ejb.jar

Client

Introduction to Session beans

LOCAL BEANS

Local Interface
/**
* This is the HelloBean local interface.
*
* This interface is what local clients operate
* on when they interact with EJB local objects.
* The container vendor will implement this
* interface; the implemented object is the
* EJB local object, which delegates invocations
* to the actual bean.
*/
public interface HelloLocal extends javax.ejb.EJBLocalObject
{
/**
* The one method - hello - returns a greeting to the client.
*/
 public String hello();
}

May throw
EJBException

instead of
RemoteException

Local Home Interface
/**
* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the
* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.
*
* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/
public interface HelloLocalHome extends javax.ejb.EJBLocalHome
{
/*
* This method creates the EJB Object.
*
* @return The newly created EJB Object.
*/
 HelloLocal create() throws javax.ejb.CreateException;
}

Local Client

Object ref = jndiContext.lookup(“HelloHome");
HelloHome home = (HelloHome)

 PortableRemoteObject.narrow(ref,HelloHome.class);
…
HelloHome cabin_1 = home.create();

HelloLocalHome home = (HelloLocalHome)
 jndiContext.lookup(“java:comp/env/ejb/ HelloLocalHome ");

…
HelloLocalHome cabin_1 = home.create();

We looked up a bean in java:comp/env/ejb.
This is the JNDI location that the EJB specification recommends
(but does not
require) you put beans that are referenced from other beans.

Hierarchy of HelloWorld

