Introduction to Session beans

EJB

Architecture

Client Tier Web Service Client| | HTML Client
[[
SOAP/HTTP HTTP
Firewall
Messaging C++ CORBA Java Application
Client Client Client Servlet ISP
Messaging CORBA-IIOP RMI-11OP RMI-11OP RMI-IIOP
protocol
E)B Tier

N

L/

Message-Driven
Bean

Session Bean

Session Bean

A4

Session Bean

Entity

_

Entity

Stateless session Beans

A stateless session bean does not maintain a
conversational state for a particular client.

When a client invokes the method of a
stateless bean, the bean's instance wvariables
may contain a state, but only for the
duration of the invocation. When the method
is finished, the state is no longer retained.

Stateless vs. stateful session Beans

All instances of a stateless bean are
equivalent, allowing the EJB container to
assign an instance to any client.

=> Stateless session beans
, and offer
for applications that require

large numbers of clients.

Typically, an application requires fewer stateless session
beans than stateful session beans to support the same number
of clients.

EJB ingredients

Interfaces: The remote and home interfaces are
required for remote access. For local access,
the local and local home interfaces are
required.

Enterprise bean class: the methods
defined in the interfaces.

Helper classes: Other classes needed by the
enterprise bean class, such as exception and
utility classes.

Deployment descriptor: see later

Remote Interface

This is the HelloBean remote interface.

they interact with EJB objects. The container
vendor will implement this interface; the
implemented object is the EJB object, which
delegates invocations to the actual bean.
*/
public interface Hello extends javax.ejb.EJBObject
{
/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

/**
*
*
* This interface is what clients operate on when
*
*
*
*

Must throw
RemoteException

Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.
*/

public interface HelloHome extends javax.ejb.EJBHome
{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

Bean Implementation

/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean ({
private javax.ejb.SessionContext ctx;
//
// EJB-required methods
//
public void ejbCreate() { System.out.println(“ejbCreate()”); 1}
public void ejbRemove() { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”) ;}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext (javax.ejb.SessionContext ctx) {
this.ctx = ctx; }
//
// Business methods
//
public String hello() {
System.out.println (“hello()"”) ;
return “Hello, World!”;

Client Implementation

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Properties;

/**

* This class is an example of client code that invokes

* methods on a simple stateless session bean.

*/

public class HelloClient ({

public static void main(String[] args) throws Exception {

/*
* Setup properties for JNDI initialization.
* These properties will be read in from the command line.
*/
Properties props = System.getProperties();
/*
* Obtain the JNDI initial context.
* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/

Context ctx = new InitialContext (props);

Client Implementation

/* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup (“HelloHome”) ;

/* Home objects are RMI-IIOP objects, and so they must be cast
* into RMI-IIOP objects using a special RMI-IIOP cast.
*/

HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject.narrow (obj, HelloHome.class)
/* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create() ;

/*Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

* We then print the result to the screen.

*/

System.out.println (hello.hello()) ;

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove() ;

The loc

ical architecture

Client Directory App server (container)
Machine Machine Machine
Client NamingService Homelnterface Pool Istanza
Find the
Homelinterface J
Find
>
<. _______ O T
Give me¢ an instanice
Create or fetch
>)
An 1nstance
>
< _______) N e
Method()
P

Deployment Descriptor

Deployment descriptor: An file that
specifies information about the bean such as
its transaction attributes.

* You package the files in the preceding list
into an , the module that stores
the enterprise bean.

 To assemble a J2EE application, you package
one or more modules--such as EJB JAR files--

into an , the archive file that holds
the application.

ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"7?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/j2ee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar 2 1.xsd”
version="2.1">
<enterprise-beans>
<session>
<ejb-name>HelloWorldEJB</ejb-name>
<home>examples.ejb2l.HelloHome</home>
<remote>examples.ejb2l.Hello</remote>
<local-home>examples.ejb2l.HelloLocalHome</local-home>
<local>examples.ejb2l.HelloLocal</local>
<ejb-class>examples.ejb2l.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>

</ejb-jar>

ejb-jar.xml (continued)

<assembly-descriptor>
<security-role>

<description> This role represents everyone who is allowed

full access to the HelloWorldEJB.

<role-name>everyone</role-name>
</security-role>
<method-permission>
<role-name>everyone</role-name>
<method>
<ejb-name>HelloWorldEJB</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<container-transaction>
<method>
<ejb-name>HelloWorldEJB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

</description>

The file structure
= 1) build
=) classes

5 €3 com Client
B) titan packages
() cabin -
) clients \t .Class
D jndi —

=0 src jndi.properties |
= 1) main

U

Jboss

ejb.jan

=l i) com
=) titan <aCkages
() cabin ~
) (:Iientc :
=l) resources -Java
ejb-jar.xml

jboss.xml

Introduction to Session beans

LOCAL BEANS

Local Interface

This is the HelloBean local interface.

/**
*
*
* This interface is what local clients operate
* on when they interact with EJB local objects.
* The container vendor will implement this

* interface; the implemented object is the

* EJB local object, which delegates invocations

* to the actual bean.

*/

public interface HelloLocal extends javax.ejb.EJBLocalObject
{

/**

* The one method - hello - returns a greeting to the client.

*/

public String hello() ;
} May throw

EJBException
instead of
RemoteException

Local Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.

*/

public interface HelloLocalHome extends javax.ejb.EJBLocalHome
{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
HelloLocal create() throws javax.ejb.CreateException;

}

Local Client

Object ref = jndiContext.lookup("HelloHome");
HelloHome home = (HelloHome)

PortableRemoteObject.narrow(ref,HelloHome.class);

HelloHome cabin_1 = home.create();

HelloLocalHome home = (HelloLocalHome)
jndiContext.lookup(“java:comp/env/ejb/ HelloLocalHome ");

HelloLocalHome cabin_1 = home.create();

We looked up a bean in java:comp/env/ejb.
This is the IJNDI location that the EJB specification recommends
(but does not

require) you put beans that are referenced from other beans.

Hierarchy of HelloWorld

<<Interface:>
Java.rmi.Remote

B Comes with Java 2 platform

<<Interface>>
java.lo.Serializable

<<Interface->
javax.e|b.E)JBLocalObject

<<interface:>>
Javax.e|b.EJBObject

<<interfacex>>
Javax.e)b.E)BHome

<<Interface>>

javax.e|b.E)JBLocalHome

<<Interface->>
Javax.e|b.EnterpriseBean

£\

\

£\

:"'j\.

Comes with EJB distribution

:

<<Interface- -
javax.e)b.SesslonBean

A

<<Interface>>
Hello World
Local Interface

<<interface:>
Hello World
Remote Interface

<<Interface>>
Hello World
Home Interface

<<Interface>>
Hello World

Local Home Interface

i

/\

i

N
l‘ \

LA

‘ : Supplied by Bean provider (we will write)

Hello World
EJB Local Object

Hello World
EJB Object

Hello World
Home Object

Hello World
Local Home Object

Hello World Bean
Implementation
Class

