
Introduction to Session beans

EJB 3.0

Remote Interface
EJB 2.1 ===

public interface Hello extends javax.ejb.EJBObject
{
/**
* The one method - hello - returns a greeting to the client.
*/
 public String hello() throws java.rmi.RemoteException;
}

EJB 3.0 ===

package examples.session.stateless;
public interface Hello {

public String hello();
}

business
interface

Bean Implementation
EJB 2.1 ===
public class HelloBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext ctx;
public void ejbCreate() { System.out.println(“ejbCreate()”); }
public void ejbRemove() { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”);}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx; }
public String hello() {

System.out.println(“hello()”); return “Hello, World!”;
}

}
EJB 3.0 ==
package examples.session.stateless;
import javax.ejb.Remote; import javax.ejb.Stateless;
@Stateless
@Remote(Hello.class)
public class HelloBean implements Hello {

public String hello() {
System.out.println(“hello()”); return “Hello, World!”;

}
}

enterprise
bean
instance

The remote client – 3.0
package examples.session.stateless;
import javax.naming.Context;
import javax.naming.InitialContext;
public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Obtain the JNDI initial context.
*
* The initial context is a starting point for
* connecting to a JNDI tree.
*/

Context ctx = new InitialContext();
Hello hello = (Hello)
ctx.lookup(“examples.session.stateless.Hello”);

/*
* Call the hello() method on the bean.
* We then print the result to the screen.
*/

System.out.println(hello.hello());
}

}

ejb-jar.xml – 3.0
<?xml version=”1.0” encoding=”UTF-8” ?>
<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchemainstance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd”
version=”3.0”>
<enterprise-beans>
</enterprise-beans>
</ejb-jar>

Keep in mind these terms…
•  The enterprise bean instance is a plain old Java object instance of an

enterprise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session beans.

•  The business interface is a plain old Java interface that enumerates the
business methods exposed by the enterprise bean. Depending on the
client view supported by the bean, the business interface can be further
classified into a local business interface or a remote business interface.

•  The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to inform
the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify the
middleware requirements using deployment annotations within the bean
class as well.

Keep in mind these terms…
•  The Ejb-jar file is the packaging unit for an enterprise bean,

consisting of all the above artifacts. An EJB 3.0 Ejb-jar file can
also consist of the old-style beans, if your application uses
components defined using pre–EJB 3.0 technologies.

•  The vendor-specific deployment descriptor lets you
specify your bean’s needs for proprietary container services
such as clustering, load balancing, and so on. Avendor can
alternatively provide deployment metadata for these services,
which, like standard metadata, can be used within the bean
class to specify the configuration for these services. The
vendor-specific deployment descriptor’s definition changes
from vendor to vendor.

3.0 Packaging

3.0 Packaging

3.0 Lifecycle

Passivation

Activation

Managing the lifecycle – 3.0
@Stateful
public class MyBean {
@PrePassivate

public void passivate() {
<close socket connections, etc...>
}
...

@PostActivate
public void activate() {
<open socket connections, etc...>
}
...

}

JBOSS, Glassfish,
Eclipse, NetBeans

Download Jboss 7.1.1
http://www.jboss.org/jbossas/downloads/

http://www.netbeans.org/community/releases

Setting the JNDI properties
 private HelloBeanRemote lookupHelloBeanBean() {
 Properties props= new Properties();
 props.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
 props.setProperty("java.naming.provider.url",
 "jnp://localhost:1099");
 props.setProperty("java.naming.factory.url.pkgs",
 "org.jboss.naming:org.jnp.interfaces");
 try {
 Context c = new InitialContext(props);
 //return (HelloBeanRemote) c.lookup("java:comp/env/HelloBeanBean");
 return (HelloBeanRemote) c.lookup("EnterpriseDemo/HelloBeanBean/remote");
 } catch (NamingException ne) {
 …
 }
 }

JBOSS: see the JNDI names
 http://localhost:8080/jmx-console/HtmlAdaptor

Click on Service=JNDI

Choose List

