Introduction to Session beans

EJB 3.0

Remote Interface

EJB 2.1

public interface Hello extends javax.ejb.EJBObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

}

EJB 3.0

package examples.session.stateless;
public interface Hello {

public String hello(); business
} interface

Bean Implementation

EJB 2.1

public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext ctx;

public
public
public
public
public

this
public

void ejbCreate() { System.out.println(“ejbCreate()”); }
void ejbRemove () { System.out.println(“e;jbRemove()”); }
void ejbActivate() { System.out.println(“ejbActivate()”) ;}
void ejbPassivate() {System.out.println(“ejbPassivate()”) ;}
void setSessionContext (javax.ejb.SessionContext ctx) ({

.ctx = ctx; }

String hello() {

System.out.println (“hello()”); return “Hello, World!”;

}
}

EJB 3.0

package examples.session.stateless;
import javax.ejb.Remote; import javax.ejb.Stateless;

@Stateless enterprise

QRemote (Hello.class) bean

public class HelloBean implements Hello { instance
public String hello () {

System.out.println(“hello()”); return “Hello, World!”;

The remote client — 3.0

package examples.session.stateless;
import javax.naming.Context;
import javax.naming.InitialContext;
public class HelloClient ({
public static void main(String[] args) throws Exception ({
/*
* Obtain the JNDI initial context.
*
* The initial context is a starting point for
* connecting to a JNDI tree.

*/

Context ctx = new InitialContext();

Hello hello = (Hello)

ctx.lookup (“examples.session.stateless.Hello”) ;
/*

* Call the hello() method on the bean.
* We then print the result to the screen.

*/
System.out.println (hello.hello());

ejb-jar.xml — 3.0

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchemainstance”
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar 3 0.xsd”
version="3.0">

<enterprise-beans>

</enterprise-beans>

</ejb-jar>

Keep In mind these terms...

The enterprise bean instance is a plain old Java object instance of an
enterprise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session beans.

The business interface is a plain old Java interface that enumerates the
business methods exposed by the enterprise bean. Depending on the
client view supported by the bean, the business interface can be further
classified into a local business interface or a remote business interface.

The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to inform
the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify the
middleware requirements using deployment annotations within the bean
class as well.

Keep In mind these terms...

« The Ejb-jar file is the packaging unit for an enterprise bean,
consisting of all the above artifacts. An EJB 3.0 Ejb-jar file can
also consist of the old-style beans, if your application uses
components defined using pre—EJB 3.0 technologies.

* The vendor-specific deployment descriptor lets you
specify your bean’ s needs for proprietary container services
such as clustering, load balancing, and so on. Avendor can
alternatively provide deployment metadata for these services,
which, like standard metadata, can be used within the bean
class to specify the Conflguratlon for these services. The
vendor-specific deployment descriptor’ s definition changes
from vendor to vendor.

3.0 Packaging

AN

Standard
Bean Deployment
Class Descriptor
(if any)
\\\-\\

N T
Remote T
Business
Interface

(if any) -
//"" /
'/ .

AN

Local Vendor-
Business Specific
Interface Deployment

(if any) Descriptor

|ar File
Generator

EJB Container JVM

EJB Jar File

3.0 Packaging

AN

Standard
Bean Deployment
Class Descriptor
(if any)
\\\-\\

N T
Remote T
Business
Interface

(if any) -
//"" /
'/ .

AN

Local Vendor-
Business Specific
Interface Deployment

(if any) Descriptor

|ar File
Generator

EJB Container JVM

EJB Jar File

3.0 Lifecycle

P — —— — — — — — — — — — — — — — — —— ——— ——— ——— — — —

[.| Local Client

|
I -
|
3 1.b: Call a
Remote Client : method
T | 6.b: Retum from
| methad call
1.a: Call
a methad : Implicit Middleware
Local Services
: Client View
- » Lifecycle managment
— Business Interface "| « Transaction management
Smnote 1 A 3 H
Client View 3: Call containes * r:::t::;im: :
2: Invoke specific APIs that N EEE
6.a: Retun from corresponding provde Implicit
methad call methad cn middleware y
the wrapper before Invacation
| class 5: Call container
sgpacific APIs that
. provide implicit
.| Container Generated midiiswais

t

4: Invokes the carresponding
business method on bean class

v

Enterprise Bean
Class

|

|

|

|

|

|

|

I >
I Wrapper Classes aftar Invocation
|

|

|

|

|

|

|

|

Client

Passivation

2: pick the least
recently used bean ”
Business 3: call N Bean
@PrePassivate -
Remote Interface i Instance
Interface 4: serialize >
bean state
|
w
7|2 Other
£I7 Bean
|3 Instances
®lE
m
(=9
: . L. . [\
A typical bean passivation scenario.

The client has invoked a method on
a business interface reference that
does not have a bean instance tied
to it in memory. The container’s
pool size of bean instances been
reached. Thus the container needs
to passivate a bean before handling
this client’s request.

Activation

Client
3: reconstruct bean N
Business 4: call ; Bean
@PostActivated
Remote Interface ™ . Instance
5: invoke business method
Interface >
|
o
g Other
R B
|2 ean
gla Instances
P
[
L]
[=9
) A typical just-in-time statefule session

bean activation scenario. The client has
invoked a method on a business
interface reference whose stateful bean
had been passivated.

Managing the lifecycle — 3.0

@Stateful
public class MyBean {
@PrePassivate
public void passivate() {
<close socket connections, etc...>

}

@PostActivate
public void activate() {
<open socket connections, etc...>

}

JBOSS, Glassfish,
Eclipse, NetBeans

Download Jboss 7.1.1
http://www.jboss.org/|[bossas/downloads/

http://www.netbeans.org/community/releases

Setting the JNDI properties

private HelloBeanRemote lookupHelloBeanBean() {
Properties props= new Properties();
props.setProperty(“"java.naming.factory.initial",
"org.jnp.interfaces.NamingContextFactory");
props.setProperty(“"java.naming.provider.url”,
"inp://localhost:1099");
props.setProperty(“"java.naming.factory.url.pkgs”,
"org.jboss.naming:org.jnp.interfaces");
try {
Context ¢ = new InitialContext(props);
//return (HelloBeanRemote) c.lookup(“java:comp/env/HelloBeanBean");
return (HelloBeanRemote) c.lookup("EnterpriseDemo/HelloBeanBean/remote");
} catch (NamingException ne) {

}
}

JBOSS: see the JNDI names

http://localhost:8080/imx-console/HtmIAdaptor

Click on Service=JNDI

Choose List

