
Distributed Objects

Remote Method Invokation:

Conceptual model

Object 1 Object 2
invoke method

respond

Object Oriented Paradigm

Object 1 Object 2
invoke method

respond

Client Host/Process Server Host/Process

Distributed Object Oriented Paradigm

Object 1 Object 2

socket
interaction

Local –
Client Host/Process

Remote -
Server Host/Process

“Post Office” “Post Office”

Distributed Object Oriented: implementation

Object 1 Object 2

magic

Local –
Client Host/Process

Remote-
 Server Host/Process

Stub of Object 2 Skeleton of Object 2

Distributed Object Oriented: RMI paradigm

Distributed Objects

A “do it yourself” implementation

Un oggetto distribuito “fai da te”

 

package distributedobjectdemo;

public interface Person {
 public int getAge() throws Throwable;
 public String getName() throws Throwable;
}

1. Person: l’interfaccia

Un oggetto distribuito “fai da te”

 

package distributedobjectdemo;

public class PersonServer implements Person{
 int age;
 String name;
 public PersonServer(String name,int age){
 this.age=age;
 this.name=name;
 }
 public int getAge(){
 return age;
 }
 public String getName(){
 return name;
 }
 public static void main(String a[]) {
 PersonServer person = new PersonServer("Marko", 45);
 Person_Skeleton skel = new Person_Skeleton(person);
 skel.start();
 System.out.println("server started");
 }
}

2. Person: la classe

Un oggetto distribuito “fai da te”

 
package distributedobjectdemo;
import java.net.Socket;
import java.net.ServerSocket;
import java.io.*;

public class Person_Skeleton extends Thread {
 PersonServer myServer;
 int port=9000;

 public Person_Skeleton(PersonServer server) {
 this.myServer=server;
 }
// la classe continua…

3. Person: lo skeleton

Un oggetto distribuito “fai da te”

 

public void run(){
 Socket socket = null;
 ServerSocket serverSocket=null;
 try {
 serverSocket=new ServerSocket(port);
 }
 catch (IOException ex) {
 System.err.println("error while creating serverSocket");
 ex.printStackTrace(System.err); System.exit(1);
 }

 while (true) {
 try {
 socket=serverSocket.accept();
 System.out.println("Client opened connection");
 }
 catch (IOException ex) {
 System.err.println("error accepting on serverSocket");
 ex.printStackTrace(System.err); System.exit(1);
 }
 // il metodo continua…

3. Person: lo skeleton

Un oggetto distribuito “fai da te”

 
 try {
 while (socket!=null){
 ObjectInputStream instream=

 new ObjectInputStream(socket.getInputStream());
 String method=(String)instream.readObject();
 if (method.equals("age")) {
 int age=myServer.getAge();
 ObjectOutputStream outstream=

 new ObjectOutputStream(socket.getOutputStream());
 outstream.writeInt(age);
 outstream.flush();
 } else if (method.equals("name")) {
 String name=myServer.getName();
 ObjectOutputStream outstream=

 new ObjectOutputStream(socket.getOutputStream());
 outstream.writeObject(name);
 outstream.flush();
 }
 }
 //prosegue con il catch…

3. Person: lo skeleton

Un oggetto distribuito “fai da te”

 
 } catch (IOException ex) {
 if (ex.getMessage().equals("Connection reset")) {
 System.out.println("Client closed connection");
 } else {
 System.err.println("error on the network");
 ex.printStackTrace(System.err); System.exit(2);
 }
 } catch (ClassNotFoundException ex) {
 System.err.println("error while reading object from the net");
 ex.printStackTrace(System.err); System.exit(3);
 }
 }//fine del ciclo while(true)
 } //fine del metodo run
} //fine della classe

3. Person: lo skeleton

Un oggetto distribuito “fai da te”

 
package distributedobjectdemo;
import java.net.Socket;
import java.io.*;

public class Person_Stub implements Person {
 Socket socket;
 String machine="localhost";
 int port=9000;

 public Person_Stub() throws Throwable {
 socket=new Socket(machine,port);
 }
 protected void finalize(){
 System.err.println("closing");
 try { socket.close(); }
 catch (IOException ex) {ex.printStackTrace(System.err); }
 }
 // la classe continua…

4. Person: lo stub

Un oggetto distribuito “fai da te”

 
public int getAge() throws Throwable {
 ObjectOutputStream outstream=

 new ObjectOutputStream(socket.getOutputStream());
 outstream.writeObject("age");
 outstream.flush();
 ObjectInputStream instream=

 new ObjectInputStream(socket.getInputStream());
 return instream.readInt();
 }

 public String getName() throws Throwable {
 ObjectOutputStream outstream=new ObjectOutputStream
(socket.getOutputStream());
 outstream.writeObject("name");
 outstream.flush();
 ObjectInputStream instream=

 new ObjectInputStream(socket.getInputStream());
 return (String)instream.readObject();
 }
} // fine della classe

4. Person: lo stub

Un oggetto distribuito “fai da te”

 

package distributedobjectdemo;

public class Client {

 public Client() {
 try {
 Person person=new Person_Stub();
 int age=person.getAge();
 String name=person.getName();
 System.out.println(name+" is "+age+" years old");
 }
 catch (Throwable ex) {
 ex.printStackTrace(System.err);
 }
 }
 public static void main(String[] args) {
 Client client1 = new Client();
 }
}

5. Person: il client

Open issues

- multiple instances
- Automatic stub and skeleton generation
- on demand server dentification
- on demand remote class activation

Client Broker Server

Registry

Distributed Objects

An RMI basic implementation

CLIENT & SERVER: iCalendar (interface)

import java.rmi.*;
public interface iCalendar extends Remote {
 java.util.Date getDate () throws RemoteException;
}

1. Define the common interface

SERVER: CalendarImpl

 

import java.util.Date;
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class CalendarImpl
 extends UnicastRemoteObject
 implements iCalendar {
 public CalendarImpl() throws RemoteException {}
 public Date getDate () throws RemoteException {
 return new Date();
 } public static void main(String args[]) {

 CalendarImpl cal;
 try {
 LocateRegistry.createRegistry(1099);
 cal = new CalendarImpl();
 Naming.bind("rmi:///CalendarImpl", cal);
 System.out.println("Ready for RMI's");
 } catch (Exception e) {e.printStackTrace();}
 }
}

2. Implement the service

SERVER: CalendarImpl

 

import java.util.Date;
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class CalendarImpl
 extends UnicastRemoteObject
 implements iCalendar {
 public CalendarImpl() throws RemoteException {}
 public Date getDate () throws RemoteException {
 return new Date();
 } public static void main(String args[]) {

 CalendarImpl cal;
 try {
 LocateRegistry.createRegistry(1099);
 cal = new CalendarImpl();
 Naming.bind("rmi:///CalendarImpl", cal);
 System.out.println("Ready for RMI's");
 } catch (Exception e) {e.printStackTrace()}
 }
}

3. Create Registry

SERVER: CalendarImpl

 

import java.util.Date;
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class CalendarImpl
 extends UnicastRemoteObject
 implements iCalendar {
 public CalendarImpl() throws RemoteException {}
 public Date getDate () throws RemoteException {
 return new Date();
 } public static void main(String args[]) {

 CalendarImpl cal;
 try {
 LocateRegistry.createRegistry(1099);
 cal = new CalendarImpl();
 Naming.bind("rmi:///CalendarImpl", cal);
 System.out.println("Ready for RMI's");
 } catch (Exception e) {e.printStackTrace()}
 }
}

4. Register yourself

Server

 
It is not necessary to have a thread wait to
keep the server alive. As long as there is a
reference to the CalendarImpl object in another
virtual machine, the CalendarImpl object will
not be shut down or garbage collected.
 Because the program binds a reference to the
CalendarImpl in the registry, it is reachable
from a remote client, the registry itself!
The CalendarImpl is available to accept calls
and won't be reclaimed until its binding is
removed from the registry, and no remote
clients hold a remote reference to the
CalendarImpl object.

CLIENT: CalendarUser

  import java.util.Date;
import java.rmi.*;
public class CalendarUser {
 public static void main(String args[]) {
 long t1=0,t2=0;
 Date date;
 iCalendar remoteCal;
 try {
 remoteCal = (iCalendar)
 Naming.lookup("rmi://HOST/CalendarImpl");
 t1 = remoteCal.getDate().getTime();
 t2 = remoteCal.getDate().getTime();
 } catch (Exception e) {e.printStackTrace();}
 System.out.println("This RMI call took " + (t2-t1) +
 " milliseconds");
 }
}

6. Use Service

Preparing and executing

SERVER
C:dir
CalendarImpl.java
iCalendar.java

C:javac CalendarImpl.java
C:rmic CalendarImpl

C:dir
CalendarImpl.java
iCalendar.java
CalendarImpl.class
iCalendar.class
CalendarImpl_Stub.class
CalendarImpl_Skel.class

C:java CalendarImpl

CLIENT

C:dir
CalendarUser.java
iCalendar.java

C:javac CalendarUser.java

C:dir
CalendarUser.java
iCalendar.java
CalendarImpl_Stub.class

C:java CalendarUser

copy

Preparing and executing (version in package rmidemo)

SERVER
C:dir rmidemo
CalendarImpl.java
iCalendar.java

C:javac rmidemo/CalendarImpl.java
C:rmic rmidemo.CalendarImpl

C:dir rmidemo
CalendarImpl.java
iCalendar.java
CalendarImpl.class
iCalendar.class
CalendarImpl_Stub.class
CalendarImpl_Skel.class

C:java rmidemo.CalendarImpl

CLIENT

C:dir rmidemo
CalendarUser.java
iCalendar.java

C:javac rmidemo/CalendarUser.java

C:dir rmidemo
CalendarUser.java
iCalendar.java
CalendarImpl_Stub.class

C:java rmidemo.CalendarUser

copy

Distributed Objects

An RMI implementation

- Addendum -

Preparing and executing - security

 
The JDK 1.2 security model is more
sophisticated than the model used for JDK 1.1.
JDK 1.2 contains enhancements for finer-
grained security and requires code to be
granted specific permissions to be allowed to
perform certain operations.

Since JDK 1.2, you need to specify a policy
file when you run your server and client.

grant { permission java.net.SocketPermission "*:1024-65535",
"connect,accept";
permission java.io.FilePermission "c:\\…path…\\", "read"; };

java -Djava.security.policy=java.policy executableClass

Accesso alle proprietà di sistema

 
Nota: instead of specifìying a property at
runtime (-D switch of java command), You can
hardwire the property into the code:

-Djava.security.policy=java.policy

System.getProperties().put(
 "java.security.policy",
 "java.policy");

Preparing and executing

 
NOTE: in Java 2 the skeleton may not exist
(its functionality is absorbed by the class
file).

In order to use the Java 2 solution, one must
specify the switch –v1.2

C:rmic –v1.2 CalendarImpl

IMPORTANT: Parameter passing

 
Java Standard:
void f(int x) :
Parameter x is passed by copy
void g(Object k) :
Parameter k and return value are passed by reference!

Java RMI:!
void h(Object k) :
Parameter k is passed by copy!!
UNLESS k is a REMOTE OBJECT (in which case it is passed
as a REMOTE REFERENCE, i.e. its stub is copied if needed)!
!

IMPORTANT: Parameter passing

 
Passing By-Value
When invoking a method using RMI,all parameters to the
remote method are passed by-value .This means that when a
client calls a server,all parameters are copied from one machine
to the other.!
!
Passing by remote-reference!
If you want to pass an object over the network by-reference,it
must be a remote object, and it must implement
java.rmi.Remote.A stub for the remote object is serialized and
passed to the remote host. The remote host can then use that
stub to invoke callbacks on your remote object. There is only
one copy of the object at any time,which means that all hosts
are calling the same object.!
!

Serialization

 
• Any basic primitive type (int,char,and so on) is automatically
serialized with the object and is available when deserialized.!

• Java objects can be included with the serialized or not:!

• Objects marked with the transient keyword are not serialized
with the object and are not available when deserialized.!

• Any object that is not marked with the transient keyword
must implement java.lang.Serializable .These objects are
converted to bit-blob format along with the original object. If
your Java objects are neither transient nor implement
java.lang.Serializable ,a NotSerializable Exception is thrown
when writeObject()is called.!

When not to Serialize

 
• The object is large.Large objects may not be suitable for
serialization because operations you do with the serialized blob
may be very intensive. (one could save the blob to disk or
transporting the blob across the network)!
!
• The object represents a resource that cannot be reconstructed
on the target machine.Some examples of such resources are
database connections and sockets.!

• The object represents sensitive information that you do not
want to pass in a serialized stream..!

Alternatives – starting the register

 
Instead of writing in the server code:
LocateRegistry.createRegistry(1099);

You can satrt the registry from the shell:
C: rmiregistry 1099 (port number is optional)

Note: in Java 2 you need an additional
parameter:
C: rmiregistry –J-Djava.security.policy=registerit.policy

where registerit.policy is a file containing:

grant {permission java.security.AllPermission}

Or some permission restriction. Typically the
file is kept in %USER_HOME%/.java.policy

RMI-IIOP

 
RMI-IIOP is a special version of RMI that is compliant with
CORBA and uses both java.rmi and javax.rmi .

RMI has some interesting features not available in RMI-
IIOP,such as
distributed garbage collection,
object activation,and
downloadable class files.

But EJB and J2EE mandate that you use RMI-IIOP, not
RMI.

Distributed Objects

dynamic stub loading

Alternative 2 – stub dynamic loading

 
Instead of manually copying the stub from the
Server to client, can we automatically load
the stub at runtime?

“RMI can download the bytecodes of an object's class if
the class is not defined in the receiver's virtual
machine. The types and the behavior of an object,
previously available only in a single virtual machine,
can be transmitted to another, possibly remote, virtual
machine. RMI passes objects by their true type, so the
behavior of those objects is not changed when they are
sent to another virtual machine. This allows new types
to be introduced into a remote virtual machine, thus
extending the behavior of an application dynamically.”

Alternativa 2 – caricamento dinamico dello stub

 

SERVER

rmiregistry

CLIENT

http Server STUB

VM -rmi class

VM –client code

 

This client expects a URL in the marshalling stream for the
remote object. It will load the stub class for the remote object
from the URL in the marshalling stream. Before you can load
classes from a non-local source, you need to set a security
manager.
Note, as an alternative to using the RMISecurityManager, you can
create your ownsecurity manager.

import java.util.Date;
import java.rmi.*;
public class CalendarUser {
 public static void main(String args[]) {
 long t1=0,t2=0; Date date; iCalendar remoteCal;
 System.setSecurityManager(new RMISecurityManager());
 try { remoteCal = (iCalendar)
 Naming.lookup("rmi://HOST/CalendarImpl");
 t1 = remoteCal.getDate().getTime();
 t2 = remoteCal.getDate().getTime();
 } catch (Exception e) {e.printStackTrace();}
 System.out.println("This RMI call took " + (t2-t1) +
 “ milliseconds“);
 }
}

CLIENT:
CalendarUser-
Caric.dinamico

SERVER: CalendarImpl – Caricamento dinamico

 

import java.util.Date;
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class CalendarImpl
 extends UnicastRemoteObject
 implements iCalendar {
 public CalendarImpl() throws RemoteException {}
 public Date getDate () throws RemoteException {
 return new Date();
 }

public static void main(String args[]) {
 CalendarImpl cal;
 System.setSecurityManager(new RMISecurityManager());
 System.getProperties().put(
 "java.rmi.server.codebase",
 "http://HOST/java/classes/");
 try {
 LocateRegistry.createRegistry(1099);
 cal = new CalendarImpl();
 Naming.bind("rmi:///CalendarImpl", cal);
 System.out.println("Ready for RMI's");
 } catch (Exception e) {e.printStackTrace()}
 }
}

The first part remains untouched

Distributed Objects

A different paradigm:

dynamic loading of a remote class

Dynamic loading of a remote class

 

Object 1

Class 2 1. Get class

Client Host Server Host

Class 2

Object 2

2. Create
instance

3. Invoke
method

Different paradigm:
1.  Laod at runtime a class

from a remote machine,
2.  Create a local instance
3.  Execute it.

An utility class: a quitter Window

package rmiDynamicLoadingDemo;

import java.awt.event.*;
import javax.swing.*;

public class QuitterJFrame extends JFrame {
 //Overridden so we can exit when window is closed
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 System.exit(0);
 }
 }
}

A remote class

package rmiDynamicLoadingDemo;
import javax.swing.*;
import java.awt.*;
public class NetworkApp implements Executable {
 JFrame f;
 public NetworkApp(QuitterJFrame f) {
 this.f = f;
 };
 public void exec() {
 f.setBackground(Color.DARK_GRAY);
 f.setForeground(Color.white);
 JLabel l = new JLabel("Latest version of your application.",
 JLabel.CENTER);
 f.getContentPane().add("Center",l);
 f.pack();
 f.repaint();
 }
}

package rmiDynamicLoadingDemo;
public interface Executable {
 public void exec();
}

 

package rmiDynamicLoadingDemo;
import javax.swing.*;
import java.net.URL;
import java.rmi.RMISecurityManager;
import java.rmi.server.RMIClassLoader;
import java.lang.reflect.*;
import java.security.Permission;

public class ExecutableLoader {
 public static void main(String args[]) {
 System.setSecurityManager(
 new RMISecurityManager() {
 public void checkPermission(Permission p){}
 });;

Caricatore dinamico-1

 

 JFrame cf = new QuitterJFrame();
 cf.setTitle("NetworkApp");

 // download a class from the net, and create an instance of it
 try {
 URL url = new URL("http://latemar.science.unitn.it/java/");
 Class cl =

 RMIClassLoader.loadClass(
 url,"rmiDynamicLoadingDemo.NetworkApp");

 Class argTypes[] = {cf.getClass()};
 Object argArray[] = {cf};

 // create an instance of cl using constructor cntr
 Constructor cntr = cl.getConstructor(argTypes);
 Executable client = (Executable)cntr.newInstance(argArray);

 client.exec();
 cf.show();
 } catch (Exception e) {e.printStackTrace();}
 }
}

Caricatore dinamico-2

