
XML	
 Schema	
 (W3C)	

Thanks	
 to	
 Jussi	
 Pohjolainen	

TAMK	
 University	
 of	
 Applied	
 Sciences	

XML	
 NAMESPACES	

w3schools.com	

XML	
 Namespaces	

•  The	
 idea	
 behing	
 XML	
 namespaces	
 is	
 to	
 avoid	

element	
 name	
 conflicts.	

•  Example	
 of	
 name	
 conflict	
 (w3schools.com)	

	

<table>	

	
 	
 	
 <tr>	

	
 	
 	
 <td>Apples</td>	

	
 	
 	
 <td>Bananas</td>	

	
 	
 	
 </tr>	

</table>	

<table>	

	
 	
 	
 <name>African	
 Coffee	
 Table</name>	

	
 	
 	
 <width>80</width>	

	
 	
 	
 <length>120</length>	

</table>	

Same	
 tag-­‐name,	
 different	
 content	
 and	
 meaning!	

Solving	
 Name	
 Conflict	

<h:table>!
 <h:tr>!
 <h:td>Apples</h:td>!
 <h:td>Bananas</h:td>!
 </h:tr>!
</h:table>!
!
<f:table>!
 <f:name>African Coffee Table</f:name>!
 <f:width>80</f:width>!
 <f:length>120</f:length>!
</f:table>!

Prefix	
 h	
 has	
 xhtml-­‐related	

elements	
 and	
 prefix	
 f	
 has	

furniture-­‐related	
 elements	

xmlns	
 -­‐	
 aZributes	

•  When	
 using	
 prefixes	
 in	
 XML,	
 a	
 so-­‐called	

namespace	
 for	
 the	
 prefix	
 must	
 be	
 defined.	

•  The	
 namespace	
 is	
 defined	
 by	
 the	
 xmlns
aZribute	
 in	
 the	
 start	
 tag	
 of	
 an	
 element.	

xmlns	
 -­‐	
 aZribute	

<root>!
 <h:table xmlns:h="http://www.w3.org/TR/html4/">!
 <h:tr>!
 <h:td>Apples</h:td>!
 <h:td>Bananas</h:td>!
 </h:tr>!
 </h:table>!
!
 <f:table xmlns:f="http://www.w3schools.com/furniture">!
 <f:name>African Coffee Table</f:name>!
 <f:width>80</f:width>!
 <f:length>120</f:length>!
 </f:table>!
</root>!

xmlns	
 -­‐	
 aZribute	

<root!
xmlns:h="http://www.w3.org/TR/html4/"!
xmlns:f="http://www.w3schools.com/furniture">!
!
<h:table>!
 <h:tr>!
 <h:td>Apples</h:td>!
 <h:td>Bananas</h:td>!
 </h:tr>!
</h:table>!
!
<f:table>!
 <f:name>African Coffee Table</f:name>!
 <f:width>80</f:width>!
 <f:length>120</f:length>!
</f:table>!
!
</root>!

Namespace	
 name	

•  The	
 name	
 of	
 namespace	
 should	
 be	
 unique:
<h:table xmlns:h="http://www.w3.org/TR/html4/">!

•  It	
 is	
 just	
 a	
 string,	
 but	
 it	
 should	
 be	
 declared	
 as	

URI.	

•  Using	
 URI	
 reduces	
 the	
 possibility	
 of	
 different	

namespaces	
 using	
 duplicate	
 iden>fiers.!

Example:	
 	

An	
 XHTML	
 +	
 MathML	
 +	
 SVG	
 Profile	

•  An	
 XHTML+MathML+SVG	
 profile	
 is	
 a	
 profile	

that	
 combines	
 XHTML	
 1.1,	
 MathML	
 2.0	
 and	

SVG	
 1.1	
 together.	
 	

•  This	
 profile	
 enables	
 mixing	
 XHTML,	
 MathML	

and	
 SVG	
 in	
 the	
 same	
 document	
 using	
 XML	

namespaces	
 mechanism.	

<?xml version="1.0"?>!
<!DOCTYPE html PUBLIC!
 "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"!
 "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd">!

<html xmlns = "http://www.w3.org/1999/xhtml"!
 xmlns:svg = "http://www.w3.org/2000/svg">!

!
 <head>!
 <title>Example of XHTML, SVG and MathML</title> !

 </head>!
 <body>!

!
 <h2>MathML</h2>!
 <p>!

 <math xmlns="http://www.w3.org/1998/Math/MathML">!
 <mfrac>!
 <mi>a</mi>!

 <mi>b</mi>!
 </mfrac>!

 </math>!
 </p>!
 !

 <h2>SVG</h2>!
 !

 <p>!
 <svg:svg width="50px" height="50px">!
 <svg:circle cx="25px" cy="25px" r="20px" fill="green"/>!

 </svg:svg>!
 </p>!

 !
 </body>!
</html>!

W3C	
 SCHEMA	

XML	
 Schema	
 (W3C)	

•  Language	
 for	
 defining	
 set	
 of	
 rules	
 for	
 XML	
 –	

documents.	

•  W3C	
 Recommendadon	
 (2001)	

•  More	
 specific	
 than	
 DTD	

– Datatypes!	

•  Is	
 XML-­‐language	
 and	
 it	
 uses	
 xml	
 namespaces	

Schema	
 vs.	
 DTD	
 (W3Schools.com)	

•  XML	
 Schemas	
 are	
 extensible	
 to	
 future	

addidons	

•  XML	
 Schemas	
 are	
 richer	
 and	
 more	
 powerful	

than	
 DTDs	

•  XML	
 Schemas	
 are	
 wriZen	
 in	
 XML	

•  XML	
 Schemas	
 support	
 data	
 types	

•  XML	
 Schemas	
 support	
 namespaces	

DTD	
 Linking	

Defines	
 the	
 structure,	
 tag	
 names	
 and	

order	
 for	
 all	
 xhtml	
 -­‐	
 documents	

W3C	
 has	
 created	
 XML-­‐language	
 "XHTML"	

by	
 defining	
 it's	
 rules	
 in	
 DTD.	
 	

DTD	
 Linking	

Defines	
 the	
 structure,	
 tag	
 names	
 and	

order	
 for	
 all	
 "book"-­‐	
 documents	

TAMK	
 has	
 created	
 XML-­‐language	
 "Book"	

by	
 defining	
 it's	
 rules	
 in	
 DTD.	
 	

Schema	
 Linking	

Defines	
 the	
 structure,	
 tag	
 names	
 and	

order	
 for	
 all	
 "book"-­‐	
 documents	

TAMK	
 has	
 created	
 XML-­‐language	
 "Book"	

by	
 defining	
 it's	
 rules	
 in	
 a	
 Schema.	
 	

Linking?	

•  The	
 basic	
 idea	
 with	
 linking	
 to	
 Schema:

 <?xml version="1.0"?>

<root schemaLocation="note.xsd">
 <foo>...</foo>
</root>

•  The	
 problem	
 with	
 this	
 is	
 that	
 now	
 it	
 is	
 set	
 that	

aZribute	
 "schemaLocadon"	
 is	
 part	
 of	
 your	

XML-­‐language

Linking	
 and	
 Namespace	
 Usage	

•  Linking	
 with	
 namespace

<?xml version="1.0"?>
<root
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="note.xsd">

 <foo>...</foo>
</root>

•  Now	
 the	
 "schemaLocadon"	
 –	
 aZribute	
 is	
 in	
 it's	

own	
 namespaces	
 (xsi)	
 and	
 does	
 not	
 belong	
 to	
 the	

"main"	
 language.

Simple	
 Schema	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!<xsd:element name="complete_name" type="complete_name_type"/>!
!!

 <xsd:complexType name="type="complete_name_type">!
!!<xsd:sequence>!
!! !<xsd:element name="nome" type="xsd:string"/>!
!! !<xsd:element name="cognome" type="xsd:string"/>!
!!</xsd:sequence>!
!</xsd:complexType>!

</xsd:schema>!

Let's	
 remove	
 namespaces...	

<?xml version="1.0"?>!
<schema>!
!<element name="complete_name" type="complete_name_type"/>!
!!

 <complexType name="complete_name_type">!
!!<sequence>!
!! !<element name="nome" type="string"/>!
!! !<element name="cognome" type="string"/>!
!!</sequence>!
!</complexType>!

!
</schema>!

It	
 doesn't	
 look	
 so	
 confusing	

aier	
 all?	

The	
 Basics:	
 Element	

•  You	
 define	
 the	
 name	
 for	
 the	
 elements	
 by	
 using	

element-­‐element.	
 	

– <element name="foo" type="bar" />!

•  Type?	

– 44	
 Built-­‐in	
 schema	
 datatypes	

– string,	
 double,	
 dme,	
 date,	
 etc.	

– See	
 all	
 the	
 datatypes	

Usage	
 of	
 Datatypes	

<xsd:element name="firstname" !
 type="xsd:string" />!
!
<xsd:element name="ableToSwim" !
 type="xsd:boolean" />!
!
<xsd:element name="date" !
 type="xsd:date" />!

	

minOccurs	
 and	
 maxOccurs	

•  The	
 amount	
 of	
 elements	

–  In	
 DTD:	
 *,	
 ?,	
 +	

–  In	
 Schema:	
 minOccurs,	
 maxOccurs	

•  Example	

<xsd:element name="date"
type="xsd:date" minOccurs="1"
maxOccurs="2" />!

•  Default	
 and	
 special	
 values	

– default	
 minOccurs:	
 1	

– default	
 maxOccurs:	
 same	
 as	
 minOccurs!
– maxOccurs="unbounded"	
 :	
 unlimited	
 	

Defining	
 new	
 Datatypes	

•  If	
 the	
 the	
 built-­‐in	
 datatypes	
 are	
 not	
 enough,	

you	
 can	
 build	
 your	
 own	
 datatypes.	

•  This	
 does	
 not	
 necessarily	
 work:	

–  <xsd:element name="grade" type="xsd:integer" />!

•  There	
 are	
 two	
 ways	
 of	
 specifying	
 your	
 own	

datatype	

– Named	
 Data	
 Type	

– Anonymous	
 Data	
 Type	

1)	
 Named	
 Data	
 Type	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/

XMLSchema">!
!
 <xsd:element name="grade" type="grade_type" />!
!!

 <xsd:simpleType name="grade_type">!
 <xsd:restriction base="xsd:positiveInteger"> !
 <xsd:minInclusive value="4"/>!
 <xsd:maxInclusive value="10"/>!
 </xsd:restriction>!
 </xsd:simpleType>!
 !
</xsd:schema>!
!

2)	
 Anonymous	
 Data	
 Type	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
 <xsd:element name="grade">!
 <xsd:simpleType>!
 <xsd:restriction base="xsd:positiveInteger"> !
 <xsd:minInclusive value="4"/>!
 <xsd:maxInclusive value="10"/>!
 </xsd:restriction>!
 </xsd:simpleType>!
 </xsd:element>!
 !
</xsd:schema>!

Benefits	
 of	
 Named	
 Data	
 Type	

•  If	
 you	
 want	
 re-­‐use	
 your	
 datatype:	

!
<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
 <xsd:element name="grade" type="grade_type" />!
 <xsd:element name="teachers_IQ" type="grade_type" />!
!
 <xsd:simpleType name="grade_type">!
 <xsd:restriction base="xsd:positiveInteger"> !
 <xsd:minInclusive value="4"/>!
 <xsd:maxInclusive value="10"/>!
 </xsd:restriction>!
 </xsd:simpleType>!
 !
</xsd:schema>!
!

SimpleType:	
 enumeradon	

•  Alternadve	
 content	

<xsd:simpleType name="car">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Audi"/>
 <xsd:enumeration value="Golf"/>

 <xsd:enumeration value="BMW"/>
 </xsd:restriction>

</xsd:simpleType>	

SimpleType:	
 paZern	

•  Using	
 REGEX:	

	

<xsd:simpleType name="lowercase_char">

 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[a-z]"/>

 </xsd:restriction>
</xsd:simpleType>	

REGEX	
 Examples	

<xs:pattern value="[A-Z][A-Z][A-Z]"/>!
<xs:pattern value="[a-zA-Z][a-zA-Z][a-zA-Z]"/>!
<xs:pattern value="[xyz]"/>!
<xs:pattern value="[0-9][0-9][0-9][0-9][0-9]"/>!
<xs:pattern value="([a-z])*"/>!
<xs:pattern value="male|female"/>!
<xs:pattern value="[a-zA-Z0-9]{8}"/>!

Structure	
 of	
 the	
 XML-­‐file	

•  It's	
 possible	
 to	
 define	
 the	
 structure	
 of	
 the	

XML-­‐file	
 using	
 complexType!

•  If	
 element	
 A	
 has	
 child-­‐elements,	
 then	
 element	

A's	
 type	
 is	
 complexType!

SimpleType	
 vs.	
 ComplexType	

•  SimpleType	

– <grade>7</grade>!
– Since	
 grade does	
 not	
 hold	
 other	
 child	
 –	

elements,	
 grade's	
 type	
 is	
 simpleType	

•  ComplexType	

–  <students><student>Jack</student></
students>!

– Since	
 student does	
 hold	
 child	
 –	
 element(s),	

student's	
 type	
 is	
 complexType	

Example:	
 XML	
 -­‐	
 File	

!
<?xml version="1.0"?>!
<students>!

<firstname>Fernando</firstname>!
 <lastname>Alonso</lastname>!
</students>!
	

Example:	
 XSD	
 –	
 file	

Named	
 ComplexType	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
 <xsd:element name="students" type="students_type">!
!
 <xsd:complexType name="students_type">!
 <xsd:sequence>!
 <xsd:element name="firstname" type="xsd:string"/>!
 <xsd:element name="lastname" type="xsd:string"/>!
 </xsd:sequence>!
 </xsd:complexType>!
 !
</xsd:schema>!

Use	
 now	

complexType	

(vs.	

simpleType)	

Example:	
 XSD	
 –	
 file	

Anonymous	
 ComplexType	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
 <xsd:element name="students">!
 <xsd:complexType>!
 <xsd:sequence>!
 <xsd:element name="firstname" type="xsd:string"/>!
 <xsd:element name="lastname" type="xsd:string"/>!
 </xsd:sequence>!
 </xsd:complexType>!
 </xsd:element>!
 !
</xsd:schema>!

Example:	
 ComplexType	

<xsd:element name="employee" type="personinfo"/>!
<xsd:element name="student" type="personinfo"/>!
<xsd:element name="member" type="personinfo"/>!
!
<xsd:complexType name="personinfo">!
 <xsd:sequence>!
 <xsd:element name="firstname" type="xsd:string"/>!
 <xsd:element name="lastname" type="xsd:string"/>!
 </xsd:sequence>!
</xsd:complexType>!

Deep	
 Structure	
 in	
 XML	
 -­‐	
 File	

!
<?xml version="1.0"?>!
<students>!

<student>!
 <name>!
 <firstname>Fernando</firstname> !
 </name>!
</student>!

</students>!
	

Using	
 Anonymous	
 Data	
 Type:	
 The	
 Horror!	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
 <xsd:element name="students">!
 <xsd:complexType>!
 <xsd:sequence>!
 <xsd:element name="student">!
 <xsd:complexType>!
 <xsd:sequence>!
 <xsd:element name="name">!
 <xsd:complexType>!
 <xsd:sequence>!
 <xsd:element name="firstname" type="xsd:string"/>!
 </xsd:sequence>!
 </xsd:complexType>!
 </xsd:element>!
 </xsd:sequence>!
 </xsd:complexType>!
 </xsd:element>!
 </xsd:sequence>!
 </xsd:complexType>!
 </xsd:element>!
 !
</xsd:schema>!

"There	
 is	
 an	
 error	
 in	
 my	
 schema,	
 could	
 you	
 find	
 it	

for	
 me?"	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
<xsd:element name="students">!
<xsd:complexType>!
<xsd:sequence>!
<xsd:element name="student">!
 <xsd:complexType>!
 <xsd:sequence>!
<xsd:element name="name">!
 <xsd:complexType>!
 <xsd:sequence>!
 <xsd:element name="firstname" type="xsd:string"/>!
 </xsd:sequence>!
</xsd:complexType>!
 </xsd:element>!
 </xsd:sequence>!
</xsd:complexType>!
</xsd:element>!
!
</xsd:complexType>!
</xsd:element>!
 !
</xsd:schema>!

Use	
 Named	
 Datatypes!	
 It's	
 easier	
 to	
 find	
 errors..	

<?xml version="1.0"?>!
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">!
!
 <xsd:element name="students" type="students_type" />!
!
 <xsd:complexType name="students_type">!
 <xsd:sequence>!
 <xsd:element name="student" type="student_type" />!
 </xsd:sequence>!
 </xsd:complexType>!
!
 <xsd:complexType name="student_type">!
 <xsd:sequence>!
 <xsd:element name="name" type="name_type" />!
 </xsd:sequence>!
 </xsd:complexType>!
!
 <xsd:complexType name="name_type">!
 <xsd:sequence>!
 <xsd:element name="firstname" type="xsd:string" />!
 </xsd:sequence>!
 </xsd:complexType>!
 !
</xsd:schema>!

Order	
 of	
 the	
 elements	

•  Sequence:	
 Elements	
 appear	
 in	
 same	
 order	
 than	
 in	

Schema	

•  All:	
 Elements	
 can	
 appear	
 in	
 any	
 order	

•  Choice:	
 One	
 element	
 can	
 appear	
 from	
 the	
 choice-­‐list	

	

<xsd:element name="person">!
 <xsd:complexType>!
 <xsd:choice>!
 <xsd:element name="employee" type="employee"/>!
 <xsd:element name="member" type="member"/>!
 </xsd:choice>!
 </xsd:complexType>!
</xsd:element>!

AZribute	

•  XML	

–  <student id="A1">...</student>!

•  Schema	

 <xsd:element name="student"
type="student_type" />!

!
 <xsd:complexType name="student_type">!
 <xsd:sequence>!
 ...!
 </xsd:sequence>!
 <xsd:attribute name="id" type="xsd:ID"/>!
 </xsd:complexType>	

	
 	
 	
 	

Empty	
 Element	
 with	
 AZribute	

•  XML	

– <student id="A1" />!

•  Schema	

 <xsd:element name="student"
type="student_type" />!

!
 <xsd:complexType name="student_type">!
 <xsd:attribute name="id" type="xsd:ID"/>!

 </xsd:complexType>	

	
 	
 	
 	

PHP5	
 and	
 Schema	

•  With	
 PHP5	
 you	
 do	
 not	
 have	
 to	
 link	
 xml	
 to	
 schema	
 –	

files.	

–  The	
 linking	
 is	
 done	
 in	
 PHP5	
 –	
 code,	
 not	
 in	
 XML.	

•  Example	
 of	
 schema-­‐validadon:	

 $doc = new domDocument;

 if ($doc->load("books.xml") and

 $doc->schemaValidate("books.xsd'))
 {

 print "Is WellFormed and Schema-valid!";

 }

