XML Schema (W3C)

Thanks to Jussi Pohjolainen

TAMK University of Applied Sciences

XML NAMESPACES

XML Namespaces

* The idea behing XML namespaces is to avoid
element name conflicts.

* Example of name conflict (w3schools.com)

<table> <table>
<tr> <name>African Coffee Table</name>
<td>Apples</td> <width>80</width>
<td>Bananas</td> <length>120</length>
</tr> </table>

</table>

' Same tag-name, different content and meaning!

Solving Name Conflict

<h:table> Prefix h has xhtml-related
<h:tr> elements and prefix f has

<h:td>Apples</h:td> furniture-related elements
<h:td>Bananas</h:td>
</h:tr>

</h:table>

<f:table>
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>

xmilns - attributes

* When using prefixes in XML, a so-called
namespace for the prefix must be defined.

* The namespace is defined by the xmlns
attribute in the start tag of an element.

xmlns - attribute

<root>
<h:table xzmlns:h="http://www.w3.o0rg/TR/html4/">
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>
</h:tr>
</h:table>

<f:table xmlns:f="http://www.w3schools.com/furniture">
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>
</f:table>
</root>

xmlns - attribute

<root
xmlns:h="http://www.w3.org/TR/html4/"
xmlns:f="http://www.w3schools.com/furniture">

<h:table>
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>
</h:tr>

</h:table>

<f:table>
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>

</root>

Namespace name

* The name of namespace should be unique:
<h:table xmlns:h="http://www.w3.org/TR/html4/">

* |tis just a string, but it should be declared as
URI.

* Using URI reduces the possibility of different
namespaces using duplicate identifiers.

Example:
An XHTML + MathML + SVG Profile

 An XHTML+MathML+SVG profile is a profile
that combines XHTML 1.1, MathML 2.0 and
SVG 1.1 together.

* This profile enables mixing XHTML, MathML
and SVG in the same document using XML
namespaces mechanism.

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"

"http://www.w3.0rg/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd">

<html xmlns = "http://www.w3.0rg/1999/xhtml"
xmlns:svg = "http://www.w3.0rg/2000/svg">
<head>

<title>Example of XHTML, SVG and MathML</title>
</head>
<body>

<h2>MathML</h2>
<p>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mfrac>
<mi>a</mi>
<mi>b</mi>
</mfrac>
</math>
</p>

<h2>SVG</h2>

<p>
<svg:svg width="50px" height="50px">

<svg:circle cx="25px" cy="25px" r="20px" fill="green"/>

</svg:svg>
</p>

</body>
</html>

"® O O Example of XHTML, SVG and MathML =]

ED D @ file: v v Q- wicva© '

Most Visited v EditGrid Solo Google Analytics Telkku »
N @ [Exam... l . mfrac ma... mfrac ele... I 3 st > I©

MathML

Sl §]

SVG

[Done 7

W3C SCHEMA

XML Schema (W3C)

Language for defining set of rules for XML —
documents.

W3C Recommendation (2001)

More specific than DTD
— Datatypes!

Is XML-language and it uses xm/ namespaces

Schema vs. DTD (W3Schools.com)

XML Schemas are extensible to future
additions

XML Sc

than DT

XM
XM
XM

Yo
Yo

Yo

nemas are richer and more powerful
Ds

nemas are written in XML

nemas support data types

nemas support namespaces

DTD Linking

-
e Defines the structure, tag names and
order for all xhtml - documents
a.xhtmi

)

b.xhtml

xhtml|1l-strict.dtd

W3C has created XML-language "XHTML"
c.Xhtml by defining it's rules in DTD.

DTD Linking

)’5 - Defines the structure, tag names and
' ‘ order for all "book"- documents

DTD

books.dtd

L‘AJ TAMK has created XML-language "Book"

c.xml by defining it's rules in DTD.

Schema Linking

{@}’ - Defines the structure, tag names and
' ! order for all "book"- documents

XSD

books.xsd

0y '
s TAMK has created XML-language "Book"

c.xml by defining it's rules in a Schema.

Linking?

* The basic idea with linking to Schema:

<?xml version="1.0"7?>

<root schemalLocation="note.xsd">
<foo>...</foo>

</root>

* The problem with this is that now it is set that
attribute "schemalocation" is part of your
XML-language

Linking and Namespace Usage

* Linking with namespace

<?xml version="1.0"72>
<root
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="note.xsd">

<foo>...</foo>
</root>

* Now the "schemalocation" — attribute is in it's
own namespaces (xsi) and does not belong to the
"main" language.

Simple Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="complete name" type="complete name type"/>

<xsd:complexType name="type="complete name type">
<xsd:sequence>
<xsd:element name="nome" type="xsd:string"/>
<xsd:element name="cognome" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Let's remove namespaces...

<?xml version="1.0"?>
<schema>
<element name="complete name" type="complete name type"/>

<complexType name="complete name type">
<sequence>
<element name="nome" type="string"/>
<element name="cognome" type="string"/>
</sequence>
</complexType>

It doesn't look so confusing

</schema> after all?

The Basics: Element

* You define the name for the elements by using
element-element. ©

—<element name="foo" type="bar" />
* Type?
— 44 Built-in schema datatypes

— string, double, time, date, etc.
— See all the datatypes

Usage of Datatypes

<xsd:element name="firstname"
type="xsd:string" />

<xsd:element name="ableToSwim"
type="xsd:boolean" />

<xsd:element name="date"
type="xsd:date" />

minOccurs and maxOccurs

e The amount of elements
— InDTD: *, ?, +
— In Schema: minOccurs, maxOccurs

e Example
<xsd:element name="date"
type="xsd:date" minOccurs="1"

maxOccurs="2" />
e Default and special values
— default minOccurs: 1
— default maxOccurs: same as minOccurs
— maxOccurs="unbounded" : unlimited

Defining new Datatypes

* |f the the built-in datatypes are not enough,
you can build your own datatypes.

* This does not necessarily work:

— <xsd:element name="grade" type="xsd:integer" />

* There are two ways of specifying your own
datatype
— Named Data Type
— Anonymous Data Type

1) Named Data Type

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/
XMLSchema">

<xsd:element name="grade" type="grade type" />

<xsd:simpleType name="grade type">
<xsd:restriction base="xsd:positivelInteger">
<xsd:minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

2) Anonymous Data Type

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="grade">
<xsd:simpleType>
<xsd:restriction base="xsd:positivelnteger">
<xsd:minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

</xsd:schema>

Benefits of Named Data Type

* If you want re-use your datatype:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="grade" type="grade type" />
<xsd:element name="teachers IQ" type="grade_type" />

<xsd:simpleType name="grade_ type'">
<xsd:restriction base="xsd:positivelnteger">
<xsd:minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

SimpleType: enumeration

 Alternative content

<xsd:simpleType name="car">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Audi"/>
<xsd:enumeration value="Golf"/>
<xsd:enumeration value="BMW"/>
</xsd:restriction>

</xsd:simpleType>

SimpleType: pattern

* Using REGEX:

<xsd:simpleType name="lowercase char'">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-z]"/>
</xsd:restriction>

</xsd:simpleType>

<Xs
<Xs
<Xs
<Xs
<Xs
<XSs

<Xs

tpattern
tpattern
:pattern
tpattern
tpattern
tpattern
tpattern

REGEX Examples

value="[A-Z][A-Z][A-Z2]"/>
value="[a-zA-Z][a-2zA-Z][a-2A-Z]"/>
value="[xyz]"/>
value="[0-9][0-9][0-9][0-9][0-9]"/>
value="([a-2])*"/>
value="male|female" />
value="[a-zA-720-9]{8}"/>

Structure of the XML-file

* |t's possible to define the structure of the
XML-file using complexType

* |f element A has child-elements, then element
A's type is complexType

SimpleType vs. ComplexType

* SimpleType
— <grade>7</grade>
— Since grade does not hold other child -
elements, grade's type is simpleType

 ComplexType

— <students><student>Jack</student></
students>

— Since student does hold child — element(s),
student's type is complexType

Example: XML - File

<?xml version="1.0"?>

<students>
<firstname>Fernando</firstname>
<lastname>Alonso</lastname>

</students>

Example: XSD — file
Named ComplexType

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
Use now
complexType
(vs.
simpleType)

<xsd:element name="students" type="students_ type">

<xsd:complexType name="students type">
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
<xsd:element name="lastname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example: XSD — file
Anonymous ComplexType

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
<xsd:element name="lastname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Example: ComplexType

<xsd:element name="employee" type="personinfo"/>
<xsd:element name="student" type="personinfo"/>

<xsd:element name="member" type="personinfo" />

<xsd:complexType name="personinfo'">
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
<xsd:element name="lastname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Deep Structure in XML - File

<?xml version="1.0"?>
<students>
<student>
<name>
<firstname>Fernando</firstname>
</name>
</student>
</students>

Using Anonymous Data Type: The Horror!

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="student">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

"There is an error in my schema, could you find it
for me?"

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="student">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Use Named Datatypes! It's easier to find errors..

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students" type="students_type" />

<xsd:complexType name="students_type">
<xsd:sequence>
<xsd:element name="student" type="student_type" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="student_type">
<xsd:sequence>
<xsd:element name="name" type="name_ type" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="name_type">
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Order of the elements

* Sequence: Elements appear in same order than in
Schema

* All: Elements can appear in any order
* Choice: One element can appear from the choice-list

<xsd:element name="person">
<xsd:complexType>
<xsd:choice>
<xsd:element name="employee" type="employee"/>
<xsd:element name="member" type="member"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

Attribute

e XML
— <student id="Al">...</student>

e Schema

<xsd:element name="student"”
type="student type" />

<xsd:complexType name="student type">
<xsd:sequence>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

Empty Element with Attribute

e XML
— <student id="aAl" />

e Schema

<xsd:element name="student"
type="student type" />

<xsd:complexType name="student type">
<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>

PHP5 and Schema

 With PHP5 you do not have to link xml to schema —
files.

— The linking is done in PHP5 — code, not in XML.
* Example of schema-validation:

Sdoc = new domDocument;
if (S$Sdoc->load ("books.xml") and
Sdoc->schemavValidate ("books.xsd'))

print "Is WellFormed and Schema-valid!";

