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XML NAMESPACES



XML Namespaces

* The idea behing XML namespaces is to avoid
element name conflicts.

* Example of name conflict (w3schools.com)

<table> <table>
<tr> <name>African Coffee Table</name>
<td>Apples</td> <width>80</width>
<td>Bananas</td> <length>120</length>
</tr> </table>

</table>

' Same tag-name, different content and meaning!



Solving Name Conflict

<h:table> Prefix h has xhtml-related
<h:tr> elements and prefix f has

<h:td>Apples</h:td> furniture-related elements
<h:td>Bananas</h:td>
</h:tr>

</h:table>

<f:table>
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>



xmilns - attributes

* When using prefixes in XML, a so-called
namespace for the prefix must be defined.

* The namespace is defined by the xmlns
attribute in the start tag of an element.



xmlns - attribute

<root>
<h:table xzmlns:h="http://www.w3.o0rg/TR/html4/">
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>
</h:tr>
</h:table>

<f:table xmlns:f="http://www.w3schools.com/furniture">
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>
</f:table>
</root>



xmlns - attribute

<root
xmlns:h="http://www.w3.org/TR/html4/"
xmlns:f="http://www.w3schools.com/furniture">

<h:table>
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>
</h:tr>

</h:table>

<f:table>
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>

</root>



Namespace name

* The name of namespace should be unique:
<h:table xmlns:h="http://www.w3.org/TR/html4/">

* |tis just a string, but it should be declared as
URI.

* Using URI reduces the possibility of different
namespaces using duplicate identifiers.



Example:
An XHTML + MathML + SVG Profile

 An XHTML+MathML+SVG profile is a profile
that combines XHTML 1.1, MathML 2.0 and
SVG 1.1 together.

* This profile enables mixing XHTML, MathML
and SVG in the same document using XML
namespaces mechanism.



<?xml version="1.0"?>
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"

"http://www.w3.0rg/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd">

<html xmlns = "http://www.w3.0rg/1999/xhtml"
xmlns:svg = "http://www.w3.0rg/2000/svg">
<head>

<title>Example of XHTML, SVG and MathML</title>
</head>
<body>

<h2>MathML</h2>
<p>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<mfrac>
<mi>a</mi>
<mi>b</mi>
</mfrac>
</math>
</p>

<h2>SVG</h2>

<p>
<svg:svg width="50px" height="50px">

<svg:circle cx="25px" cy="25px" r="20px" fill="green"/>

</svg:svg>
</p>

</body>
</html>
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W3C SCHEMA



XML Schema (W3C)

Language for defining set of rules for XML —
documents.

W3C Recommendation (2001)

More specific than DTD
— Datatypes!

Is XML-language and it uses xm/ namespaces



Schema vs. DTD (W3Schools.com)

XML Schemas are extensible to future
additions

XML Sc

than DT
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nemas are richer and more powerful
Ds

nemas are written in XML

nemas support data types

nemas support namespaces



DTD Linking

-
e Defines the structure, tag names and
order for all xhtml - documents
a.xhtmi

)

b.xhtml

xhtml|1l-strict.dtd

W3C has created XML-language "XHTML"
c.Xhtml by defining it's rules in DTD.



DTD Linking

)’5 - Defines the structure, tag names and
' ‘ order for all "book"- documents

DTD

books.dtd

L‘AJ TAMK has created XML-language "Book"

c.xml by defining it's rules in DTD.



Schema Linking

{@}’ - Defines the structure, tag names and
' ! order for all "book"- documents

XSD

books.xsd

0y '
s TAMK has created XML-language "Book"

c.xml by defining it's rules in a Schema.



Linking?

* The basic idea with linking to Schema:

<?xml version="1.0"7?>

<root schemalLocation="note.xsd">
<foo>...</foo>

</root>

* The problem with this is that now it is set that
attribute "schemalocation" is part of your
XML-language



Linking and Namespace Usage

* Linking with namespace

<?xml version="1.0"72>
<root
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="note.xsd">

<foo>...</foo>
</root>

* Now the "schemalocation" — attribute is in it's
own namespaces (xsi) and does not belong to the
"main" language.



Simple Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="complete name" type="complete name type"/>

<xsd:complexType name="type="complete name type">
<xsd:sequence>
<xsd:element name="nome" type="xsd:string"/>
<xsd:element name="cognome" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>



Let's remove namespaces...

<?xml version="1.0"?>
<schema>
<element name="complete name" type="complete name type"/>

<complexType name="complete name type">
<sequence>
<element name="nome" type="string"/>
<element name="cognome" type="string"/>
</sequence>
</complexType>

It doesn't look so confusing

</schema> after all?



The Basics: Element

* You define the name for the elements by using
element-element. ©

—<element name="foo" type="bar" />
* Type?
— 44 Built-in schema datatypes

— string, double, time, date, etc.
— See all the datatypes




Usage of Datatypes

<xsd:element name="firstname"
type="xsd:string" />

<xsd:element name="ableToSwim"
type="xsd:boolean" />

<xsd:element name="date"
type="xsd:date" />



minOccurs and maxOccurs

e The amount of elements
— InDTD: *, ?, +
— In Schema: minOccurs, maxOccurs

e Example
<xsd:element name="date"
type="xsd:date" minOccurs="1"

maxOccurs="2" />
e Default and special values
— default minOccurs: 1
— default maxOccurs: same as minOccurs
— maxOccurs="unbounded" : unlimited



Defining new Datatypes

* |f the the built-in datatypes are not enough,
you can build your own datatypes.

* This does not necessarily work:

— <xsd:element name="grade" type="xsd:integer" />

* There are two ways of specifying your own
datatype
— Named Data Type
— Anonymous Data Type



1) Named Data Type

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/
XMLSchema">

<xsd:element name="grade" type="grade type" />

<xsd:simpleType name="grade type">
<xsd:restriction base="xsd:positivelInteger">
<xsd:minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>



2) Anonymous Data Type

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="grade">
<xsd:simpleType>
<xsd:restriction base="xsd:positivelnteger">
<xsd:minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

</xsd:schema>



Benefits of Named Data Type

* If you want re-use your datatype:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="grade" type="grade type" />
<xsd:element name="teachers IQ" type="grade_type" />

<xsd:simpleType name="grade_ type'">
<xsd:restriction base="xsd:positivelnteger">
<xsd:minInclusive value="4"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>



SimpleType: enumeration

 Alternative content

<xsd:simpleType name="car">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Audi"/>
<xsd:enumeration value="Golf"/>
<xsd:enumeration value="BMW"/>
</xsd:restriction>

</xsd:simpleType>



SimpleType: pattern

* Using REGEX:

<xsd:simpleType name="lowercase char'">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[a-z]"/>
</xsd:restriction>

</xsd:simpleType>



<Xs
<Xs
<Xs
<Xs
<Xs
<XSs

<Xs

tpattern
tpattern
:pattern
tpattern
tpattern
tpattern
tpattern

REGEX Examples

value="[A-Z][A-Z][A-Z2]"/>
value="[a-zA-Z][a-2zA-Z][a-2A-Z]"/>
value="[xyz]"/>
value="[0-9][0-9][0-9][0-9][0-9]"/>
value="([a-2])*"/>
value="male|female" />
value="[a-zA-720-9]{8}"/>



Structure of the XML-file

* |t's possible to define the structure of the
XML-file using complexType

* |f element A has child-elements, then element
A's type is complexType



SimpleType vs. ComplexType

* SimpleType
— <grade>7</grade>
— Since grade does not hold other child -
elements, grade's type is simpleType

 ComplexType

— <students><student>Jack</student></
students>

— Since student does hold child — element(s),
student's type is complexType



Example: XML - File

<?xml version="1.0"?>

<students>
<firstname>Fernando</firstname>
<lastname>Alonso</lastname>

</students>



Example: XSD — file
Named ComplexType

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
Use now
complexType
(vs.
simpleType)

<xsd:element name="students" type="students_ type">

<xsd:complexType name="students type">
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
<xsd:element name="lastname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>



Example: XSD — file
Anonymous ComplexType

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
<xsd:element name="lastname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>



Example: ComplexType

<xsd:element name="employee" type="personinfo"/>
<xsd:element name="student" type="personinfo"/>

<xsd:element name="member" type="personinfo" />

<xsd:complexType name="personinfo'">
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
<xsd:element name="lastname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>



Deep Structure in XML - File

<?xml version="1.0"?>
<students>
<student>
<name>
<firstname>Fernando</firstname>
</name>
</student>
</students>



Using Anonymous Data Type: The Horror!

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="student">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>



"There is an error in my schema, could you find it
for me?"

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="student">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:complexType>
</xsd:element>

</xsd:schema>



Use Named Datatypes! It's easier to find errors..

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="students" type="students_type" />

<xsd:complexType name="students_type">
<xsd:sequence>
<xsd:element name="student" type="student_type" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="student_type">
<xsd:sequence>
<xsd:element name="name" type="name_ type" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="name_type">
<xsd:sequence>
<xsd:element name="firstname" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>

</xsd:schema>



Order of the elements

* Sequence: Elements appear in same order than in
Schema

* All: Elements can appear in any order
* Choice: One element can appear from the choice-list

<xsd:element name="person">
<xsd:complexType>
<xsd:choice>
<xsd:element name="employee" type="employee"/>
<xsd:element name="member" type="member"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>



Attribute

e XML
— <student id="Al">...</student>

e Schema

<xsd:element name="student"”
type="student type" />

<xsd:complexType name="student type">
<xsd:sequence>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>



Empty Element with Attribute

e XML
— <student id="aAl" />

e Schema

<xsd:element name="student"
type="student type" />

<xsd:complexType name="student type">
<xsd:attribute name="id" type="xsd:ID"/>

</xsd:complexType>



PHP5 and Schema

 With PHP5 you do not have to link xml to schema —
files.

— The linking is done in PHP5 — code, not in XML.
* Example of schema-validation:

Sdoc = new domDocument;
if ( S$Sdoc->load ("books.xml") and
Sdoc->schemavValidate ("books.xsd') )

print "Is WellFormed and Schema-valid!";



