
Xpath

Sources:

http://www.brics.dk/~amoeller/XML

http://www.w3schools.com

Overlapping domains

XPath

•  XPath is a syntax for defining parts of
an XML document

•  XPath uses path expressions to
navigate in XML documents

•  XPath contains a library of standard
functions

•  XPath is a major element in XSLT

•  XPath is a W3C Standard

Terminology

•  Element

•  Attribute

•  text,

•  namespace,

•  processing-instruction,

•  comment,

•  document (root) nodes

expressions

The most useful path expressions:

•  nodename
Selects all child nodes of the

named node

•  /
Selects from the root node

•  //
Selects nodes in the document from the

current node that match the selection no
matter where they are

•  .
Selects the current node

•  ..
Selects the parent of the current node

•  @
Selects attributes

Wildcards

Path wildcards can be used to select
unknown XML elements.

•  *

Matches any element node

•  @*
Matches any attribute node

•  node()
Matches any node of any kind

Axis: a node-set relative to
the current node.

Operators

Xpath functions

•  See

http://www.w3schools.com/xpath/

xpath_functions.asp

/ matches the root node

A matches any <A> element
* matches any element
A|B matches any <A> or element
A/B matches any element within a <A> element
A//B matches any element with a <A> ancestor

text() matches any text node

Pattern Matching - nodes

id(“pippo”) matches the element with unique ID
pippo

A[1] matches any <A> element that is the first <A>
child of its parent

A[last()=1] matches any <A> element that is the last
<A> child of its parent

B/A[position() mod 2 = 1] matches any <A> element
that is an odd-numbered <A> child of its B parent

Pattern Matching

@A matches any A attribute
@* matches any attribute

B[@A=“v”]//C matches any <C> element that has a

 ancestor with a A attribute with v value
processing-instruction()
node()

Pattern Matching - attributes

Using Xpath from java

XPath expressions are much easier to write
than detailed (DOM) navigation code.

When you need to extract information from an
XML document, the quickest and simplest
way is to embed an XPath expression inside
your Java program.

Java 5 introduces the javax.xml.xpath
package, an XML object-model independent
library for querying documents with XPath.

Example

Find all the books by Dante Alighieri

•  //book[author="Dante Alighieri"]/title

assuming a suitable data structure:

…

 <book author="someone">

 …

 <title>Title of the book</title>

 …

 </book>

…

Java code

import java.io.IOException;

import org.w3c.dom.*;

import org.xml.sax.SAXException;

import javax.xml.parsers.*;

import javax.xml.xpath.*;

public class XPathExample {

 public static void main(String[] args)

 throws ParserConfigurationException, SAXException,

 IOException, XPathExpressionException {

 //read an XML file into a DOM Document

 DocumentBuilderFactory domFactory=

 DocumentBuilderFactory.newInstance();

domFactory.setNamespaceAware(true); // never forget this!
DocumentBuilder builder = domFactory.newDocumentBuilder
();Document doc =

 builder.parse("books.xml");

Java code

// prepare the XPath expression

 XPathFactory factory = XPathFactory.newInstance();

 XPath xpath = factory.newXPath();

 XPathExpression expr

 = xpath.compile("//book[author='Dante Alighieri']/title/text()");

// evaluate the expression on a Node

 Object result = expr.evaluate(doc, XPathConstants.NODESET);

// examine the results

 NodeList nodes = (NodeList) result;

 for (int i = 0; i < nodes.getLength(); i++) {

 System.out.println(nodes.item(i).getNodeValue());

 }

 }

XML Serialization

import java.io.File;

import org.simpleframework.xml.Serializer;

import org.simpleframework.xml.load.Persister;

public class StorableAsXML implements Serializable {

 // ==== SERIALIZATION/DESERIALIZATION PRIMITIVES

 public void persist(File f){

 Serializer serializer = new Persister();

 try {

 serializer.write(this, f);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

Using XML to serialize Java Classes

import java.io.Serializable;
public class X implements Serializable
 FileOutputStream fos=null;
 ObjectOutputStream oos=null;
 try {
 fos=new FileOutputStream(f);
 oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 public StorableAsXML resume(File f, Class<? extends
StorableAsXML> c){

 StorableAsXML retval = null;

 try {

 Serializer serializer = new Persister();

 retval = (StorableAsXML)serializer.read(c, f);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return retval;

 }

}

Using XML to serialize Java Classes

 FileInputStream fis=null;
 ObjectInputStream ois=null;
 try {
 fis=new FileInputStream(f);
 ois = new ObjectInputStream(fis);
 retval=(X)ois.readObject();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

public class Lecture extends StorableAsXML implements Serializable {

 private Set<String> lecturers=null; //non serialized field

 @Element(name="NAME")

 public String lectureName=null;

 @Element(name="DATE")

 private Date date=null;

 @Element(name="SEQUENCE_NUMBER")

 private int sequenceNumber=-1; //-1 means not initialized

 @Element(name="COURSE_HOME")

 private String courseRef=null; //Home per il corso

 @Element(name="LECTURE_HOME")

 private String dirName=null;

 @Element(name="LECTURER",required=false)

 private String lecturer=null;

 @Element(name="VIDEO",required=false)

 private String videoFileName=null;

 @Element(name="VIDEO_LENGTH",required=false)

 private String videoLenght=null; //null = Video does not exist

 @Element(name="HAS_POST_PROCESSING")

 private boolean hasPostProcessing=false;

Using XML to serialize Java Classes

public Lecture(){
// needed to be a
bean
//for XMLSerialization
 …;
 }

Generated XML

<LECTURE>

 <NAME>gg</NAME>

 <DATE>2008-09-05 16:20:34.365 CEST</DATE>

 <SEQUENCE_NUMBER>1</SEQUENCE_NUMBER>

 <COURSE_HOME>/Users/ronchet/_LODE/COURSES/Hh_2008

 </COURSE_HOME>

 <LECTURE_HOME>01_Gg_2008-09-05</LECTURE_HOME>

 <LECTURER>A.B.</LECTURER>

 <HAS_POST_PROCESSING>false</HAS_POST_PROCESSING>

</LECTURE>

@Root(name="COURSE")

public class Course extends StorableAsXML implements Serializable

{

 @Element(name="NAME")

 private String courseName=null;

 @Element(name="YEAR")

 private String year=null;

 @Element(name="COURSE_HOME")

 private String fullPath=null;

 @ElementList(name="LECTURES",entry="LECTURE")

 private Set<String> lectures=new TreeSet<String>();

 @ElementList(name="TEACHERS",entry="TEACHER_NAME")

 private Set<String> teachers=new TreeSet<String>();

Using XML to serialize Java Classes

<COURSE>
 <NAME>hh</NAME>
 <YEAR>2008</YEAR>
 <COURSE_HOME>/Hh_2008</COURSE_HOME>
 <LECTURES class="java.util.TreeSet">
 <LECTURE>01_Gg_2008-09-05</LECTURE>
 </LECTURES>
 <TEACHERS class="java.util.TreeSet">
 <TEACHER_NAME>A.B.</TEACHER_NAME>
 <TEACHER_NAME>C.D.</TEACHER_NAME>
 </TEACHERS>
</COURSE>

Javadoc

http://simple.sourceforge.net/
download/stream/doc/javadoc/org/
simpleframework/xml/package-
summary.html

