
The fundamental 
components 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



2 2 

The fundamental components 
•  Activity 

•  an application component that provides a screen with which users can 
interact in order to do something, such as dial the phone, take a photo, send 
an email, or view a map. 

•  Fragment (since 3.0) 
•  a behavior or a portion of user interface in an Activity 

•  View  
•  equivalent to Swing Component 

•  Service 
•  an application component that can perform long-running operations in the 

background and does not provide a user interface 
•  Intent 

•  a passive data structure holding an abstract description of an operation to be 
performed. It activates an activity or a service. It can also be (as often in the 
case of broadcasts) a description of something that has happened and is 
being announced.  

•  Broadcast receiver  
•  component that enables an application to receive intents that are broadcast 

by the system or by other applications.  
•  Content Provider 

•  component that manages access to a structured set of data.  



3 3 

Peeking into an application 
Packaging: APK File (Android Package) 
Collection of components  
 
•  Components share a set of resources 

•  Preferences, Database, File space  

•  Components share a Linux process 
•  By default, one process per APK  

•  APKs are isolated 
•  Communication via Intents or AIDL (Android 

Interface Definition Language) 

•  Every component has a managed lifecycle 

Slide borrowed from Dominik Gruntz  (and modified) 

ONE APPLICATION, ONE PROCESS, MANY ACTIVITIES 
 



4 4 

Activity 
Not exactly what you might imagine… 

Wordnet definitions: 
•  something that people do or cause to happen  
•  a process occurring in living organisms 
•  a process existing in or produced by nature 

(rather than by the intent of human beings)  



5 5 

Activities 

•  “single” UI screens 
•  One visible at the time (Well. Almost…) 
•  One active at the time 
•  Stacked like a deck of cards  

A rather misleading term… it’s not a “computer 
activity”, like a process.  
It’s rather an environment where a “user activity” is 
performed 



6 6 

An application component that provides a screen with which users 
can interact in order to do something, such as dial the phone, take a 
photo, send an email, or view a map. 
 
 Each activity is given a window in which to draw its user interface. 
The window typically fills the screen, but may be smaller than the 
screen and float on top of other windows, or be embedded in another 
activity (activityGroup). 
 

Activity 

Activities of the dialer application 



7 7 

Multiple entry-point for an app 

An application can have multiple 
entry points 

Typically, one activity in an application is specified as the "main" 
activity, which is presented to the user when launching the 
application for the first time.  
 

BUT 



8 8 

Activity 
Each activity can start another activity in order to perform 
different actions.  
 
Each time a new activity starts, the previous activity is 
stopped. 
 
The system preserves the activity in a LIFO stack (the 
"activity stack" or "back stack").  
 
The new activity it is pushed on top of the back stack and 
takes user focus. 
 
When the user is done with the current activity and presses 
the BACK button, the current activity is popped from the 
stack (and destroyed) and the previous activity resumes.  



9 9 

The activity stack 
It’s similar to the function stack in ordinary programming,  
with some difference 



10 10 

Activity lifecycle 

States (colored), 
and  
Callbacks (gray) 



11 11 

Activity lifecycle 

The FOREGROUND lifetime 



12 12 

Activity lifecycle 

The VISIBLE lifetime 

When stopped, your activity 
should release costly 
resources, such as network 
or database connections.  
 
When the activity resumes, 
you can reacquire the 
necessary resources and 
resume actions that were 
interrupted.  
 



13 13 

Activity lifecycle 

The ENTIRE lifetime 



14 14 

The shocking news… 
An activity can start  
a second activity in  
a DIFFERENT application!  
(and hence in a different process…) 

We need a name  
for this “thing”: 

 
We’ll call it  

“a task” 



15 15 

Task 
Not exactly what you might imagine… 

Wordnet definitions: 
•  activity directed toward making or doing 

something  
•  work that you are obliged to perform for 

moral or legal reasons 



16 16 

Tasks 

Task (what users view as application) 
 
•  Collection of related activities 
•  Capable of spanning multiple processes  
•  Associated with its own UI history stack 

Slide borrowed from Dominik Gruntz 



17 17 

Tasks 
An App defines at least one task, may define more. 
 
Activities may come from different applications 
(favoring reuse).  
 
Android maintains a seamless user experience by 
keeping the activities in the same task. 
 
Tasks may be moved in the background. 
 



18 18 

Tasks 
The Home screen is the starting place for most tasks. 
 
When the user touches an icon in the application launcher 
(or a shortcut on the Home screen), that application's task 
comes to the foreground.  
 
If no task exists for the application (the application has not 
been used recently), then a new task is created and the 
"main" activity for that application opens as the root 
activity in the stack. 
 
If the application has been used recently, its task is resumed 
(in general with its state preserved: more on this in the next 
lecture). 
 
 
 
 
 



19 19 

Switching among apps 
To switching among apps:  
long press the home button and you’ll see a window 
of the 6 most recently used apps.  
 
Tap the app you want to switch to.  
 
 



20 20 

Task Management 
Default behavior: 
New activity is added to the same task stack. 
NOTE: Activity can have multiple instances, in 
different tasks or in the same task! 
 
Google recommends: 
“Let Android manage it for you. You do not need to 
bother with multitasking management!” 
 



21 21 

Process priorities 
Active process   Critical priority 
 
Visible process   High Priority 
Started service process 
 
Background process  Low Priority 
Empty process   



22 22 

Task Managers ? 
Several apps on the store offer a task manager functionality 
(to kill inactive apps). Are they needed? 
 
Lots of services and applications constantly run in the 
background just like they do on Windows. However, and this is 
important, they do not have to use up a ton of resources. A 
service or app can be loaded, yet use almost no additional 
memory, and 0% CPU until it actually has to do something. 
 
In general, killing off stuff is a waste of time. Android 
automatically asks apps to close when it needs more memory. 
Killing off processes also means it'll slow your phone down, as  
when you do need them again the system will need to reload 
them. 



Basic tips: 
having troubles… 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



24 24 

A bugged program 
package com.example.helloandroid; 
 
import android.app.Activity; 
import android.os.Bundle; 
 
public class BugActivity extends Activity { 
    /** Called when the activity is first created. */ 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        Object o = null; 
        o.toString(); 
        setContentView(R.layout.main); 
    } 
} 



Basic tips: 
printing on the console 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



26 26 

Printing in Eclipse 



27 27 

The Logger console 

Log.d("CalledActivity","OnCreate "); 
 



Basic UI elements: 
Android Buttons (Basics) 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



29 29 

Let’s work with the listener 

Button button = …; 
        button.setOnClickListener(new View.OnClickListener() { 

         public void onClick(View v) { 
          Log.d("TRACE", "Button has been clicked "); 
         } 

        }); 

 
 
In Swing it was 
JButton button=… 
button.addActionListener (new ActionListener() { 

         public void actionPerformed(ActionEvent e) { 
          …; 
         } 

        }); 

  

Anonymous 
Inner Class 



30 30 

Let’s work with the listener 
Button button = …; 
        button.setOnClickListener(new View.OnClickListener() { 

         public void onClick(View v) { 
          Log.d("TRACE", "Button has been clicked "); 
         } 

        }); 

 
 
In Swing it was 
JButton button=… 
button.addActionListener (new ActionListener() { 

         public void actionPerformed(ActionEvent e) { 
          …; 
         } 

        }); 

  

MAIN DIFFERENCE 

The event 
is passed  

The event target 
Is passed   



31 31 

An alternative 
The various View classes expose several public 
callback methods that are useful for UI events. 
 
These methods are called by the Android framework 
when the respective action occurs on that object. For 
instance, when a View (such as a Button) is touched, 
the onTouchEvent() method is called on that object.  
 
However, in order to intercept this, you must extend 
the class and override the method.  
 



32 32 

Extending Button to deal with events 
class MyButton extends Button { 
public boolean onTouchEvent(MotionEvent event) { 
    int eventAction = event.getAction(); 
    switch (eventAction) { 
        case MotionEvent.ACTION_DOWN:  // finger touches the screen 
           …; 

           break; 
 
        case MotionEvent.ACTION_MOVE:  // finger moves on the screen 
           …; 
            break; 
 
        case MotionEvent.ACTION_UP:   // finger leaves the screen 
           …; 
            break; 
    } 
// tell the system that we handled the event and no further processing is needed 
    return true;  
} 



33 33 

SimpleClick 



34 34 

Let’s recap how to build an app 
1)  Define the Activity Resources 

1)  Choose a Layout 
2)  Add the components via XML 
3)  Define the strings 

2)  Code the activity 
3)  Add info to the Manifest (if needed) 



35 35 

UML Diagram 

Activity  Layout 

Button 

String 

TextView 

String 

2 

TextView 

String 

setTitle() 



36 36 

Let’s define the aspect of  layout1 
<?xml version="1.0" encoding="utf-8"?> 
<LinearLayout xmlns:android= 
     "http://schemas.android.com/apk/res/android" 
    android:layout_width="fill_parent" 
    android:layout_height="fill_parent" 
    android:orientation="vertical" > 
    <TextView 
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content" 
        android:text="@string/hello" /> 
    <Button 
        android:id="@+id/button1" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:text="@string/button1_label" /> 
    <TextView 
        android:id="@+id/tf1" 
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content" 
        android:text="@string/output" /> 
</LinearLayout> 



37 37 

Let’s define the strings 

<?xml version="1.0" encoding="utf-8"?> 
<resources> 
 
    <string name="hello">This is Activity A1</string> 
    <string name="app_name">SimpleClick</string> 
    <string name="button1_label">Click me!</string> 
    <string name="output">no results yet...</string> 
 
</resources> 



38 38 

SimpleClick – A1 
package it.unitn.science.latemar; 
 
import android.app.Activity; 
import android.os.Bundle; 
import android.view.View; 
import android.widget.Button; 
import android.widget.TextView; 
 
public class A1 extends Activity { 
    int nClicks=0; 
    protected void onCreate(Bundle b) { 
        super.onCreate(b); 
     
        setContentView(R.layout.layout1); 
 
        final Button button = (Button) findViewById(R.id.button1); 
 
        final TextView tf = (TextView) findViewById(R.id.tf1); 
 
        button.setOnClickListener(new View.OnClickListener() { 

         public void onClick(View v) { 
          tf.setText("Clicks :"+(++nClicks)); 
         } 

        }); 
    } 
} 


