Basic Ul elements:

Views and Layouts,
a deeper insight

Marco Ronchetti
Universita degli Studi di Trento




See

Date Picker

Time Picker

Form Stuff

Spinner

Jd de de A

Google Map View

Web View

Cambodia
Cameroon
Canada

Cape Verde
Cayman [slands

New Caledonia

Turks and Cakos Islands

Canada
United
States ve
At
Ocx

_GOL )816

Googhe Seach

View Goog'e v Mobile

)




Linear Layout

Relative Layout

Table Layout

[,' fello Linearlayout

 Hello Relativelayout

 Hello TableLayout

Grid View

Tab Layout

List View

[ Hello GridView

GMOM



Defining layouts in XML

Each layout file must contain exactly one root element,
which must be a View or ViewGroup object.

Once you've defined the root element, you can add

additional layout objects or widgets as child elements
to gradually build a View hierarchy that defines your
layout.



A view of the Views

Analog § Keyboard Image
Clock View View
Absolute Frame Linear Relative
Layout Layout Layout Layout
Calendar Media
View Controller

Progress
Bar @

Blle]ife]
RIS ERE
Edit
Text

Compound

Button

m And several more...

i

Bution Button




1 . . _ used to At
invisible, zero-sized View a dedicatfed display a a progress 1 Displays fext )
that can be used to lazily drawing content bar to the user
inflate layout resources at surface stream and
runtime. optionally
allows them
to edit it.

Surface Texture Progress
View View Bar

Keyboard

ViewGroup View

Digital
used to Clock

analogic ’r Displgys an =
INolell¥lf clock with a keyboard CVSOTG gaps ~ arbitrary I
WelVlel8l; WO hands etween image, such Text
X for hours components as an icon.

and minutes

Calendar TimePicker | Media
View Controller Compound

Button
Bution Button

m And several more...

i




PLEASE READ THIS:
hitp://developer.android.com/reference/android/widget/package-summary.html

Like
AnalogClock,
but digital.

~ An editable Digital
TextView

Clock

Absolute ' T Edit
Vell) VOU' VOU VOU button Text
A button with
two states
Neltell | Media T
View Controller Compound
~ two-state toggle switch Button
P Sk

widget that can select
between two options. e ———
Toggle : Nefelle
". { Displays checked/ BU?T%I’] Switch Button
T -

unchecked states as a
button




Android vs. Swing architectures

Component

ViewGroup g

Container 3




A view of the Views

Surface | Texture |l Progress '
View View Bar

arranges its children

block out an area on the {S)/slelelia in asingle column or
screen to display a single View a single row.

item AL "
Blle]ife]
Clock
Absolute ' Linear Relative
Layout Layout Xt
| E,llgfens .i;r]s the positions of the children
endar BEisisigse can be described in relation
. rectangular

R to each other or fo the ympound
gna. parent.. Button

Bution Button

A layout that lets you
specify exact locations
(x/y coordinates) of its
children
DEPRECATEDI




A view of the Views

Progress
Bar

calendar widget

\/l=i¢ fordisplaying and
selecting dates

Keyboard m
View

A view

container for a /) seﬁ\e\gﬁ:\/gf?r:e comtaining
view hierarch 1¢
that can bey time of day, COnTroIS for a
, MediaPlayer

scrolled

Y
Media

Controller

, /
Calendar
View

View

Relative
Layout

 §

Blle]ife]
RIS ERE
Edit
Text

Compound
Button

P And several more...

i

Bution Button



Layout examples

See several examples in

http:/ /luca-petrosino.blogspot.com/2011 /03 /android-view-e-layout.html

We quickly discuss some of them here.




<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="fill _parent">

</LinearLayout>

‘iﬂ:&

Invia Cancella




<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="fill _parent">

android:layout_marginLeft="25px" \
android:layout_marginRight="25px"/>

</LinearLayout>

r

N

Cancella




<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="fill _parent">

fill_parent _I

</LinearLayout>

~

Invia




<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="fill _parent">

fill_parent

android:layout_weight="1"/>

fill_parent

android:layout_weight="2"/>
</LinearLayout>

r

—
_l

Cancella




<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" —
android:layout_width="fill parent"

android:layout_height="fill _parent">

</LinearLayout>

~




Basic operations on View

Set properties: e.g. setting the text of a TextView
(setText()). Available properties, getters and setters vary
among the different subclasses of views. Properties can
also be set in the XML layout files.

Set focus: Focus is moved in response to user input.
To force focus to a specific view, call requestFocus().

\ Vi

Set up listeners: e.g. setOnFocusChangeListener
(android.view.View.OnFocusChangeListener). View
subclasses offer specialized listeners.

Set visibility: You can hide or show views using
setVisibility(int). (One of VISIBLE, INVISIBLE, or GONE.)

' Invisible, but it sﬁll takes
up space for layout
urposes

Invisible, and it takes no
space for layout
urposes




Size and location of a View

Although there are setters for posizition and size,
theyr values are usually controlled (and overwritten)
by the Layout.

- getLeft(), getTop() : get the coordinates of the upper
left vertex.

- getMeasuredHeight() e getMeasuredWidth()
return the preferred dimensions

- getWidth() e getHeight() return the actual
dimensions.



Custom views

To implement a custom view, you will usually begin
overriding for some of the standard methods that the
framework calls on all views (at least onDraw()).

For more details, see

http:/ /developer.android.com/reference/android /
view / View.html




Basic Ul elements:
Android Menus (basics)

Marco Ronchetti
Universita degli Studi di Trento




. SimpleMenu

This is Activity Al
no results yet...

. SimpleMenu

This is Activity Al
Clicks :1

Increase

Decrease




<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="hello">This is Activity A1</string>
<string name="app_name">SimpleMenu</string>
<string name="output">no results yet...</string>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlIns:android=
"http;//schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill _parent"
android:orientation="vertical" >
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello" />
<TextView
android:id="@+id/tf1"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/output" />
</LinearLayout>

</resources>




package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.view.View;

super.onCreate(icicle); import android.widget.Button;

setContentView(R.layout.layoutl); import android.widget.TextView;
|

public boolean onCreateOptionsMenu(Menu menu){

public class Al extends Activity {
int nClicks=0;
protected void onCreate(Bundle icicle) {

super.onCreateOptionsMenu(menu); .
int base=Menu.FIRST; < Menu is created

Menultem iteml=menu.add(base,1,1,"Increase");

Menultem item2=menu.add(base,2,2,"Decrease");
return true;

}

public boolean onOptionsItemSelected(Menultem item) {
TextView tf = (TextView) findViewByld(R.id.tf1);
if (item.getItemld()==1) increase();

Respond to a
Menu event

private void increase() {

else if (item.getIltemlId()==2) decrease(); nClicks++;
else return super.onOptionsltemSelected(item); }
tf.setText("Clicks :"+nClicks); private void decrease() {
return true; nClicks--;

} !



package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.view.View;
super.onCreate(icicle); D import android.widget.Button;
setContentView(R.layout! import android.widget.TextView;
} \

public boolean onCre

public class Al extends Activity {
int nClicks=0;
protected void onCreate(Bundle icicle) {

super.onCreateOptionsMe
int base=Menu.FIRST; Menu is created
Menultem iteml=menu.add(base,1,1,"Increase;—""_ This could be a
Menultem item2=menu.add(base,2,2,"Decrease"); resource

return true;

}

public boolean onOptionsItemSelected(Menultem item) {
TextView tf = (TextView) findViewByld(R.id.tf1);
if (item.getItemld()==1) increase();

Respond to a
Menu event

private void increase() {

else if (item.getIltemlId()==2) decrease(); nClicks++;
else return super.onOptionsltemSelected(item); }
tf.setText("Clicks :"+nClicks); private void decrease() {
return true; nClicks--;

} !



Calling Activities in other
apps: Android Intents

Marco Ronchetti
Universita degli Studi di Trento




Re-using activities

When you create an application, you can assemble it
from

activities that you create
activities you re-use from other applications.

An app can incorporate activities from other apps.
Yes, but how? By means of Intents

These activities are bound at runtime: newly installed
applications can take advantage of already installed
' .activities

L+




. Intents

h the menu button!

GMOM



. Intents

Push the menu button!

invokeWebBrowser-VIEW
invokeWebBrowser-SEARCH
showDirections

GIE

latemar.science.unitn.it/s¢

& 6:40

—
-

Web Images Places News

Google

Signin

iGoogle Settings Help

View Google in: Mobile | Classic
Go to Google ltalia

© 2012 - New Privacy

more

Directions

@ Bolzano
Trento

Add Destination - Show options

® R % =3

A13 and A22 59.1 km, 42 mins

Driving directions to Trento, Italy

This route has tolls.

Bolzano Province of Bolzano-Bozen
Italy

1. Head south on Piazza della
Stazione toward Via Garibaldi

2. Continue onto Via Garibaldi

MNO

®



Our code - IntentUtils - 1

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

public class IntentUtils {

public static void invokeWebBrowser(Activity activity) {
Intent intent=new Intent(Intent. ACTION_VIEW);
intent.setData(Uri.parse("http;//latemar.science.unitn.it"));
activity.startActivity (intent);

}

public static void invokeWebSearch(Activity activity) {
Intent intent=new Intent(Intent. ACTION_WEB_SEARCH,
Uri.parse("http.//www.google.com"));
activity.startActivity(intent);



Our code - IntentUtils - 2

public static void dial(Activity activity) {
Intent intent=new Intent(Intent. ACTION_DIAL);
activity.startActivity(intent);

public static void showDirections(Activity activity){
Intent intent = new Intent(android.content.Intent ACTION_VIEW,

Uri.parse("http:/ /maps.google.com/maps? saddr=Bolzano&daddr=Trento")
activity.startActivity(intent);




Our Code: IntentsActivity -1

package it.unitn.science.latemar;
import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.widget.TextView;

public class IntentsActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv=new TextView(this);
tv.setText("Push the menu button!");
setContentView(tv);

}

public boolean onCreateOptionsMenu(Menu menu){
super.onCreateOptionsMenu(menu);

int base=Menu.FIRST;

Menultem iteml=menu.add(base,,1,"invokeWebBrowser-VIEW");
Menultem item2=menu.add(base,2,2,"invokeWebBrowser-SEARCH");
Menultem item3=menu.add(base,3,3,"showDirections");

Menultem item5=menu.add(base4,4,"dial");

return true;




Our Code: IntentsActivity -2

public boolean onOptionsltemSelected(Menultem item) {

System.err.println("item="+item.getItemld());

if (item.getltemId()==1)
IntentUtils.invokelWebBrowser(this);

else if (item.getItemld()==2)
IntentUtils.invokelWebSearch(this);

else if (item.getItemId()==3)
IntentUtils.showDirections(this);

else if (item.getItemld()==4)
IntentUtils.dial(this);

else
return super.onOptionsltemSelected(item);
return true;




Intent structure
and resolution

Marco Ronchetti
Universita degli Studi di Trento




Who will perform the action?
Component name (can be unnamed)
Which action should be performed?
Action identifier (a string)
Which data should the action act on ?
Data The URI of the data to be acted on
How we classify the action to be performed?
Category A (usually codified) string.
How do we directly pass data?

Extras Key-value pairs for additional information that
should be delivered to the component handling the
intent

How do we specify behavior modification?
Flags Flags of various sorts.

4 ©Meom




Examples of action/data pairs

ACTION_VIEW content://contacts/people/1
Display information about the person whose identifier is "1".

ACTION_DIAL content://contacts/people/1
Display the phone dialer with the person filled in.

ACTION_VIEW tel:123

Display the phone dialer with the given number filled in. Note how
the VIEW action does what what is considered the most reasonable
thing for a particular URI.

ACTION_DIAL tel:123
Display the phone dialer with the given number filled in.

ACTION_EDIT content://contacts/people/1
Edit information about the person whose identifier is "1".

ACTION_VIEW content://contacts/people/
Display a list of people, which the user can browse through.



Standard Actions ldentifiers

ACTION_MAIN
ACTION_VIEW
ACTION_ATTACH_DATA
ACTION_EDIT
ACTION_PICK
ACTION_CHOOSER
ACTION_GET_CONTENT
ACTION_DIAL
ACTION_CALL
ACTION_SEND
ACTION_SENDTO
ACTION_ANSWER
ACTION_INSERT
ACTION_DELETE
ACTION_RUN
ACTION_SYNC
ACTION_PICK_ACTIVITY
ACTION_SEARCH
ACTION_WEB_SEARCH
ACTION_FACTORY_TEST




For details see hitp://developer.android.com/reference/android/content/Intent.ntmI# CATEGORY ALTERNATIVE

Standard Categories

String CATEGORY_ALTERNATIVE Set if the activity should be considered as an alternative action to the data the user is currently viewing.

String CATEGORY_APP_BROWSER Used with ACTION_MAIN to launch the browser application.

String | CATEGORY_APP_CALCULATOR Used with ACTION MAIN to launch the calculator application.

String CATEGORY_APP_CALENDAR Used with ACTION MAIN to launch the calendar application.

String | CATEGORY_APP_CONTACTS Used with ACTION MAIN to launch the contacts application.

Sting | CATEGORY_APP_EMAIL Used with ACTION MAIN to launch the email application.

String CATEGORY_APP_GALLERY Used with ACTION MAIN to launch the gallery application.
String CATEGORY_APP_MAPS Used with ACTION_MAIN to launch the maps application.

String CATEGORY_APP_MARKET This activity allows the user to browse and download new applications.

String CATEGORY_APP_MESSAGING Used with ACTION_ MAIN to launch the messaging application.

String CATEGORY_APP_MUSIC Used with ACTION_ MAIN to launch the music application.
String CATEGORY_BROWSABLE Activities that can be safely invoked from a browser must support this category.

String CATEGORY_CAR_DOCK An activity to run when device is inserted into a car dock.

String CATEGORY_CAR_MODE Used to indicate that the activity can be used in a car environment.
String CATEGORY_DEFAULT Set if the activity should be an option for the default action (center press) to perform on a piece of data.

String = CATEGORY_DESK_DOCK An activity to run when device is inserted into a car dock.

String CATEGORY_DEVELOPMENT_PREFERENCE This activity is a development preference panel.

String CATEGORY_EMBED Capable of running inside a parent activity container.
String CATEGORY_FRAMEWORK_INSTRUMENTATION_TEST  To be used as code under test for framework instrumentation tests.

String | CATEGORY_HE_DESK_DOCK An activity to run when device is inserted into a digital (high end) dock.

Sting = CATEGORY_HOME This is the home activity, that is the first activity that is displayed when the device boots.

String CATEGORY EEg Provides information about the package it is in; typically used if a package does not contain a CATEGORY LAUNCHER to provid
__String | CATEGORY_LAUNCHER ) Should be displayed in the top-level launcher.

Sting =~ CATEGORY_LE_DESK_DOCK An activity to run when device is inserted into a analog (low end) dock.

CATEGORY_MONKEY This activity may be exercised by the y or other test tools.

CATEGORY_OPENABLE Used to indicate that a GET_CONTENT intent only wants URIs that can be cpened with ContentResolver.openinputStream.
CATEGORY_PREFERENCE ) This activity is a preference panel.
CATEGORY_SAMPLE_CODE To be used as an sample code example (not part of the normal user experience).

CATEGORY_SELECTED_ALTERNATIVE Set if the activity should be considered as an alternative selection action to the data the user has currently selected.

Intended to be used as a tab inside of an containing TabActivity.

To be used as a test (not part of the normal user experience).

String CATEGORY_UNIT_TEST To be used as a unit test (run through the Test Harness).

37




Implicit intents and intent resolution

Implicit intents do not name a target (the field for the
component name is blank).

In the absence of a designated target, the Android system
must find the best component (or components) to handle
the intent.

It does so by comparing the contents of the Intent object to

intent filters, structures associated with components that can
potentially receive intents.

\ Vi

Filters advertise the capabilities of a component and
delimit the intents it can handle. They open the component
to the possibility of receiving implicit intents of the
advertised type. If a component does not have any intent
filters, it can receive only explicit intents. A component
lwith filters can receive both explicit and implicit intents.




Intent Filters

Only three aspects of an Intent object are consulted
when the object is tested against an intent filter:

action
data (both URI and data type)
category

The extras and flags play no part in resolving which
component receives an intent.



AndroidManifest.xml

<?xml version="1.0" encoding="utf-8" 7>

<manifest xmlns:android="http.//schemas.android.com/apk/res/android"
package="com.example.helloandroid"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="15" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".HelloAndroidActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>

i | </application>

'< /manifest>

¥



Intents

Intent messaging is a facility for late run-time binding
between components in the same or different applications.

The intent itself, an Intent object, is a passive data structure
holding an abstract description of an operation to be
performed — or, often in the case of broadcasts, a
description of something that has happened and is being
announced.

There are separate mechanisms for delivering intents to
each type of component.



Using intents with activities

An Intent object is passed to Context.startActivity() or
Activity.startActivityForResult() to launch an activity
or get an existing activity to do something new. (It can
also be passed to Activity.setResult() to return
information to the activity that called
startActivityForResult().)




Other uses of Intents

An Intent object is passed to Context.startService() to initiate a
service or deliver new instructions to an ongoing service. Similarly,
an intent can be passed to Context.bindService() to establish a
connection between the calling component and a target service. It
can optionally initiate the service if it's not already running.

Intent objects passed to any of the broadcast methods (such as
Context.sendBroadcast(), Context.sendOrderedBroadcast(), or
Context.sendStickyBroadcast()) are delivered to all interested
br(c)iadcast receivers. Many kinds of broadcasts originate in system
code.

\ Vi

In each case, the Android system finds the appropriate activity,

service, or set of broadcast receivers to respond to the intent,

instantiating them if necessary. There is no overlap within these

. messaging systems: Broadcast intents are delivered only to broadcast
receivers, never to activities or services. An intent passed to

47, startActivity() is delivered only to an activity, never to a service or

' broadcast receiver, and so on.




Screen properties

Marco Ronchetti
Universita degli Studi di Trento




http:/ /developer.android.com/design/index.html

GMOM



Screen properties

Marco Ronchetti
Universita degli Studi di Trento




Screen Sizes and Densities

0.2% 13.6% 33.7% 19.9% 11.9% 79.3%

0.7% 4.3% 1.5% 0.6% 0.6% 1.7%

0.1% 4.3% 0.3% 0.2% 4.9%
Total 9.1% 22.2% 1.5% 34.6% 20.7% 11.9%

Large

Data collected during a 7-day period ending on March 3, 2014.
m Any screen configurations with less than 0.1% distribution are not shown.

' ' hitp://developer.android.com/resources/dashboard/screens.html




Screen related terms and concepts

Resolution The total number of physical pixels on a screen. When
addin supﬁort for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen,; usually referred to as dpi (dots per inch). Z

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
B do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
“ the device.
48

BN A
)



Density-independent pixel

Density-independent pixel (dp) A virtual pixel unit that
you should use when defining UI layout, to express
layout dimensions or position in a density-
independent way. The density-independent pixel is
equivalent to one physical pixel on a 160 dpi screen,
which is the baseline density assumed by the system
for a "medium" density screen. At runtime, the system
transparently handles any scaling of the dp units, as
necessary, based on the actual density of the screen in
use. The conversion of dp units to screen pixels is
simple: px = dp * (dpi / 160). For example, on a 240
dpi screen, 1 dp equals 1.5 physical pixels. You should
always use dp units when defining your application's
UI, to ensure proper display of your Ul on screens
with different densities.




xlarge screens are at least 960dp x 720dp

large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp




Screen Sizes and Densities

Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
small, normal, large, and xlarge

A set of four generalized densities:
ldpi (low), mdpi (medium), hdpi (high), and xhdpi
(extra high)



