
1

Basic UI elements:
Views and Layouts,
a deeper insight

Marco Ronchetti
Università degli Studi di Trento

2

Widgets examples

See http://developer.android.com/resources/tutorials/views/index.html

3

Layout examples

4

Defining layouts in XML
Each layout file must contain exactly one root element,
which must be a View or ViewGroup object.

Once you've defined the root element, you can add
additional layout objects or widgets as child elements
to gradually build a View hierarchy that defines your
layout.

5

A view of the Views

View

Analog
Clock

Image
View

Keyboard
View

Progress
Bar

Space

Surface
View

Text
View

Texture
View

ViewGroup

View
Stub

Absolute
Layout

Frame
Layout

Grid
Layout

Linear
Layout

Relative
Layout

Calendar
View TimePicker

Media
Controller

Scroll
View

And several more…

Button

Edit
Text

Digital
Clock

Compound
Button

Check
Box

Radio
Button Switch

Toggle
Button

6

A view of the Views

View

Analog
Clock

Image
View

Keyboard
View

Progress
Bar

Space

Surface
View

Text
View

Texture
View

ViewGroup

View
Stub

Absolute
Layout

Frame
Layout

Grid
Layout

Linear
Layout

Relative
Layout

Calendar
View TimePicker

Media
Controller

Scroll
View

And several more…

Button

Edit
Text

Digital
Clock

Compound
Button

Check
Box

Radio
Button Switch

Toggle
Button

invisible, zero-sized View
that can be used to lazily
inflate layout resources at

runtime.

a dedicated
drawing
surface

a progress
bar

used to
display a
content
stream

Displays text
to the user

and
optionally

allows them
to edit it.

Displays an
arbitrary

image, such
as an icon.

used to
create gaps

between
components

a keyboard
analogic

clock with
two hands
for hours

and minutes

7

A view of the Views

View

Analog
Clock

Image
View

Keyboard
View

Progress
Bar

Space

Surface
View

Text
View

Texture
View

ViewGroup

View
Stub

Absolute
Layout

Frame
Layout

Grid
Layout

Linear
Layout

Relative
Layout

Calendar
View TimePicker

Media
Controller

Scroll
View

And several more…

Button

Edit
Text

Digital
Clock

Compound
Button

Check
Box

Radio
Button Switch

Toggle
Button

An editable
TextView

Like
AnalogClock,

but digital.

Displays checked/
unchecked states as a

button

a push-
button

A button with
two states

two-state toggle switch
widget that can select
between two options.

PLEASE READ THIS:
http://developer.android.com/reference/android/widget/package-summary.html

8

Android vs. Swing architectures

View

ViewGroup

Layout

Component

Container

Layout

9

A view of the Views

View

Analog
Clock

Image
View

Keyboard
View

Progress
Bar

Space

Surface
View

Text
View

Texture
View

ViewGroup

View
Stub

Absolute
Layout

Frame
Layout

Grid
Layout

Linear
Layout

Relative
Layout

Calendar
View TimePicker

Media
Controller

Scroll
View

And several more…

Button

Edit
Text

Digital
Clock

Compound
Button

Check
Box

Radio
Button Switch

Toggle
Button

block out an area on the
screen to display a single

item

arranges its children
in a single column or

a single row.

the positions of the children
can be described in relation

to each other or to the
parent..

places its
children in a
rectangular

grid.

A layout that lets you
specify exact locations
(x/y coordinates) of its

children
DEPRECATED!

10

A view of the Views

View

Analog
Clock

Image
View

Keyboard
View

Progress
Bar

Space

Surface
View

Text
View

Texture
View

ViewGroup

View
Stub

Absolute
Layout

Frame
Layout

Grid
Layout

Linear
Layout

Relative
Layout

Calendar
View TimePicker

Media
Controller

Scroll
View

And several more…

Button

Edit
Text

Digital
Clock

Compound
Button

Check
Box

Radio
Button Switch

Toggle
Button

calendar widget
for displaying and

selecting dates

A view
containing

controls for a
MediaPlayer

A view for
selecting the
time of day,

container for a
view hierarchy

that can be
scrolled

11

Layout examples
See several examples in

http://luca-petrosino.blogspot.com/2011/03/android-view-e-layout.html

We quickly discuss some of them here.

12

Layout properties - horizontal
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:text="Invia"
android:id="@+id/Button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content”/>
<Button
android:text="Cancella"
android:id="@+id/Button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</LinearLayout>

13

Layout properties - margin
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:text="Invia"
android:id="@+id/Button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:layout_marginLeft="25px"
android:layout_marginRight="25px"/>
<Button
android:text="Cancella"
android:id="@+id/Button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</LinearLayout>

14

Layout properties – fill_parent
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation=”horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:text="Invia"
android:id="@+id/Button1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<Button
android:text="Cancella"
android:id="@+id/Button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</LinearLayout>

15

Layout properties – weight
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation=”horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:text="Invia"
android:id="@+id/Button1"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:layout_weight="1"/>
<Button
android:text="Cancella"
android:id="@+id/Button2"
android:layout_width="fill_parent"
android:layout_height="wrap_content”
android:layout_weight=“2"/>

</LinearLayout>

16

Layout properties - vertical
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:text="Invia"
android:id="@+id/Button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
<Button
android:text="Cancella"
android:id="@+id/Button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

</LinearLayout>

17

Basic operations on View
•  Set properties: e.g. setting the text of a TextView

(setText()). Available properties, getters and setters vary
among the different subclasses of views. Properties can
also be set in the XML layout files.

•  Set focus: Focus is moved in response to user input.
To force focus to a specific view, call requestFocus().

•  Set up listeners: e.g. setOnFocusChangeListener
(android.view.View.OnFocusChangeListener). View
subclasses offer specialized listeners.

•  Set visibility: You can hide or show views using
setVisibility(int). (One of VISIBLE, INVISIBLE, or GONE.)

 Invisible, but it still takes
up space for layout

purposes

Invisible, and it takes no
space for layout

purposes

18

Size and location of a View
Although there are setters for posizition and size,
theyr values are usually controlled (and overwritten)
by the Layout.

•  getLeft(), getTop() : get the coordinates of the upper

left vertex.

•  getMeasuredHeight() e getMeasuredWidth()
return the preferred dimensions

•  getWidth() e getHeight() return the actual
dimensions.

19

Custom views
To implement a custom view, you will usually begin
overriding for some of the standard methods that the
framework calls on all views (at least onDraw()).

For more details, see

http://developer.android.com/reference/android/
view/View.html

20

Basic UI elements:
Android Menus (basics)

Marco Ronchetti
Università degli Studi di Trento

21

SimpleMenu

22

Layout & Strings
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
<TextView
 android:id="@+id/tf1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/output" />
</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">This is Activity A1</string>
 <string name="app_name">SimpleMenu</string>
 <string name="output">no results yet...</string>
</resources>

23

SimpleMenu – A1
public class A1 extends Activity {
 int nClicks=0;
 protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);
 setContentView(R.layout.layout1);
 }
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;

 MenuItem item1=menu.add(base,1,1,"Increase");
 MenuItem item2=menu.add(base,2,2,"Decrease");
 return true;
 }
 public boolean onOptionsItemSelected(MenuItem item) {
 TextView tf = (TextView) findViewById(R.id.tf1);

 if (item.getItemId()==1) increase();
 else if (item.getItemId()==2) decrease();
 else return super.onOptionsItemSelected(item);
 tf.setText("Clicks :"+nClicks);
 return true;
 }

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

private void increase() {
 nClicks++;
 }
 private void decrease() {
 nClicks--;
 }

}

Menu is created

Respond to a
Menu event

24

SimpleMenu – A1
public class A1 extends Activity {
 int nClicks=0;
 protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);
 setContentView(R.layout.layout1);
 }
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;

 MenuItem item1=menu.add(base,1,1,"Increase");
 MenuItem item2=menu.add(base,2,2,"Decrease");
 return true;
 }
 public boolean onOptionsItemSelected(MenuItem item) {
 TextView tf = (TextView) findViewById(R.id.tf1);

 if (item.getItemId()==1) increase();
 else if (item.getItemId()==2) decrease();
 else return super.onOptionsItemSelected(item);
 tf.setText("Clicks :"+nClicks);
 return true;
 }

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

private void increase() {
 nClicks++;
 }
 private void decrease() {
 nClicks--;
 }

}

Menu is created

Respond to a
Menu event

Group

ID

Order

This could be a
resource

25

Calling Activities in other
apps: Android Intents

Marco Ronchetti
Università degli Studi di Trento

26

Re-using activities
When you create an application, you can assemble it
from
•  activities that you create
•  activities you re-use from other applications.

An app can incorporate activities from other apps.

Yes, but how? By means of Intents

These activities are bound at runtime: newly installed
applications can take advantage of already installed
activities

27

Our App

28

Our activities

29

Our code – IntentUtils - 1
package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

public class IntentUtils {

 public static void invokeWebBrowser(Activity activity) {

 Intent intent=new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://latemar.science.unitn.it"));
 activity.startActivity(intent);

 }

 public static void invokeWebSearch(Activity activity) {

 Intent intent=new Intent(Intent.ACTION_WEB_SEARCH,
 Uri.parse("http://www.google.com"));
 activity.startActivity(intent);

 }

30

Our code – IntentUtils - 2

 public static void dial(Activity activity) {

 Intent intent=new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);

 }

 public static void showDirections(Activity activity){
 Intent intent = new Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://maps.google.com/maps? saddr=Bolzano&daddr=Trento")
 activity.startActivity(intent);

 }
}

31

Our Code: IntentsActivity -1
package it.unitn.science.latemar;
import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.TextView;

public class IntentsActivity extends Activity {
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv=new TextView(this);
 tv.setText("Push the menu button!");
 setContentView(tv);
 }

 public boolean onCreateOptionsMenu(Menu menu){

 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;
 MenuItem item1=menu.add(base,1,1,"invokeWebBrowser-VIEW");
 MenuItem item2=menu.add(base,2,2,"invokeWebBrowser-SEARCH");
 MenuItem item3=menu.add(base,3,3,"showDirections");
 MenuItem item5=menu.add(base,4,4,"dial");
 return true;

 }

32

Our Code: IntentsActivity -2
 public boolean onOptionsItemSelected(MenuItem item) {

 System.err.println("item="+item.getItemId());
 if (item.getItemId()==1)
 IntentUtils.invokeWebBrowser(this);
 else if (item.getItemId()==2)
 IntentUtils.invokeWebSearch(this);
 else if (item.getItemId()==3)
 IntentUtils.showDirections(this);
 else if (item.getItemId()==4)
 IntentUtils.dial(this);
 else
 return super.onOptionsItemSelected(item);
 return true;

 }
}

33

Intent structure
and resolution

Marco Ronchetti
Università degli Studi di Trento

34

Intent structure
Who will perform the action?
•  Component name (can be unnamed)
Which action should be performed?
•  Action identifier (a string)
Which data should the action act on ?
•  Data The URI of the data to be acted on
How we classify the action to be performed?
•  Category A (usually codified) string.
How do we directly pass data?
•  Extras Key-value pairs for additional information that

should be delivered to the component handling the
intent

How do we specify behavior modification?
•  Flags Flags of various sorts.

35

Examples of action/data pairs
 ACTION_VIEW content://contacts/people/1
•  Display information about the person whose identifier is "1".

ACTION_DIAL content://contacts/people/1
•  Display the phone dialer with the person filled in.

 ACTION_VIEW tel:123
•  Display the phone dialer with the given number filled in. Note how

the VIEW action does what what is considered the most reasonable
thing for a particular URI.

 ACTION_DIAL tel:123
•  Display the phone dialer with the given number filled in.

ACTION_EDIT content://contacts/people/1
•  Edit information about the person whose identifier is "1".

 ACTION_VIEW content://contacts/people/
•  Display a list of people, which the user can browse through.

36

Standard Actions Identifiers
 ACTION_MAIN
 ACTION_VIEW
 ACTION_ATTACH_DATA
 ACTION_EDIT
 ACTION_PICK
 ACTION_CHOOSER
 ACTION_GET_CONTENT
 ACTION_DIAL
 ACTION_CALL
 ACTION_SEND
 ACTION_SENDTO
 ACTION_ANSWER
 ACTION_INSERT
 ACTION_DELETE
 ACTION_RUN
 ACTION_SYNC
 ACTION_PICK_ACTIVITY
 ACTION_SEARCH
 ACTION_WEB_SEARCH
 ACTION_FACTORY_TEST

37

For details see http://developer.android.com/reference/android/content/Intent.html#CATEGORY_ALTERNATIVE

Standard Categories

38

Implicit intents and intent resolution
Implicit intents do not name a target (the field for the
component name is blank).

In the absence of a designated target, the Android system
must find the best component (or components) to handle
the intent.

It does so by comparing the contents of the Intent object to
intent filters, structures associated with components that can
potentially receive intents.

Filters advertise the capabilities of a component and
delimit the intents it can handle. They open the component
to the possibility of receiving implicit intents of the
advertised type. If a component does not have any intent
filters, it can receive only explicit intents. A component
with filters can receive both explicit and implicit intents.

39

Intent Filters
Only three aspects of an Intent object are consulted
when the object is tested against an intent filter:
action
data (both URI and data type)
category
The extras and flags play no part in resolving which
component receives an intent.

40

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".HelloAndroidActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

41

Intents
Intent messaging is a facility for late run-time binding
between components in the same or different applications.

The intent itself, an Intent object, is a passive data structure
holding an abstract description of an operation to be
performed — or, often in the case of broadcasts, a
description of something that has happened and is being
announced.

There are separate mechanisms for delivering intents to
each type of component.

42

Using intents with activities
An Intent object is passed to Context.startActivity() or
Activity.startActivityForResult() to launch an activity
or get an existing activity to do something new. (It can
also be passed to Activity.setResult() to return
information to the activity that called
startActivityForResult().)

43

Other uses of Intents

 An Intent object is passed to Context.startService() to initiate a
service or deliver new instructions to an ongoing service. Similarly,
an intent can be passed to Context.bindService() to establish a
connection between the calling component and a target service. It
can optionally initiate the service if it's not already running.

 Intent objects passed to any of the broadcast methods (such as
Context.sendBroadcast(), Context.sendOrderedBroadcast(), or
Context.sendStickyBroadcast()) are delivered to all interested
broadcast receivers. Many kinds of broadcasts originate in system
code.

In each case, the Android system finds the appropriate activity,
service, or set of broadcast receivers to respond to the intent,
instantiating them if necessary. There is no overlap within these
messaging systems: Broadcast intents are delivered only to broadcast
receivers, never to activities or services. An intent passed to
startActivity() is delivered only to an activity, never to a service or
broadcast receiver, and so on.

44

Screen properties

Marco Ronchetti
Università degli Studi di Trento

45

Android design
http://developer.android.com/design/index.html

46

Screen properties

Marco Ronchetti
Università degli Studi di Trento

47

Screen Sizes and Densities

http://developer.android.com/resources/dashboard/screens.html

48

Screen related terms and concepts
Resolution The total number of physical pixels on a screen. When
adding support for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

49

Density-independent pixel
Density-independent pixel (dp) A virtual pixel unit that
you should use when defining UI layout, to express
layout dimensions or position in a density-
independent way. The density-independent pixel is
equivalent to one physical pixel on a 160 dpi screen,
which is the baseline density assumed by the system
for a "medium" density screen. At runtime, the system
transparently handles any scaling of the dp units, as
necessary, based on the actual density of the screen in
use. The conversion of dp units to screen pixels is
simple: px = dp * (dpi / 160). For example, on a 240
dpi screen, 1 dp equals 1.5 physical pixels. You should
always use dp units when defining your application's
UI, to ensure proper display of your UI on screens
with different densities.

50

xlarge screens are at least 960dp x 720dp
large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp

51

Screen Sizes and Densities
Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
 small, normal, large, and xlarge

A set of four generalized densities:
 ldpi (low), mdpi (medium), hdpi (high), and xhdpi
(extra high)

