
1

Preferences

Marco Ronchetti
Università degli Studi di Trento

2

SharedPreferences
SharedPreferences allows to save and retrieve
persistent key-value pairs of primitive data types. This
data will persist across user sessions (even if your
application is killed).

 getSharedPreferences(String name, int mode)
- Uses multiple preferences files identified by name, which you specify
with the first parameter.

 getPreferences()
- Use this if you need only one preferences file for your Activity. This
simply calls the underlying getSharedPreferences(String, int) method by
passing in this activity's class name as the preferences name

A method
of Contex

A method
of Activity

3

SharedPreferences methods
boolean contains(String key)
Checks whether the preferences contains a preference.

T getT(String key, T defValue)
 Retrieve a T value from the preferences where T={int,
float, boolean, long, String, Set<String>}.

SharedPreferences.Editor edit()
All changes you make in an editor are batched, and
not copied back to the original SharedPreferences until
you call commit() or apply()

Value returned
If key does not exist

4

SharedPreferences.Editor methods
Void apply(), boolean commit()
Commit your preferences changes back (apply is
asynchronous)

Editor putT(String key, T value)
 Stores a T value in the preferences where T={int, float,
boolean, long, String, Set<String>}.

Editor remove(String key)
Mark in the editor that a preference value should be
removed

Editor clear ()
Mark in the editor that all preference values should be
removed

5

User Preferences
Shared preferences are not strictly for saving "user
preferences," such as what ringtone a user has chosen.

For creating user preferences for your application, you
should use PreferenceActivity, which provides an
Activity framework for you to create user preferences,
which will be automatically persisted (using shared
preferences).

It is based on Fragments

6

Threads

Marco Ronchetti
Università degli Studi di Trento

7

Threads
When an application is launched, the system creates a thread of
execution for the application, called "main” or “UI thread”
This thread dispatches events to the user interface widgets, and
draws (uses the android.widget and android.view packages).

Unlike Java AWT/Swing, separate threads are NOT created
automatically.
Methods that respond to system callbacks (such as onKeyDown() to
report user actions or a lifecycle callback method) always run in the
UI thread.

If everything is happening in the UI thread, performing long
operations such as network access or database queries will block the
whole UI. When the thread is blocked, no events can be dispatched,
including drawing events. From the user's perspective, the
application appears to hang.

If the UI thread is blocked for more than 5 sec the user is presented
with the”ANR - application not responding” dialog.

8

the Andoid UI toolkit is not thread-safe !

Consequence:

you must not manipulate your UI from a worker
thread—all manipulation to the user interface must be
done within the UI thread.

You MUST respect these rules:
•  Do not block the UI thread
•  Do not access the Android UI toolkit from outside

the UI thread

9

An example from android developers
public void onClick(View v) {
 Bitmap b = loadImageFromNetwork(

 "http://example.com/image.png");
 myImageView.setImageBitmap(b);
}

WRONG!
Potentially
Slow
Operation!

public void onClick(View v) {

 .start();
}

new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork(
 "http://example.com/image.png");
 myImageView.setImageBitmap(b);
 }})

WRONG!
A non UI thread
accesses the UI!

10

Still not the solution…

public void onClick(View v) {
 Bitmap b;

 .start();
 myImageView.setImageBitmap(b);
}

new Thread(new Runnable() {
 public void run() {
 b = loadImageFromNetwork(
 "http://example.com/image.png");
 }})

WRONG!
This does not wait for the
thread to finish!

11

The solution

public void onClick(View v) {

 .start();
}

new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork(
 "http://example.com/image.png");
 myImageView.post(

)}})

 new Runnable() {
 public void run() {
 myImageView.setImageBitmap(bitmap);
 }
}

public boolean post (Runnable action)
•  Causes the Runnable to be sent to the UI thread and to be run

therein. It is invoked on a View from outside of the UI thread.

OK! This code will
be run in
the UI thread

public boolean postDelayed (Runnable action, long delayMillis)

12

Java reminder: varargs
void f(String pattern, Object... arguments);

The three periods after the final parameter's type
indicate that the final argument may be passed
•  as an array or
•  as a sequence of arguments.

Varargs can be used only in the final argument
position.

Object a, b, c, d[10];
…
f(“hello”,d);
f(“hello”,a,b,c);

13

Varargs example
public class Test {
 public static void main(String args[]){ new Test(); }

 Test(){
 String k[]={"uno","due","tre"};
 f("hello",k);
 f("hello",“alpha“,“beta“);
 // f("hello“,“alpha“,“beta“,k); THIS DOES NOT WORK!
 }

 void f(String s, String... d){
 System.out.println(d.length);
 for (String k:d) {
 System.out.println(k);
 }
 }

}

14

AsyncTask<Params,Progress,Result>
Creates a new asynchronous task. The constructor
must be invoked on the UI thread.

AsyncTask must be subclassed, and instantiated in the
UI thread.
Methods to be overridden:

method where when

void onPreExecute() UI Thread before

Result doInBackground(Params...) Separate new
thread

during

void onProgressUpdate(Progress…) UI Thread

void onPostExecute(Result) UI Thread after

15

The more elegant solution
public void onClick(View v) {
 new DownloadImageTask().execute("http://example.com/image.png");
}

private class DownloadImageTask extends AsyncTask<String, Void, Bitmap> {
 protected Bitmap doInBackground(String... urls) {
 return loadImageFromNetwork(urls[0]);
 }
 protected void onPostExecute(Bitmap result) {
 myImageView.setImageBitmap(result);
 }
 }

16

public class AsyncDemoActivity extends ListActivity {
 private static final String[] item{"uno","due","tre","quattro",

 "cinque","sei”, "sette","otto","nove",
 "dieci","undici","dodici",};

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView listView = getListView();

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new ArrayList<String>()));

 new AddStringTask().execute();
 }

Using Progress
package it.unitn.science.latemar;
import …

Adapted from the source code of
http://commonsware.com/Android/

17

Using Progress

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(1000);
 }
 return(null);
 }
 @SuppressWarnings("unchecked")
 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter<String>)getListAdapter()).add(item[0]);
 }

@Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemoActivity.this,

 "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

This is an inner class!

18

Using the ProgressBar

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
 <ProgressBar
 android:id="@+id/pb1"
 android:max="10"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 style="@android:style/Widget.ProgressBar.Horizontal"
 android:layout_marginRight="5dp" />
</LinearLayout>

public class AsyncDemoActivity2
 extends Activity {
 ProgressBar pb;
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 pb=(ProgressBar) findViewById(R.id.pb1);
 new AddStringTask().execute();
 }

19

Using the ProgressBar
 class AddStringTask extends AsyncTask<Void, Integer, Void> {
 @Override
 protected void doInBackground(Void... unused) {
 int item=0;
 while (item<10){
 publishProgress(++item);
 SystemClock.sleep(1000);
 }
 }
 @Override
 protected void onProgressUpdate(Integer... item) {
 pb.setProgress(item[0]);
 }
}

20

Basic UI elements:
Defining Activity UI in the
code

Marco Ronchetti
Università degli Studi di Trento

21

UI Programmatically
public class UIThroughCode extends Activity {
 LinearLayout lLayout;
 TextView tView;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 lLayout = new LinearLayout(this);
 lLayout.setOrientation(LinearLayout.VERTICAL);
 lLayout.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,

 LayoutParams.MATCH_PARENT));
 tView = new TextView(this);
 tView.setText("Hello, This is a view created programmatically! ”)");
 tView.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,

 LayoutParams.WRAP_CONTENT));
 lLayout.addView(tView);
 setContentView(lLayout);
 }
}

From http://saigeethamn.blogspot.it

22

Basic UI elements:
Menus, a deeper insight

Marco Ronchetti
Università degli Studi di Trento

23

OptionMenu
public class A1 extends Activity {

 …
 public boolean onCreateOptionsMenu(Menu menu){

 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;
 MenuItem item1=menu.add(base,1,1,"Increase");
 MenuItem item2=menu.add(base,2,2,"Decrease");
 return true;
 }

 public boolean onOptionsItemSelected(MenuItem item) {
 ...

 }

Menu is created
In code

public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.option_menu, menu);
 return true;
 }

Menu is created
From XML

24

option_menu.xml
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/increase"
 android:title="@string/increase" />
 <item android:id="@+id/decrease"
 android:title="@string/decrease" />

</menu>

25

Dynamically changing menu
Menu onPrepareOptionsMenu() (Activity class).

you get the Menu object as it currently exists, and you
can modify it (add, remove, or disable items).

Android < 3.0:
•  the system calls onPrepareOptionsMenu() each time

the user opens the options menu.

Android >= 3.0
•  When you want to perform a menu update, you

must call invalidateOptionsMenu() to request that
the system calls onPrepareOptionsMenu().

26

Menu types
Traditional menus are awkward on a small screen.
⇒  Three stages menus:

�  Option Menu (< 3.0) / Action Bar (>=3.0)
�  Context Menu (< 3.0) / Contextual Action mode(>=3.0)
�  Popup Menu

27

ContextMenu

LONG
CLICK

CLICK

28

context_menu.xml
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/edit"
 android:title="@string/edit" />
 <item android:id="@+id/save"
 android:title="@string/save" />
 <item android:id="@+id/delete"
 android:title="@string/delete" />
 <item android:id="@+id/view"
 android:title="@string/view" />

</menu>

29

Strings
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">ShowContextMenu</string>
 <string name="app_name">Context Menu Example</string>
 <string name="edit">Edit</string>
 <string name="save">Save</string>
 <string name="delete">Delete</string>
 <string name="view">View</string>
<string-array name="names">
 <item>Ferrari</item>
 <item>McLaren</item>
 <item>Red Bull</item>
</string-array>
</resources>

30

ContextMenu
public class ShowContextMenu extends ListActivity {
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.names)));
 registerForContextMenu(getListView());
 }

 public void onCreateContextMenu(ContextMenu menu,

 View v, ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.context_menu, menu);
 }

31

Responding to event
 public boolean onContextItemSelected(MenuItem item) {
 AdapterContextMenuInfo info =

 (AdapterContextMenuInfo) item.getMenuInfo();
 String[] names = getResources().getStringArray(R.array.names);
 switch(item.getItemId()) {
 case R.id.delete:
 Toast.makeText(this,
 Toast t=Toast.makeText(this, "Sorry, deleting " +

 ((TextView)info.targetView).getText()
 + " is not allowed", Toast.LENGTH_LONG).show();

 return true;
 default:
 Toast.makeText(this, "You have chosen the " + item.getTitle() +
 " context menu option for " + names[(int)info.id],
 Toast.LENGTH_SHORT).show();
 return true;
 }
 }

3.5 sec

2.0 sec

for (int i=0; i < 2; i++){ Toast.makeText(this, "blah", Toast.LENGTH_LONG).show(); }

32

A similar concept: QuickAction

Not (yet) a standard API!
For a hint in the implementation see

http://www.londatiga.net/it/how-to-create-quickaction-dialog-in-android/

displays contextual actions in a list view

33

Contextual action mode

LONG
CLICK

CLICK

34

Contextual action mode
public class ShowContextMenu extends ListActivity {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.names)));
 //registerForContextMenu(getListView());
 ListView listView=getListView();
 final Context ctx=this;
 listView.setChoiceMod(ListView.CHOICE_MODE_MULTIPLE_MODAL);
 listView.setMultiChoiceModeListener(new MultiChoiceModeListener() {

 …
 });
 }
}

35

MultiChoiceModeListener
listView.setMultiChoiceModeListener(new MultiChoiceModeListener() {
 public boolean onCreateActionMode(ActionMode mode, Menu menu) {

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.context_menu, menu);
 mode.setTitle("selection");
 return true;

 }
 public void onDestroyActionMode(ActionMode mode) {
 // Here you can make any necessary updates to the activity when
 // the CAB is removed. By default, selected items are deselected/unchecked
 }
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 // Here you can perform updates to the CAB due to an invalidate() request
 return true;
 }

36

MultiChoiceModeListener
 public void onItemCheckedStateChanged(ActionMode mode,

 int position, long id, boolean checked) {
 // Here you can do something when items are selected/de-selected,
 // such as update the title in the CAB
 String[] names = getResources().getStringArray(R.array.names);
 if (checked) mode.setTitle(names[position]);

 }

37

MultiChoiceModeListener
public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 switch(item.getItemId()) {

 case R.id.delete:
 Toast t=Toast.makeText(ctx, "Sorry, deleting " +
 mode.getTitle() + " is not allowed”, Toast.LENGTH_LONG);
 t.show();
 mode.finish();
 return true;

 default:
 Toast.makeText(ctx, "You have chosen the " + item.getTitle() +
 " context menu option for " + mode.getTitle(),
 Toast.LENGTH_LONG).show();
 mode.finish();
 return true;

 }
}

38

PopupMenu

39

Popup Menu
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/
android">

 <item android:id="@+id/next"
 android:title="@string/next" />
 <item android:id="@+id/previous"
 android:title="@string/previous" />
 <item android:id="@+id/list"
 android:title="@string/list" />

</menu>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello World, PopupMenu1!</string>
 <string name="app_name">PopupMenu</string>
 <string name="next">Next</string>
 <string name="previous">Previous</string>
 <string name="list">List</string>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="showPopup"
 android:text="Click me" />
</LinearLayout>

40

Popup Menu

public void showPopup(View button) {
 PopupMenu popup = new PopupMenu(this, button);
 popup.getMenuInflater().inflate(R.menu.popup, popup.getMenu());
 popup.setOnMenuItemClickListener(new

 PopupMenu.OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem item) {
 Toast.makeText(PopupMenu1.this, "Clicked popup menu item " +

 item.getTitle(), Toast.LENGTH_LONG).show();
 return true;
 }
 });
 popup.show();
 }
}

public class PopupMenu1 extends Activity {
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

41

Notification

Marco Ronchetti
Università degli Studi di Trento

42

Notification Bar

PULL
DOWN

43

SimpleNotification
public class SimpleNotification extends Activity {
 private NotificationManager nm;
 private int SIMPLE_NOTIFICATION_ID;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 final Notification notifyDetails = new Notification(

 R.drawable.android,"New Alert, Click Me!",
 System.currentTimeMillis());

 Button cancel = (Button)findViewById(R.id.cancelButton);
 cancel.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 nm.cancel(SIMPLE_NOTIFICATION_ID);
 }});}

Adapted from http://saigeethamn.blogspot.it

44

SimpleNotification – part 2
 Button start = (Button)findViewById(R.id.notifyButton);
 start.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 Context context = getApplicationContext();
 CharSequence contentTitle = "Notification Details...";

 CharSequence contentText = "Browse Android Site by clicking me";
 Intent notifyIntent = new Intent
 (android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.android.com"));
 PendingIntent intent =

 PendingIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
 android.content.Intent.FLAG_ACTIVITY_NEW_TASK);

 notifyDetails.setLatestEventInfo(context, contentTitle,
 contentText, intent);

 nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);
 }
 });
 }}

45

Screen properties

Marco Ronchetti
Università degli Studi di Trento

46

Screen related terms and concepts
Resolution The total number of physical pixels on a screen. When
adding support for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

47

Screen Sizes and Densities
Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
xlarge at least 960dp x 720dp
large at least 640dp x 480dp
normal at least 470dp x 320dp
small at least 426dp x 320dp

A set of four generalized densities:
Low density (120 dpi), ldpi
Medium density (160 dpi), mdpi
High density (240 dpi), hdpi
Extra high density (320 dpi), xhdpi

48

Density-independent pixel (dp)
A virtual pixel unit that you should use when defining UI
layout, to express layout dimensions or position in a
density-independent way.

The density-independent pixel is equivalent to one physical
pixel on a 160 dpi screen, (baseline for a "medium" density
screen).
 At runtime, the system transparently handles any scaling
of the dp units based on the actual density of the screen in
use.
px = dp * (dpi / 160). E.g.: on a 240 dpi screen, 1 dp equals
1.5 physical pixels.
You should always use dp units when defining your
application's UI, to ensure proper display on screens with
different densities.

49

Screen Sizes and Densities

http://developer.android.com/resources/dashboard/screens.html

Data of
February 1st
2012

50

Support of multiple
versions

Marco Ronchetti
Università degli Studi di Trento

51

http://android-developers.blogspot.it/2010/07/how-
to-have-your-cupcake-and-eat-it-too.html

http://android-developers.blogspot.it/2010/06/
future-proofing-your-app.html

52

Fragments

Marco Ronchetti
Università degli Studi di Trento

53

Fragments
http://developer.android.com/guide/topics/
fundamentals/fragments.html

54

Services

Marco Ronchetti
Università degli Studi di Trento

55

Service
An application component that can perform long-running operations in the
background and does not provide a user interface.

Another application component can start a service and it will continue to run
in the background even if the user switches to another application.

Additionally, a component can bind to a service to interact with it and even
perform interprocess communication (IPC). For example, a service might
handle network transactions, play music, perform file I/O, or interact with a
content provider, all from the background.

Caution: A service runs in the main thread of its hosting process—the service
does not create its own thread and does not run in a separate process (unless
you specify otherwise).
If your service is going to do any CPU intensive work or blocking operations
(such as MP3 playback or networking), you should create a new thread
within the service to do that work. By using a separate thread, you will
reduce the risk of Application Not Responding (ANR) errors and the
application's main thread can remain dedicated to user interaction with your
activities.

56

Service

A service can essentially take two forms:

Started
 A service is "started" when an application component (such as an activity) starts it by calling
startService(). Once started, a service can run in the background indefinitely, even if the component
that started it is destroyed. Usually, a started service performs a single operation and does not return
a result to the caller. For example, it might download or upload a file over the network. When the
operation is done, the service should stop itself.
Bound
 A service is "bound" when an application component binds to it by calling bindService(). A bound
service offers a client-server interface that allows components to interact with the service, send
requests, get results, and even do so across processes with interprocess communication (IPC). A
bound service runs only as long as another application component is bound to it. Multiple
components can bind to the service at once, but when all of them unbind, the service is destroyed.

Although this documentation generally discusses these two types of services separately, your service
can work both ways—it can be started (to run indefinitely) and also allow binding. It's simply a
matter of whether you implement a couple callback methods: onStartCommand() to allow
components to start it and onBind() to allow binding.

Regardless of whether your application is started, bound, or both, any application component can
use the service (even from a separate application), in the same way that any component can use an
activity—by starting it with an Intent. However, you can declare the service as private, in the
manifest file, and block access from other applications.

57

Service lifecycle

58

 int mStartMode; // indicates how to behave if the service is killed
 IBinder mBinder; // interface for clients that bind
 boolean mAllowRebind; // indicates whether onRebind should be used

public void onCreate()
 // The service is being created
 public int onStartCommand(Intent intent, int flags, int startId) {
 // The service is starting, due to a call to startService()
public IBinder onBind(Intent intent) {
 // A client is binding to the service with bindService()
public boolean onUnbind(Intent intent) {
 // All clients have unbound with unbindService()
public void onRebind(Intent intent) {
 // A client is binding to the service with bindService(),
 // after onUnbind() has already been called
public void onDestroy() {
 // The service is no longer used and is being destroyed

59

Adapters:
a deeper insight

Marco Ronchetti
Università degli Studi di Trento

60

http://developer.android.com/resources/tutorials/
views/index.html

http://developer.android.com/resources/samples/
ApiDemos/src/com/example/android/apis/view/
index.html

http://developer.android.com/training/improving-
layouts/index.html

http://developer.android.com/guide/topics/ui/
declaring-layout.html

61

Basic UI elements:
Hello i18N

Marco Ronchetti
Università degli Studi di Trento

62

http://developer.android.com/resources/tutorials/
localization/index.html

63

The Zygote
http://coltf.blogspot.com/p/android-os-processes-
and-zygote.html

64

http://www.slideshare.net/RanNachmany/manipulating-
android-tasks-and-back-stack

http://www.vogella.de/articles/Android/article.html

http://www.vogella.de/articles/AndroidInternals/
article.html

http://benno.id.au/blog/2007/11/13/android-under-the-
hood

http://blog.vlad1.com/2009/11/19/android-hacking-
part-1-of-probably-many/

65

http://www.slideshare.net/retomeier/being-epic-
best-practices-for-building-android-apps

66

Fragment
A Fragment represents a behavior or a portion of user interface in an Activity. You can
combine multiple fragments in a single activity to build a multi-pane UI and reuse a
fragment in multiple activities. You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own input events, and which you can
add or remove while the activity is running (sort of like a "sub activity" that you can
reuse in different activities).

A fragment must always be embedded in an activity and the fragment's lifecycle is
directly affected by the host activity's lifecycle. For example, when the activity is
paused, so are all fragments in it, and when the activity is destroyed, so are all
fragments. However, while an activity is running (it is in the resumed lifecycle state),
you can manipulate each fragment independently, such as add or remove them. When
you perform such a fragment transaction, you can also add it to a back stack that's
managed by the activity—each back stack entry in the activity is a record of the
fragment transaction that occurred. The back stack allows the user to reverse a
fragment transaction (navigate backwards), by pressing the Back button.

When you add a fragment as a part of your activity layout, it lives in a ViewGroup
inside the activity's view hierarchy and the fragment defines its own view layout. You
can insert a fragment into your activity layout by declaring the fragment in the
activity's layout file, as a <fragment> element, or from your application code by adding
it to an existing ViewGroup. However, a fragment is not required to be a part of the
activity layout; you may also use a fragment without its own UI as an invisible worker
for the activity.

67

View
the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive UI components (buttons, text fields, etc.)

68

Broadcast receiver
A broadcast receiver is a component that responds to system-
wide broadcast announcements. Many broadcasts originate from
the system—for example, a broadcast announcing that the screen
has turned off, the battery is low, or a picture was captured.
Applications can also initiate broadcasts—for example, to let
other applications know that some data has been downloaded to
the device and is available for them to use. Although broadcast
receivers don't display a user interface, they may create a status
bar notification to alert the user when a broadcast event occurs.
More commonly, though, a broadcast receiver is just a "gateway"
to other components and is intended to do a very minimal
amount of work. For instance, it might initiate a service to
perform some work based on the event.

A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an Intent
object. For more information, see the BroadcastReceiver class.

69

Content Provider
Content providers manage access to a structured set of data. They
encapsulate the data, and provide mechanisms for defining data security.
Content providers are the standard interface that connects data in one
process with code running in another process.

When you want to access data in a content provider, you use the
ContentResolver object in your application's Context to communicate with
the provider as a client. The ContentResolver object communicates with the
provider object, an instance of a class that implements ContentProvider. The
provider object receives data requests from clients, performs the requested
action, and returns the results.

You don't need to develop your own provider if you don't intend to share
your data with other applications. However, you do need your own provider
to provide custom search suggestions in your own application. You also need
your own provider if you want to copy and paste complex data or files from
your application to other applications.

Android itself includes content providers that manage data such as audio,
video, images, and personal contact information. You can see some of them
listed in the reference documentation for the android.provider package.

70

Best practices

Marco Ronchetti
Università degli Studi di Trento

71

http://developer.android.com/guide/practices/
design/performance.html

72

Screen properties

Marco Ronchetti
Università degli Studi di Trento

73

Android design
http://developer.android.com/design/index.html

