Preferences

Marco Ronchetti
Universita degli Studi di Trento

SharedPreferences

SharedPreferences allows to save and retrieve
persistent key-value pairs of primitive data types. This
data will persist across user sessions (even if your
application is killed).

RS
. . A method
getSharedPreferences(String name, int mode) | of Contex
- Uses multiple preferences files identified by name, which you specity !

with the first parameter.

A method
getPreferences|() of Activity

- Use this if you need only one preferences file for your Activity. This
simply calls the underlying getSharedPreferences(String, int) method by
passing in this activity's class name as the preferences name

SharedPreferences methods

boolean contains(String key)
Checks whether the preferences contains a preference.

l Value returned

T getT(String key, T defValue) If key does not exist

Retrieve a T value from the preferences where T={int,
float, boolean, long, String, Set<String>}.

SharedPreferences.Editor edit()

All changes you make in an editor are batched, and
not copied back to the original SharedPreferences until
you call commit() or apply()

P
j

<

SharedPreferences.Editor methods

Void apply(), boolean commity()

Commit your preferences changes back (apply is
asymchromous)p

Editor putT(String key, T value)

Stores a T value in the preferences where T={int, float,
boolean, long, String, Set<String>}.

Editor remove(String key)

Mark in the editor that a preference value should be
removed

Editor clear ()
Mark in the editor that all preference values should be

P removed

i

User Preferences

Shared preferences are not strictly for saving "user
preferences," such as what ringtone a user has chosen.

For creating user preferences for your application, you
should use PreferenceActivity, which provides an
Activity framework for you to create user preferences,
which will be automatically persisted (using shared
preferences).

It is based on Fragments

Threads

Marco Ronchetti
Universita degli Studi di Trento

Threads

When an application is launched, the system creates a thread of
execution for the application, called "main” or “UI thread”

This thread dispatches events to the user interface widgets, and
draws (uses the android.widget and android.view packages).

Unlike Java AWT/Swing, separate threads are NOT created
automatically.

Methods that respond to system callbacks (such as onKeyDown() to

report user actions or a lifecycle callback method) always run in the
Ul thread.

If everything is happening in the UI thread, performing lon
operations such as network access or database queries will block the
whole UL. When the thread is blocked, no events can be dispatched,
including drawing events. From the user's perspective, the
application appears to hang.

If the Ul thread is blocked for more than 5 sec the user is presented
with the” ANR - application not responding” dialog.

the Andoid Ul toolkit is not thread-safe !

Consequence:

you must not manipulate your Ul from a worker
thread — all manipulation to the user interface must be
done within the UI thread.

You MUST respect these rules:
Do not block the UI thread

Do not access the Android UI toolkit from outside
the UI thread

An example from android developers

public void onClick(View v) { WRONG!
Bitmap b = loadImageFromNetwork(.

Potentiall
"http;//example.com/image.png"); e Slow ’
Operation!

mylmageView.setimageBitmap(b);

public void onClick(View v) {

new Thread(new Runnable() |
public void run() {
Bitmap b = loadImageFromNetwork(
"http://example.com/image.png");
myImageView.setImageBitmap(b); WRONG!
) - A non Ul thread

accesses the Ul!

.start();

Still not the solution...

public void onClick(View v) {
Bitmap b;

new Thread(new Runnable() {
public void run() {
b = loadImageFromNetwork(

"http://example.com/image.png");
)

start(); WRONG!
myImageView.setimageBitmap(b); - This does not wait for the

thread to finish!

public boolean post (Runnable action)
e Causes the Runnable to be sent to the Ul thread and to be run
therein. It is invoked on a View from outside of the Ul thread.

public boolean postDelayed (Runnable action, long delayMillis)

public void onClick(View v) {

new Thread(new Runnable() |
public void run() {
Bitmap b = loadImageFromNetwork(
"http://example.com/image.png");
mylmageView.post(

new Runnable() {

public void run() { . OK! This code will
mylmageView.setImageBitmap(bitmap) ;e[be run in
} } the Ul thread
) ‘
.start();

| O

Java reminder: varargs

void {(String pattern, Object... arguments);

The three periods after the final parameter's type
indicate that the final argument may be passed

dasS an array or
das a sequence of arguments.

Varargs can be used only in the final argument
position.
Object a, b, ¢, d[10];

f(“nello”,d);
f(“hello”,a.b,c);

Varargs example

public class Test {
public static void main(String args[]){ new Test(); }

Test(){
String k[]={"uno","due","tre"};
f("hello" k);
f("hello",”alpha”,“beta”);
// f("hello”,“alpha”,“beta” k); THIS DOES NOT WORK!

}

void f(String s, String... d){
System.out.println(d.length);
for (String k:d) {

System.out.println(k);

AsyncTask<Params,Progress,Result>

Creates a new asynchronous task. The constructor
must be invoked on the UI thread.

AsyncTask must be subclassed, and instantiated in the
UI thread.

Methods to be overridden:

void onPreExecute() Ul Thread before
Result dolnBackground(Parames...) Separate new

thread during
void onProgressUpdate(Progress...) Ul Thread

£, void onPostExecute (Result) Ul Thread after

The more elegant solution

public void onClick(View v) {
new DownloadImageTask().execute("http://example.com/image.png");

}

private class DownloadImageTask extends AsyncTask<String, Void, Bitmap> { NS
protected Bitmap doInBackground(String... urls) {
return loadImageFromNetwork(urls[0]);

}

protected void onPostExecute(Bitmap result) {
mylmageView.setImageBitmap(result);

}

}

package it.unitn.science.latemar;
import ...

public class AsyncDemoActivity extends ListActivity {

private static final String[] item{"uno","due","tre","quattro",
"cinque","sei”, "sette","otto","nove",

"dieci","undici","dodici",};

. AsyncDemo

@QOverride

public void onCreate(Bundle savedInstanceState) { e
super.onCreate(savedInstanceState); due
ListView listView = getListView(); tre

quattro

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
new ArrayList<String>()));

new AddStringTask().execute();

} Adapted from the source code of

r

) This is an inner class!
class AddStringTask extends AsyncTask<Void, String, Void> {
@Override
protected Void doInBackground(Void... unused) {
for (String item : items) { @Override
publishProgress(item); protected void onPostExecute(Void unused) {
SystemClock.sleep(1000); Toast
| .makeText(AsyncDemoActivity.this,
"Done!", Toast. LENGTH_SHORT)
return(null); .
.show();
} |
@SuppressWarnings("unchecked") }
@QOverride }

protected void onProgressUpdate(String... item) {
((ArrayAdapter<String>)getListAdapter()).add(item[0]);

. AsyncDemo

Hello World, AsyncDemoActivity!

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http./schemas.android.com/apk/res/android"
android:layout_width="fill parent"

L

android:layout_height="fill_parent" public class AsyncDemoActivity?2
android:orientation="vertical" > extends Activity {
ProgressBar pb;
<TextView @Override
android:layout_width="fill_parent" public void onCreate(Bundle state) {
android:layout_height="wrap_content" super.onCreate(state);
android:text="@string/hello" /> setContentView(R.layout.main);
<ProgressBar pb=(ProgressBar) findViewById(R.id.pb1);
android:id="@+id/pb1" new AddStringTask().execute();
android:max="10" }

android:layout_width="fill parent"

android:layout_height="wrap_content"

style="@android:style/Widget.ProgressBar.Horizontal"

android:layout_marginRight="5dp" />
</LinearLayout>

I

Using the ProgressBar

class AddStringTask extends AsyncTask<Void, Integer, Void> {
@Override
protected void doInBackground(Void... unused) {
int item=0;
while (item<10){
publishProgress(++item);
SystemClock.sleep(1000);

}

}
@Qverride

protected void onProgressUpdate(Integer... item) {
pb.setProgress(item[0]);

}

}

Basic Ul elements:

Defining Activity Ul in the
code

Marco Ronchetti
Universita degli Studi di Trento

& 9:05

Ul Programatically

Hello, This is a view created programmatically!

public class UIThroughCode extends Activity {
LinearLayout ILayout;
TextView tView;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ILayout = new LinearLayout(this);
ILayout.setOrientation(LinearLayout.VERTICAL);
ILayout.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,
LayoutParams. MATCH_PARENT));
tView = new TextView(this);
tView.setText("Hello, This is a view created programmatically! ”)");
tView.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,
LayoutParams.WRAP_CONTENT));
ILayout.addView(tView);
setContentView(lLayout);

From http://saigeethamn.blogspot.it

4 =]

Basic Ul elements:
Menus, a deeper insight

Marco Ronchetti
Universita degli Studi di Trento

. SimpleMenu

This is Activity Al

Clicks :1

public class Al extends Activity {

public boolean onCreateOptionsMenu(Menu menu){

super.onCreateOptionsMenu(menu);
int base=Menu.FIRST;
Menultem item1=menu.add(base,1,1,"Increase");

Increase
Menultem item2=menu.add(base,2,2,"Decrease");

Decrease
return true;

} < Menu is created
public boolean onOptionsItemSelected(Menultem item) { In code

}

public boolean onCreateOptionsMenu(Menu menu){
super.onCreateOptionsMenu(menu);

<

Menulnflater inflater = getMenulnflater(); <

inflater.inflate(R.menu.option_menu, menu);
return true;

A |s |p |F | |0 |y |k [L |&
2z [x [c v [In[w] [#)
I P I P P

Menu is created
From XML

GMOM

option_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http.;//schemas.android.com/apk/res/android">
<item android:id="@+id/increase"
android:title="@string/increase" />
<item android:id="@+id/decrease"
android:title="@string/decrease" />

</menu>

v = res
» (= drawable-hdpi
b (= drawable-ldpi
» (= drawable-mdpi
b (= layout
¥ = menu
X| options_menu.xml
b (= values
AndroidManifest.xml

Dynamically changing menu
Menu onPrepareOptionsMenu() (Activity class).

you get the Menu object as it currently exists, and you
can modify it (add, remove, or disable items).

Android < 3.0:

the system calls onPrepareOptionsMenu() each time
the user opens the options menu.

Android >= 3.0

- When you want to perform a menu update, you
must call invalidateOptionsMenu() to request that
the system calls onPrepareOptionsMenuy().

Traditional menus are awkward on a small screen.

Three stages menus:

—

BALLOONS BIKES ANDROIDS PASTRIES

A

| Popup Menu ~
E¥http//www.google.com/... |4
Henry IV (1)
Web Images Places News e ®
Henry V
GO \)8l€ Henry VIl
a e
[nstant (beta) is off: Richard 11l
Merchant of Venice
? Seattle, WA -
Othello
K
Reply a" ing Lear
O %

New window Bookmarks

o

Windows

O

Option Menu (< 3.0) / Action Bar (>=3.0)————
Context Menu (< 3.0) / Contextual Action mode(>=3.0)

~ Forward

GMOM

Ferrari

McLaren

Red Bull

~

| LONG
CLICK

Edit

Save

Delete

View

CLICK

& 10:07
Ferrari

McLaren

Red Bull

Sorry, deleting Red Bull is not allowed

O

context menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu
xmlns:android="http,//schemas.android.com/apk/res/android">
<item android:id="@+id/edit"
android:title="@string/edit" />

<item android:id="@+id/save"
android:title="@string/save" />

<item android:id="@+id/delete"
android:title="@string/delete" />

<item android:id="@+id/view")

. qan . : V& res

android:title="@string/view" /> » (= drawable-hdpi

</menu> » (= drawable-ldpi
b (= drawable-mdpi
b (= layout
¥ (= menu
X| context_menu.xml
b (= values

Strings

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">ShowContextMenu</string>

<string name="app_name">Context Menu Example</string>
<string name="edit">Edit</string>
<string name="save">Save</string>

<string name="delete">Delete</string>

<string name="view">View</string>

<string-array name="names">

<item>Ferrari</item> v & res
<item>McLaren</item> ¥ (= drawable-hdpi

» (= drawable-Idpi

<item>Red Bull</item> b i drawablarodp!
</string-array> > (= layout
</resources> > g anu
v (= values
X] strings.xml

1 AndroidManifest.xm|

ContextMenu

public class ShowContextMenu extends ListActivity {
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,

getResources().getStringArray(R.array.names)));

registerForContextMenu(getListView());
}

public void onCreateContextMenu(ContextMenu menu,

View v, ContextMenulnfo menulnfo) {
super.onCreateContextMenu(menu, v, menulnfo);
Menulnflater inflater = getMenulnflater();
inflater.inflate(R.menu.context_menu, menu);

Responding to event

public boolean onContextIltemSelected(Menultem item) {
AdapterContextMenulnfo info =
(AdapterContextMenulnfo) item.getMenulnfo();
String[] names = getResources().getStringArray(R.array.names);
switch(item.getltemId()) {
case R.id.delete:
Toast.makeText(this,
Toast t=Toast.makeText(this, "Sorry, deleting " +
((TextView)info.targetView).getText()
+ " is not allowed", Toast LENGTH_LONG).show();

return true; 'T‘ 3.5 sec

-
default:
Toast.makeText(this, "You have chosen the " + item.getTitle() +
" context menu option for " + names|(int)info.id],
Toast. LENGTH_SHORT).show(); 2

return true;

2
A
B
C
0
E
F
G
H
|

_.’f" Lorensius\ @

| LUKAS

| '
1 1IKAS RIINMAH

N<XET<C~HvwmnOv

displays contextual actions in a list view

Not (yet) a standard API!
For a hint in the implementation see

GMOM

& 10:34

Ferrari

McLaren

Red Bull

Ferrari

McLaren ‘

Red Bull

|LONG
CLICK

X McLaren

Context Menu Exa
Save
Ferrari

Delete
McLaren

View

Red Bull

Sorry, deleting McLaren is not allowed

CLICK g

X McLaren

Ferrari

McLaren

Red Bull

Ferrari

McLaren

Red Bull

You have chosen the Save context menu
option for McLaren

Contextual action mode

public class ShowContextMenu extends ListActivity {
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,

getResources().getStringArray(R.array.names)));
//registerForContextMenu(getListView());
ListView listView=getListView();
final Context ctx=this;
listView.setChoiceMod(ListView.CHOICE_MODE_MULTIPLE_MODAL);
listView.setMultiChoiceModeListener(new MultiChoiceModeListener() {

)

MultiChoiceModel.istener

listView.setMultiChoiceModeListener(new MultiChoiceModeListener() {
public boolean onCreate ActionMode(ActionMode mode, Menu menu) {
Menulnflater inflater = getMenulnflater();
inflater.inflate(R.menu.context_menu, menu);
mode.setTitle("selection");
return true; | .

}
public void onDestroy ActionMode(ActionMode mode) {

// Here you can make any necessary updates to the activity when

// the CAB is removed. By default, selected items are deselected/unchecked
}
public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
// Here you can perform updates to the CAB due to an invalidate() request
return true;

MultiChoiceModel.istener

public void onltemCheckedStateChanged(ActionMode mode,
int position, long id, boolean checked) {

// Here you can do something when items are selected/de-selected,
// such as update the title in the CAB
String[] names = getResources().getStringArray(R.array.names);

if (checked) mode.setTitle(names[position]);

MultiChoiceModel.istener

public boolean onActionltemClicked(ActionMode mode, Menultem item) {
switch(item.getItemlId()) {
case R.id.delete:
Toast t=Toast.makeText(ctx, "Sorry, deleting " +
mode.getTitle() +" is not allowed”, Toast LENGTH_LONG);
t.show();
mode.finish();

return true;
default:
Toast.makeText(ctx, "You have chosen the " + item.getTitle() +
" context menu option for " + mode.getTitle(),
Toast. LENGTH_LONG).show();
mode.finish();
return true;

. PopupMenu

Hello World, PopupMenuT!

Click me

. PopupMenu

Hello World, PopupMenu!

Click me
Next
Previous

List

. PopupMenu
Hello World, PopupMenu1!

Click me

Clicked popup menu item Previous

O

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http;/schemas.android.com/apk/res/

android">
<item android:id="@+id/next" <?xml version="1.0" encoding="utf-8"?>
android:title="@string/next" /> <LinearLayout xmlns:android=
<item android:id="@+id/previous" "hgi’-'/ﬁ‘i'hemas-“"‘;”‘l’jd- C(’l’lﬂ/“Pk/ res/android"
C g . . android:layout_width="fill_parent"
android:title="@string/previous" /> androi d:laiout:height= {}i ll__limren o
<item android:id="@+id/list" android:orientation="vertical" >
android:title="@string/list" /> <TextView
</menu> android:layout_wi.dth=”ftll _parent"
android:layout_height="wrap_content"
android:text="@string/hello" />
<Button
android:id="@+id/button1"
<?xml version="1.0" encoding="utf-8"?> android:layout_width="wrap_content"
<resources> android:layout_height="wrap_content"
<string name="hello">Hello World, PopupMenul!</string> android:onClick="showPopup"
<string name="app_name">PopupMenu</string> android:text="Click me" />
<string name="next">Next</string> </LinearLayout>

<string name="previous">Previous</string>
<string name="list">List</string>
</resources>

4 ©Mel

|
public class PopupMenul extends Activity {
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void showPopup(View button) {
PopupMenu popup = new PopupMenu(this, button);
popup.getMenulnflater().inflate(R.menu.popup, popup.getMenuy());

popup.setOnMenultemClickListener(new
PopupMenu.OnMenultemClickListener() {

public boolean onMenultemClick(Menultem item) {
Toast.makeText(PopupMenul.this, "Clicked popup menu item " +
item.getTitle(), Toast. LENGTH_LONG).show();

return true;

}

)
popup.show();

}

4 [©Mom

Notification

Marco Ronchetti
Universita degli Studi di Trento

! Status Bar Notification
Send Notification

Cancel

’: New Alert, Click Me!

! Status Bar Notification
Send Notification

Cancel Notification

u Status Bar Notification

Send Notification

Cancel Notification

March 20, 2012

Notification Details... 11:41 AM
Browse Android Official Site by clicking me

Android

0]

B www.android.com

Discover Android
Browse Devices
Get Apps
Develop Apps

Q

Introducing Google Play

Introducing Android 4.0, Ice
Cream Sandwich

Android 4.0 brings an entirely new look and feel.
The lock screen, widgets, notifications, multi-
tasking and everything in between has been

SimpleNotification

public class SimpleNotification extends Activity {
private NotificationManager nm;
private int SIMPLE_NOTIFICATION_ID;
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

final Notification notifyDetails = new Notification(
R.drawable.android," New Alert, Click Me!",
System.currentTimeMillis());

Button cancel = (Button)findViewBylId(R.id.cancelButton);

cancel.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

nm.cancel(SIMPLE_NOTIFICATION_ID);

il

Adapted from http://saigeethamn.blogspot.it

SimpleNotification — part 2

Button start = (Button)findViewBylId(R.id.notifyButton);
start.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
Context context = getApplicationContext();
CharSequence contentTitle = "Notification Details...";

CharSequence contentText = "Browse Android Site by clicking me";

Intent notifyIntent = new Intent
(android.content.Intent. ACTION_VIEW,

Uri.parse("http//www.android.com"));

PendingIntent intent =

PendinglIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
android.content.Intent. FLAG_ACTIVITY NEW_TASK);

notifyDetails.setLatestEventInfo(context, contentTitle,
contentText, intent);
nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);

}

Screen properties

Marco Ronchetti
Universita degli Studi di Trento

Screen related terms and concepts

Resolution The total number of physical pixels on a screen. When
addin supEort for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen,; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

P
j

u;

Screen Sizes and Densities

Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
xlarge at least 960dp x 720dp
large at least 640dp x 480dp
normal at least 470dp x 320dp
small at least 426dp x 320dp

A set of four generalized densities:
Low density (120 dpi), ldpi
Medium density (160 dpi), mdpi
High density (240 dpi), hdpi
ﬁ.Extra high density (320 dpi), xhdpi

47

Density-independent pixel (dp)

A virtual pixel unit that you should use when defining Ul
layout, to express layout dimensions or position in a
density-independent way.

The density-independent pixel is equivalent to one physical
pixel on a 160 dpi screen, (baseline for a "medium" density
J

screen).

At runtime, the system transparently handles any scaling
of the dp units based on the actual density of the screen in
use.

px=dp * (dpi / 160). E.g.: on a 240 dpi screen, 1 dp equals
1.5 physical pixels.

You should always use dp units when defining your

application's Ul, to ensure proper display on screens with
different densities.

Screen Sizes and Densities

\dpi | mdpl | hdpl | xhdpl Normal / Idpi
2.5%
67.1% 1. Normal / mdpi

Normal / xhdpi

Data of e — Small / Idpi

February 1¢ :
2012 ‘Xlarge / mdpi

Large / |dpi
Large / mdpi
Normal / hdpi

P N

r. http://developer.android.com/resources/dashboard/screens.html
: “

4

Support of multiple
versions

Marco Ronchetti
Universita degli Studi di Trento

http:/ /android-developers.blogspot.it/2010/07/how-
to-have-your-cupcake-and-eat-it-too.html

http:/ /android-developers.blogspot.it/2010/06/
future-proofing-your-app.html

Fragments

Marco Ronchetti
Universita degli Studi di Trento

Fragments

http:/ /developer.android.com/guide/ topics/
fundamentals/fragments.html

Services

Marco Ronchetti
Universita degli Studi di Trento

Service

An application component that can perform long-running operations in the
background and does not provide a user interface.

Another algplication component can start a service and it will continue to run
in the background even if the user switches to another application.

Additionally, a component can bind to a service to interact with it and even
Eerform interprocess communication (IPC). For example, a service might

andle network transactions, Elay music, perform file I/O, or interact with a
content provider, all from the background.

Caution: A service runs in the main thread of its hosting process — the service
does not create its own thread and does not run in a separate process (unless
you specify otherwise).

If your service is going to do any CPU intensive work or blocking operations
(such as MP3 playback or networking), you should create a new thread
within the service to do that work. By using a separate thread, you will
reduce the risk of AEplication Not Res onging (ANR) errors and the
application's main thread can remain dedicated to user interaction with your
activities.

Service

A service can essentially take two forms:

Started

A service is "started" when an application com]ﬁonent (such as an activity) starts it by calling
startService(). Once started, a service can run in the background indefinitely, even if the component
that started it is destroyed. Usually, a started service performs a single operation and does not return
a result to the caller. For example, it might download or upload a file over the network. When the
operation is done, the service should stop itself.

Bound

A service is "bound" when an application component binds to it by calling bindService(). A bound
service offers a client-server interFace that allows components to interact with the service, send
requests, get results, and even do so across processes with interprocess communication (IPC). A
bound service runs only as long as another application component is bound to it. Multiple
components can bind to the service at once, but when all of them unbind, the service is destroyed.

Although this documentation generally discusses these two types of services separately, your service
can work both ways —it can be started (to run indefinitely) and also allow binding. It's simply a
matter of whether you implement a couple callback methods: onStartCommand() to allow
components to start it and onBind() to allow binding.

Regardless of whether your application is started, bound, or both, any application component can
use the service (even from a separate application), in the same way that any component can use an
activity — by starting it with an Intent. However, you can declare the service as private, in the

manifest file, and block access from other applications.

Service lifecycle

— Lf tme ﬁ

" The service is stopped Al clients unbind by calling '
g by itself or a client unbindService() :

int mStartMode; // indicates how to behave if the service is killed
IBinder mBinder; // interface for clients that bind
boolean mAllowRebind; // indicates whether onRebind should be used

public void onCreate()
// The service is being created
public int onStartCommand (Intent intent, int flags, int startld) {
// The service is starting, due to a call to startService()

public IBinder onBind(Intent intent) {

// A client is binding to the service with bindService()
public boolean onUnbind(Intent intent) {

// All clients have unbound with unbindService()
public void onRebind(Intent intent) {

// A client is binding to the service with bindService(),

// after onUnbind() has already been called

“ public void onDestroy() {
// The service is no longer used and is being destroyed

Adapters:
a deeper insight

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/resources/tutorials /
views/index.html

http:/ /developer.android.com/resources/samples/
ApiDemos/src/com/example/android /apis/view/
index.html

http:/ /developer.android.com/training/improving-
layouts/index.html

http:/ /developer.android.com/guide/topics/ui/
'M declaring-layout.html

i

Basic Ul elements:
Hello i18N

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/resources/ tutorials/
localization/index.html

The Zygote

http:/ / coltt.blogspot.com/p/android-os-processes-
and-zygote.html

http:/ /www.slideshare.net/ RanNachmany/manipulating-
android-tasks-and-back-stack

http:/ /www.vogella.de/articles/ Android /article.html

http:/ /www.vogella.de/articles/ AndroidInternals/
article.html

http:/ /benno.id.au/blog/2007/11/13 /android-under-the-
hood

http:/ /blog.vlad1l.com/2009/11/19/android-hacking-

rm .part—l-of—probably—many /

4

6

http:/ /www.slideshare.net/retomeier/being-epic-
best-practices-for-building-android-apps

Fragment

A Fragment represents a behavior or a portion of user interface in an Activity. You can
combine multiple fragments in a single activity to build a multi-pane UI and reuse a
fragment in multiple activities. You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own input events, and which you can
add or remove while the activity is running (sort of like a "sub activity" that you can
reuse in different activities).

A fragment must always be embedded in an activity and the fragment's lifecycle is
directly affected by the host activity's lifecycle. For example, when the activity is
ausec}ll, so are all fragments in it, and when the activity is destroyed, so are all
ragments. However, while an activity is running (it is in the resumed lifecycle state),
you can manipulate each fragment independently, such as add or remove them. When
you perform such a fragment transaction, you can also add it to a back stack that's
managed by the activity —each back stack entry in the activity is a record of the |
fragment transaction that occurred. The back stack allows the user to reverse a >
fragment transaction (navigate backwards), by pressing the Back button. |
=

When you add a fragment as a part of your activity layout, it lives in a ViewGroup
inside the activity's view hierarchy and the fragment c}l]efines its own view layout. You
can insert a fragment into your activity layout by declaring the fragment in the
activity's layout file, as a <fragment> element, or from your application code by adding
it to an existing ViewGroup. However, a fragment is not required to be a part of the
activity layout; you may also use a fragment without its own Ul as an invisible worker
for the activity.

View

the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive Ul components (buttons, text fields, etc.)

Broadcast receiver

A broadcast receiver is a component that responds to system-
wide broadcast announcements. Many broadcasts originate from
the system — for example, a broadcast announcing that the screen
has turned off, the battery is low, or a picture was captured.
Applications can also initiate broadcasts — for example, to let
other applications know that some data has been downloaded to
the device and is available for them to use. Although broadcast
receivers don't display a user interface, they may create a status
bar notification to alert the user when a broadcast event occurs.
More commonly, though, a broadcast receiver is just a "gateway"
to other components and is intended to do a very minimal
amount of work. For instance, it might initiate a service to
perform some work based on the event.

A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an Intent
object. For more information, see the BroadcastReceiver class.

Content Provider

Content 1providers manage access to a structured set of data. They
encapsulate the data, and provide mechanisms for defining data security.
Content providers are the standard interface that connects data in one
process with code running in another process.

When you want to access data in a content provider, you use the
ContentResolver object in your application's Context to communicate with
the provider as a client. The ContentResolver object communicates with the
provider object, an instance of a class that implements ContentProvider. The
provider object receives data requests from clients, performs the requested
action, and returns the results.

You don't need to develop your own provider if you don't intend to share
your data with other apizl ications. However, you do need your own provider
to provide custom search suggestions in your own application. You also need
your own provider if ﬁou want to copy and paste complex data or files from
your application to other applications.

Android itself includes content providers that manage data such as audio,
video, images, and personal contact information. You can see some of them
listed in the reference documentation for the android.provider package.

Best practices

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/guide/ practices/
design/performance.html

Screen properties

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/design/index.html

GMOM

