Fragments

Fragments

A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

Fragments can be assembled to create an activity during
the application design phase, and added to, or removed
from an activity during application runtime to create a
dynamically changing user interface.

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

|ll

A fragment can be thought of as a functional “sub-activity”
with its own lifecycle similar to that of a full activity.

Using fragments

Method

onAttach()

onCreate()

onCreateView()

onActivityCreated()

onResume()
onPause()

onStop()

Fragments lifecycle

Description

The fragment instance is associated with an activity instance.The activity is not
yet fully initialized

Fragment is created

The fragment instance creates its view hierarchy. The inflated views become part
of the view hierarchy of its containing activity.

Activity and fragment instance have been created as well as thier view hierarchy.

At this point, view can be accessed with the £indViewById () method.
example.

Fragment becomes visible and active.

Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.

Fragment becomes not visible.

Defining a new fragment (from code)

To define a new fragment you either extend the
android.app.Fragment class or one of its
subclasses, for example, ListFragment,

DialogFragment, PreferenceFragment or
WebViewFragment.

Defining a new fragment (from code)

public class DetailFragment extends Fragment ({
@Override
public View onCreateView (,
ViewGroup container, Bundle savedInstanceState) {
View view = .inflate (R.layout.fragment rssitem detail,
container, false);
return view;
}
public void setText(String item) ({
TextView view = (TextView)
getView() . findViewById(R.id.detailsText) ;

view.setText (item) ;

XML-based fragments

<fragment android:id="@+id/fragment one"

android:name="com.example.myfragmentdemo.Fragmen
tOne™"

android:layout width="match parent"
android:layout height="wrap content"
android:layout alignParentLeft="true"
android:layout centerVertical="true"
tools:layout="@layout/fragment one layout" />

Adding-removing fragments at
runtime

 The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your activity.

* Fragments can be dynamically modified via transactions. To dynamically
add fragments to an existing layout you typically define a container in
the XML layout file in which you add a Fragment.

FragmentTransaction ft = getFragmentManager () .beginTransaction () ;
ft.replace(R.id.your placehodler, new YourFragment())

ft.commit () ;

A new Fragment will replace an existing Fragment that was previously
added to the container.

Finding if a fragment is already part of
vour Activity

DetailFragment fragment = (DetailFragment) getFragmentManager ().
findFragmentById(R.id.detail fragqg);

if (fragment==null || ! fragment.isInLayout()) {
// start new Activity
} else {

fragment.update(...);

Communication: activity -> fragment

* |[n order for an activity to communicate with a
fragment, the activity must identify the
fragment object via the ID assigned to it using
the findViewByld() method. Once this
reference has been obtained, the activity can
simply call the public methods of the fragment
object.

Communication: fragment-> activity

e Communicating in the other direction (from
fragment to activity) is a little more complicated.

A) the fragment must define a listener interface,
which is then implemented within the activity
class.

public class MyFragment extends Fragment {
Alistener activityCallback;
public interface AListener {

public void someMethod (int parl, String par2);
}

Communication: fragment-> activity

B. the onAttach() method of the fragment class needs to
be overridden and implemented. The method is
passed a reference to the activity in which the
fragment is contained. The method must store a local

reference to this activity and verify that it implements
the interface.

public void onAttach (Activity activity) {
super .onAttach (activity) ;
try { activityCallback = (AListener) activity;
} catch (ClassCastException e) {
throw new ClassCastException (activity.toString()
+ " must implement ToolbarListener") ;

b}

Communication: fragment-> activity

C. The next step is to call the callback method of
the activity from within the fragment. When and
how this happens is entirely dependent on the
circumstances under which the activity needs to
be contacted by the fragment. For the sake of
an example, the following code calls the callback

method on the activity when a button is clicked:

public void buttonClicked (View view) {

activityCallback.someMethod (argl, arg2?) ;
}

Communication: fragment-> activity

* All that remains is to modify the activity class
so that it implements the ToolbarListener

interface.

public class MyActivity extends FragmentActivity
implements MyFragment.AListener ({

public void someMethod (String argl, int arg2) ({
// Implement code for callback method
}

Esempio

e vedi
http://www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

