
Fragments	

Fragments	

•  A	
 fragment	
 is	
 a	
 self-­‐contained,	
 modular	
 sec5on	
 of	
 an	

applica5on’s	
 user	
 interface	
 and	
 corresponding	
 behavior	

that	
 can	
 be	
 embedded	
 within	
 an	
 ac5vity.	

•  	
 Fragments	
 can	
 be	
 assembled	
 to	
 create	
 an	
 ac5vity	
 during	

the	
 applica5on	
 design	
 phase,	
 and	
 added	
 to,	
 or	
 removed	

from	
 an	
 ac5vity	
 during	
 applica5on	
 run5me	
 to	
 create	
 a	

dynamically	
 changing	
 user	
 interface.	
 	

•  Fragments	
 may	
 only	
 be	
 used	
 as	
 part	
 of	
 an	
 ac5vity	
 and	

cannot	
 be	
 instan5ated	
 as	
 standalone	
 applica5on	
 elements.	

	
 	

•  A	
 fragment	
 can	
 be	
 thought	
 of	
 as	
 a	
 func5onal	
 “sub-­‐ac5vity”	

with	
 its	
 own	
 lifecycle	
 similar	
 to	
 that	
 of	
 a	
 full	
 ac5vity.	
 	

Using	
 fragments	

Fragments	
 lifecycle	

Method Description

onAttach() The fragment instance is associated with an activity instance.The activity is not
yet fully initialized

onCreate() Fragment is created

onCreateView() The fragment instance creates its view hierarchy. The inflated views become part
of the view hierarchy of its containing activity.

onActivityCreated()
Activity and fragment instance have been created as well as thier view hierarchy.
At this point, view can be accessed with the findViewById() method.
example.

onResume() Fragment becomes visible and active.

onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.

onStop() Fragment becomes not visible.

!

Defining	
 a	
 new	
 fragment	
 (from	
 code)	

To	
 define	
 a	
 new	
 fragment	
 you	
 either	
 extend	
 the	

android.app.Fragment	
 class	
 or	
 one	
 of	
 its	

subclasses,	
 for	
 example,	
 ListFragment,	

DialogFragment,	
 PreferenceFragment	
 or	

WebViewFragment.	
 	

Defining	
 a	
 new	
 fragment	
 (from	
 code)	

public class DetailFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_rssitem_detail,

 container, false);
 return view;
 }
 public void setText(String item) {
 TextView view = (TextView)

 getView().findViewById(R.id.detailsText);
 view.setText(item);
 }
}

XML-­‐based	
 fragments	

<RelativeLayout xmlns:android="http://
schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".FragmentDemoActivity" >
<fragment android:id="@+id/fragment_one"
android:name="com.example.myfragmentdemo.Fragmen
tOne"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true"
tools:layout="@layout/fragment_one_layout" />
</RelativeLayout>

Adding-­‐removing	
 fragments	
 at	

run5me	

•  The	
 FragmentManager	
 class	
 and	
 the	
 FragmentTransac5on	
 class	
 allow	

you	
 to	
 add,	
 remove	
 and	
 replace	
 fragments	
 in	
 the	
 layout	
 of	
 your	
 ac#vity.	
 	

	

•  Fragments	
 can	
 be	
 dynamically	
 modified	
 via	
 transac5ons.	
 To	
 dynamically	

add	
 fragments	
 to	
 an	
 exis5ng	
 layout	
 you	
 typically	
 define	
 a	
 container	
 in	

the	
 XML	
 layout	
 file	
 in	
 which	
 you	
 add	
 a	
 Fragment.	
 	

FragmentTransaction ft = getFragmentManager().beginTransaction();
ft.replace(R.id.your_placehodler, new YourFragment());
ft.commit();

	

•  A	
 new	
 Fragment	
 will	
 replace	
 an	
 exis5ng	
 Fragment	
 that	
 was	
 previously	

added	
 to	
 the	
 container.	
 	

	

Finding	
 if	
 a	
 fragment	
 is	
 already	
 part	
 of	

your	
 Ac5vity	

DetailFragment fragment = (DetailFragment) getFragmentManager().
findFragmentById(R.id.detail_frag);

if (fragment==null || ! fragment.isInLayout()) {

 // start new Activity
} else {

 fragment.update(...);
}

Communica5on:	
 ac5vity	
 -­‐>	
 fragment	

•  In	
 order	
 for	
 an	
 ac5vity	
 to	
 communicate	
 with	
 a	

fragment,	
 the	
 ac5vity	
 must	
 iden5fy	
 the	

fragment	
 object	
 via	
 the	
 ID	
 assigned	
 to	
 it	
 using	

the	
 findViewById()	
 method.	
 Once	
 this	

reference	
 has	
 been	
 obtained,	
 the	
 ac5vity	
 can	

simply	
 call	
 the	
 public	
 methods	
 of	
 the	
 fragment	

object.	
 	

Communica5on:	
 fragment-­‐>	
 ac5vity	

•  Communica5ng	
 in	
 the	
 other	
 direc5on	
 (from	

fragment	
 to	
 ac5vity)	
 is	
 a	
 liTle	
 more	
 complicated.	
 	

A)  the	
 fragment	
 must	
 define	
 a	
 listener	
 interface,	

which	
 is	
 then	
 implemented	
 within	
 the	
 ac5vity	

class.	
 	

public class MyFragment extends Fragment {
 AListener activityCallback;
 public interface AListener {

 public void someMethod(int par1, String par2);
 }
 …

Communica5on:	
 fragment-­‐>	
 ac5vity	

B.  the	
 onATach()	
 method	
 of	
 the	
 fragment	
 class	
 needs	
 to	

be	
 overridden	
 and	
 implemented.	
 The	
 method	
 is	

passed	
 a	
 reference	
 to	
 the	
 ac5vity	
 in	
 which	
 the	

fragment	
 is	
 contained.	
 The	
 method	
 must	
 store	
 a	
 local	

reference	
 to	
 this	
 ac5vity	
 and	
 verify	
 that	
 it	
 implements	

the	
 interface.	
 	

	

public void onAttach(Activity activity) {
 super.onAttach(activity);
 try { activityCallback = (AListener) activity;
 } catch (ClassCastException e) {
 throw new ClassCastException(activity.toString()

 + " must implement ToolbarListener");
} }

Communica5on:	
 fragment-­‐>	
 ac5vity	

C.  The	
 next	
 step	
 is	
 to	
 call	
 the	
 callback	
 method	
 of	

the	
 ac5vity	
 from	
 within	
 the	
 fragment.	
 When	
 and	

how	
 this	
 happens	
 is	
 en5rely	
 dependent	
 on	
 the	

circumstances	
 under	
 which	
 the	
 ac5vity	
 needs	
 to	

be	
 contacted	
 by	
 the	
 fragment.	
 For	
 the	
 sake	
 of	

an	
 example,	
 the	
 following	
 code	
 calls	
 the	
 callback	

method	
 on	
 the	
 ac5vity	
 when	
 a	
 buTon	
 is	
 clicked:	
 	

public void buttonClicked(View view) {
 activityCallback.someMethod(arg1, arg2);
}	

Communica5on:	
 fragment-­‐>	
 ac5vity	

•  All	
 that	
 remains	
 is	
 to	
 modify	
 the	
 ac5vity	
 class	

so	
 that	
 it	
 implements	
 the	
 ToolbarListener	

interface.	

public class MyActivity extends FragmentActivity
implements MyFragment.AListener {
 public void someMethod(String arg1, int arg2) {

 // Implement code for callback method
 }

.

.
}	

Esempio	

•  vedi	

hTp://www.vogella.com/tutorials/
AndroidFragments/ar5cle.html	

sez.	
 10	

