
Factory Mind s. c. - www.factorymind.com

Programmazione di sistemi

mobili e tablet
Android Development

Carlo Menapace – carlo.menapace@factorymind.com

Jonny Fox



Factory Mind s. c. - www.factorymind.com

TODAY’S ROADMAP



Factory Mind s. c. - www.factorymind.com

INTENT

You can start another activity by calling startActivity(), passing it an Intent that describes 

the activity you want to start. The intent specifies either the exact activity you want to 

start or describes the type of action you want to perform.

Intent intent = new Intent(this, NewActivity.class);

startActivity(intent);

An intent can also carry a small amounts of data to be used by the new activity.

Intent.putExtra(parameterIdentifier, parameter);

Best paractices tell us that the parameter identifier must be composed by 

PACKAGE NAME + OUR PARAMETER IDENTIFIER



Factory Mind s. c. - www.factorymind.com

INTENT

In order to use your new activity, you have to declare it in the manifest file so that it could be accessible to the 

system. To declare your activity, open your manifest file and add an <activity> element as a child of 

the <application> element. For example:

<activity android:name="ActivityName" />

Once done this, your application should work correctly (If there aren’t errors in it )



Factory Mind s. c. - www.factorymind.com

LISTVIEW

A ListView is a ViewGroup that creates a list of scrollable items. 

In order to insert elements into the list we have to use a ListAdapter.  Based on the item’s detail that we have

to show, it is possible to use different Adapters:

• Extends our activity with ListActivity instead of Activity. In this way we are going to use a ready to use 

layout; each row of this layout is composed by a TextView that we can access using android.R.id.text1.

• Create a customized layout and programmatically implement what is needed. For this it is possibile to 

use:

• SimpleAdapter (simple is just the name, we have to create a List<Map<String,String>> )

• ArrayAdapter<ObjectOfItemsToInsertInOurList>

In the next slides we are going to see how does those Adapters works.



Factory Mind s. c. - www.factorymind.com

LISTVIEW – Extension approach

Public class Lesson01ListActivity extends ListActivity{

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

String[] arrayOfResources = {"Article1", "Article2", "Article3"};

setListAdapter(new ArrayAdapter<String>(getApplicationContext(), 

android.R.layout.simple_list_item_1, arrayOfResources));

}

}

Note that adopting this approach we can not customize the Activity layout. We can however

customize the list row layout so that it is possibile to visualize every object we want.



Factory Mind s. c. - www.factorymind.com

LISTVIEW – SimpleAdapter
public class TestActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

ListView lv= (ListView)findViewById(R.id.listView);

//create the grid item mapping

String[] from = {"text"};

int[] to =  {android.R.id.text1};

// prepare the list of all records

List<HashMap<String, String>> fillMaps = new ArrayList<HashMap<String, String>>();

for(int i = 0; i < 100; i++){

HashMap<String, String> map = new HashMap<String, String>();

map.put("text","Articolo"+i );

fillMaps.add(map);

}

SimpleAdapter adapter = new SimpleAdapter(this, fillMaps, android.R.layout.simplelist_item_1, from, to);

lv.setAdapter(adapter);

}

}

This approach is quite complex since, in order to prepare a list we have to set up a HashMap. For each item we

want to use we have to create a map so that we can associate the resource with the object we want to add.



Factory Mind s. c. - www.factorymind.com

LISTVIEW – ArrayAdapter
public class TestActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

//...

list.setAdapter(new CustomAdapter(getApplicationContext(), listOfArticles));

}

private class ItemsSimpleAdapter extends ArrayAdapter<String> {

private ArrayList<String> articles;

public ItemsSimpleAdapter(Context context, int layoutId, ArrayList<String> articles) {

super(context, layoutId, articles);

this.articles = articles;

}

@Override

public View getView(int position, View view, ViewGroup parent) {

LayoutInflater vi = (LayoutInflater) getSystemService(Context.LAYOUT_INFLATER_SERVICE);

view = vi.inflate(R.layout.listrowlayout, null);

Article article = articles.get(position);

//Set items

return view;

}}



Factory Mind s. c. - www.factorymind.com

TODAY’S ROADMAP

• HANDS ON!

You have to create an Android Application 

composed by 2 Activities that interact

passing between them some parameters. 

The first activity (let’s call it A) accepts in 

input a String and an Integer. When we

start the second Activity (let’s call it B) we

are going to use those parameters in order

to: 

• Say Welcome 

• Create a list of Items with the given

number.



Factory Mind s. c. - www.factorymind.com

ADVANCED EXERCISE

• HANDS ON +1

Instead of creating a list of 

strings, create a list of Objects

composed by an Image and a 

String. 

Suggestion: Create a class named

Article with attributes image and  

description. 



Factory Mind s. c. - www.factorymind.com

WOULD YOU LIKE A TOAST?

A toast notification is a message that pops up on the surface of the window. It only fills the amount of space

required for the message and the user's current activity remains visible and interactive. The notification

automatically fades in and out, and does not accept interaction events.

We can print on our device whatever (STRING) we want in this way:

Toast.makeText(getApplicationContext(), stringWeWantToPrint, Toast.LENGHT_LONG).show();

The result of a Toast is something like this:


