
1

Notification

Marco Ronchetti
Università degli Studi di Trento

2

Pending Intent
A PendingIntent is a token that you give to another
application, which allows it to use the permissions of
your application to execute a predefined piece of code.

Intent notificationIntent = new Intent(this, MyClass.class);
PendingIntent contentIntent =
PendingIntent.getActivity(this, 0, notificationIntent, 0);
notification.setLatestEventInfo(context, "Title",

 "something went wrong", contentIntent);

3

Notification Bar

PULL
DOWN

4

SimpleNotification
public class SimpleNotification extends Activity {
 private NotificationManager nm;
 private int SIMPLE_NOTIFICATION_ID;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 final Notification notifyDetails = new Notification(

 R.drawable.android,"New Alert, Click Me!",
 System.currentTimeMillis());

 Button cancel = (Button)findViewById(R.id.cancelButton);
 cancel.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 nm.cancel(SIMPLE_NOTIFICATION_ID);
 }});}

Adapted from http://saigeethamn.blogspot.it

5

SimpleNotification – part 2
 Button start = (Button)findViewById(R.id.notifyButton);
 start.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 Context context = getApplicationContext();
 CharSequence contentTitle = "Notification Details...";

 CharSequence contentText = "Browse Android Site by clicking me";
 Intent notifyIntent = new Intent
 (android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.android.com"));
 PendingIntent intent =

 PendingIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
 android.content.Intent.FLAG_ACTIVITY_NEW_TASK);

 notifyDetails.setLatestEventInfo(context, contentTitle,
 contentText, intent);

 nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);
 }
 });
 }}

6

Flags
int DEFAULT_ALL Use all default values (where applicable).
int DEFAULT_LIGHTS Use the default notification lights.
int DEFAULT_SOUND Use the default notification sound.
int DEFAULT_VIBRATE Use the default notification vibrate.

Bit to be bitwise-ored into the flags field
int FLAG_AUTO_CANCEL

•  should be set if the notification should be canceled when it is clicked by the user.
int FLAG_FOREGROUND_SERVICE
•  should be set if this notification represents a currently running service.
int FLAG_HIGH_PRIORITY

•  should be set if this notification represents a high-priority event that may be shown to the user even
if notifications are otherwise unavailable (that is, when the status bar is hidden).

int FLAG_INSISTENT

•  if set, the audio will be repeated until the notification is cancelled or the notification window is
opened.

int FLAG_NO_CLEAR

•  should be set if the notification should not be canceled when the user clicks the Clear all button.
int FLAG_ONGOING_EVENT
•  should be set if this notification is in reference to something that is ongoing, like a phone call.
int FLAG_ONLY_ALERT_ONCE

•  should be set if you want the sound and/or vibration play each time the notification is sent, even if it
has not been canceled before that.

int FLAG_SHOW_LIGHTS

•  should be set if you want the LED on for this notification.

7

Broadcast receivers

Marco Ronchetti
Università degli Studi di Trento

8

Bradcast receiver
a component that responds to system-wide broadcast
announcements.
Many broadcasts originate from the system—for example, a
broadcast announcing that the screen has turned off, the
battery is low, or a picture was captured.
Applications can initiate broadcasts—e.g. to let other
applications know that some data has been downloaded to
the device and is available for them to use.
Broadcast receivers don't display a user interface, but they
can crate a status bar notification.
More commonly, a broadcast receiver is just a "gateway" to
other components and is intended to do a very minimal
amount of work e.g. it might initiate a service.

9

Broadcast receiver

>adb shell
date +%s
1332793443
date -s +%s 1332793443
time 1332793443 -> 1332793443.0
settimeofday failed Invalid argument

public class MyBroadcastReceiver extends BroadcastReceiver {
 …
 public void onReceive(Context context, Intent intent) {

 …
 }
}

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package=”…I” android:versionCode=”1” android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <receiver android:name=".MyBroadcastReceiver">

 <intent-filter>
 <action android:name="android.intent.action.TIME_SET”/>
 </intent-filter>

 </receiver>
 </application>
 <uses-sdk android:minSdkVersion="13" />
</manifest>

Adapted from saigeethamn.blogspot.it

10

Broadcast receiver
public class MyBroadcastReceiver extends BroadcastReceiver {
 private NotificationManager nm;
 private int SIMPLE_NOTFICATION_ID;

 @Override
 public void onReceive(Context context, Intent intent) {
 nm = (NotificationManager) context.getSystemService

 (Context.NOTIFICATION_SERVICE);
 Notification n= new Notification(R.drawable.android,"Time Reset!",

 System.currentTimeMillis());
 PendingIntent myIntent = PendingIntent.getActivity(context, 0,

 new Intent(Intent.ACTION_VIEW, People.CONTENT_URI), 0);
 n.setLatestEventInfo(context, "Time has been Reset",

 "Click on me to view Contacts", myIntent);
 n|= Notification.FLAG_AUTO_CANCEL;
 n|= Notification.DEFAULT_SOUND;
 nm.notify(SIMPLE_NOTFICATION_ID, n);
 Log.i(getClass().getSimpleName(),"Sucessfully Changed Time");
 }
}

Adapted from saigeethamn.blogspot.it

11

Sending broadcast events
(in Context)
sendBroadcast (Intent intent, String
receiverPermission)
Broadcast the given intent to all interested
BroadcastReceivers, allowing an optional required
permission to be enforced.
This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.
No results are propagated from receivers and receivers
can not abort the broadcast.

12

Sending ordered broadcast events
(in Context)
sendOrderedBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, delivering them one at a time to
allow more preferred receivers to consume the
broadcast before it is delivered to less preferred
receivers.
This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.

13

LocalBroadcastManager
Helper to register for and send broadcasts of Intents to
local objects within your process.
Advantages of Local vs Global B.M.:
•  the data you are broadcasting will not leave your

app
•  (you don't need to worry about leaking private

data).
•  it is not possible for other applications to send these

broadcasts to your app
•  (you don't need to worry about having security

holes)
•  it is more efficient than sending a global broadcast

through the system.

14

Services

Marco Ronchetti
Università degli Studi di Trento

15

Service
An application component that can perform long-
running operations in the background and does not
provide a user interface.

So, what’s different from a Thread?

a)  Services are declared in the Manifest
b)  Services can be exposed to other processes
c)  Services do not need to be connected with an

Activity

16

Service

A service can essentially take two forms:

Started
•  A service is "started" when an application component (such as an activity) starts it by calling

startService(). Once started, a service can run in the background indefinitely, even if the
component that started it is destroyed. Usually, a started service performs a single operation and
does not return a result to the caller. For example, it might download or upload a file over the
network. When the operation is done, the service should stop itself.

Bound
•  A service is "bound" when an application component binds to it by calling bindService(). A

bound service offers a client-server interface that allows components to interact with the service,
send requests, get results, and even do so across processes with interprocess communication
(IPC). A bound service runs only as long as another application component is bound to it.
Multiple components can bind to the service at once, but when all of them unbind, the service is
destroyed.

Although this documentation generally discusses these two types of services separately, your service
can work both ways—it can be started (to run indefinitely) and also allow binding. It's simply a
matter of whether you implement a couple callback methods: onStartCommand() to allow
components to start it and onBind() to allow binding.

Regardless of whether your application is started, bound, or both, any application component can
use the service (even from a separate application), in the same way that any component can use an
activity—by starting it with an Intent.
However, you can declare the service as private, in the manifest file, and block access from other
applications.

17

Service lifecycle

18

A simple service skeleton

import ...
public class SimpleService extends Service {
 public IBinder onBind(Intent arg0) {

 return null;
 }
 public void onCreate() {

 super.onCreate();
 Toast.makeText(this,"Service created ...", Toast.LENGTH_LONG).show();

 }
 public void onDestroy() {

 super.onDestroy();
 Toast.makeText(this, "Service destroyed ...", Toast.LENGTH_LONG).show();

 }
}

}

Adapted from saigeethamn.blogspot.it

19

Using our simple service
import ...
public class SimpleServiceController extends Activity {
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Button start = (Button)findViewById(R.id.serviceButton);
 Button stop = (Button)findViewById(R.id.cancelButton);
 start.setOnClickListener(startListener);
 stop.setOnClickListener(stopListener);
 }
 private OnClickListener startListener = new OnClickListener() {
 public void onClick(View v){
 startService(new Intent(SimpleServiceController.this,SimpleService.class));
 }};
 private OnClickListener stopListener = new OnClickListener() {
 public void onClick(View v){
 stopService(new Intent(SimpleServiceController.this,SimpleService.class));
 }};
}

}

Adapted from saigeethamn.blogspot.it

20

Service methods and IVs
 int mStartMode; // indicates how to behave if the service is killed
 IBinder mBinder; // interface for clients that bind
 boolean mAllowRebind; // indicates whether onRebind should be used

public void onCreate()
•  The service is being created
public int onStartCommand(Intent intent, int flags, int startId) {
•  The service is starting, due to a call to startService()
public IBinder onBind(Intent intent) {
•  A client is binding to the service with bindService()
public boolean onUnbind(Intent intent) {
•  All clients have unbound with unbindService()
public void onRebind(Intent intent) {
•  A client is binding to the service with bindService() after onUnbind() has been

called
public void onDestroy() {
•  The service is no longer used and is being destroyed

21

IntentService
a subclass for Services that handle asynchronous requests
(expressed as Intents) on demand.

Clients send requests through startService(Intent) calls; the
service is started as needed, handles each Intent in turn using a
worker thread, and stops itself when it runs out of work.

"work queue processor" pattern

To use it, extend IntentService and implement
onHandleIntent(Intent). IntentService will receive the Intents,
launch a worker thread, and stop the service as appropriate.

All requests are handled on a single worker thread -- they may
take as long as necessary (and will not block the application's
main loop), but only one request will be processed at a time.

22

A full example
part 1: introduction
and essential classes

Marco Ronchetti
Università degli Studi di Trento

23

A full example

Code adapted
from an example
on StackOverflow

Get the Eclipse project from
http://latemar.science.unitn.it/segue_userFiles/2012Mobile/ServiceFullDemo.zip
(project declares Api version 13, even though an older one, like 8, would be fine)

24

Binder
Base class for a remotable object.

the core part of a lightweight remote procedure call
mechanism defined by the interface IBinder.

This class is an implementation of IBinder that
provides the standard support creating a local
implementation of such an object.

25

Parcel
A Parcel is a serialized object. It can contain both
flattened data that will be unflattened on the other
side of the IPC, and references to live iBinder objects
that will result in the other side receiving a proxy
IBinder connected with the original IBinder in the
Parcel.

Parcel is not a general-purpose serialization
mechanism. This class (and the corresponding
Parcelable API for placing arbitrary objects into a
Parcel) is designed as a high-performance IPC
transport.

26

Bundle
A mapping from String values to various Parcelable
types.

27

Handler
allows you to send and process Message and Runnable
objects associated with a thread's MessageQueue.
Each Handler instance is associated with a single thread
and that thread's message queue.
When you create a new Handler, it is bound to the thread/
message queue of the thread that is creating it -- from that
point on, it will deliver messages and runnables to that
message queue and execute them as they come out of the
message queue.
Handlers are used to
(1)  to schedule messages and runnables to be executed as

some point in the future;
(2)  to enqueue an action to be performed on a different

thread than your own.

void handleMessage(Message msg)

28

Message
Defines a message containing a description and arbitrary data
object that can be sent to a Handler.
It contains two extra int fields and an extra object field that allow
you to not do allocations in many cases.

To create one, it’s best to use a factory method: Message.obtain()

Fields
Object obj
•  An arbitrary object to send to the recipient.
Messenger replyTo
•  Optional Messenger where replies to this message can be sent.
int what
•  User-defined message code so that the recipient can identify

what this message is about.
setData(Bundle b)
•  Sets a Bundle of arbitrary data values.

Bundle: a type of Parcel,

29

Messenger
Reference to a Handler, which others can use to send
messages to it. This allows for the implementation of
message-based communication across processes, by
creating a Messenger pointing to a Handler in one
process, and handing that Messenger to another
process.

30

ServiceConnection
Interface for monitoring the state of an application
service.

void onServiceConnected(ComponentName name, IBinder service)

•  Called when a connection to the Service has been
established, with the IBinder of the communication
channel to the Service.

void onServiceDisconnected(ComponentName name)

•  Called when a connection to the Service has been
lost.

31

java.util.Timer and TimerTask
Timer
facility for threads to schedule tasks for future
execution in a background thread. Tasks may be
scheduled for one-time execution, or for repeated
execution at regular intervals.
schedule(TimerTask task, Date time)
scheduleAtFixedRate(TimerTask task, Date firstTime, long period)

TimerTask
A task that can be scheduled for one-time or repeated
execution by a Timer.
public abstract void run()

32

A full example
part 2:
service implementation

Marco Ronchetti
Università degli Studi di Trento

33

MyService
public class MyService extends Service {
 private Timer timer = new Timer();
 private int counter = 0, incrementby = 1;
 final Messenger mMessenger = new Messenger(new Handler() {…}};
 ArrayList<Messenger> mClients = new ArrayList<Messenger>();
 static final int MSG_REGISTER_CLIENT = 1;
 static final int MSG_UNREGISTER_CLIENT = 2;
 static final int MSG_SET_INT_VALUE = 3;
 static final int MSG_SET_STRING_VALUE = 4;
 private static boolean isRunning = false;
 public static boolean isRunning() {return isRunning; }
 public void onCreate() {…}
 public int onStartCommand(Intent intent, int flags, int startId) {…}
 public IBinder onBind(Intent intent){…}
 public void onDestroy() {…}
}

34

Create Messenger – MyService
 final Messenger mMessenger = new Messenger(new Handler() {
 // Handler of incoming messages from clients.
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MSG_REGISTER_CLIENT:
 mClients.add(msg.replyTo);
 break;
 case MSG_UNREGISTER_CLIENT:
 mClients.remove(msg.replyTo);
 break;
 case MSG_SET_INT_VALUE:
 incrementby = msg.arg1;
 break;
 default:
 super.handleMessage(msg);
 }
 }
 });

35

onCreate - MyService
public void onCreate() {
 super.onCreate();
 Log.i("MyService", "Service Created.");
 Toast.makeText(this,"Service Created", Toast.LENGTH_LONG).show();
 timer.scheduleAtFixedRate(new TimerTask(){ public void run() {
 Log.i("TimerTick", "Timer doing work." + counter);
 try {
 counter += incrementby;
 sendMessageToUI(counter);
 } catch (Throwable t) {Log.e("TimerTick", "Timer Tick Failed.", t); }
 }}, 0, 100L);
 isRunning = true;
 }

36

sendMessageToUI - onCreate - MyService
private void sendMessageToUI(int intvaluetosend) {
 for (int i=mClients.size()-1; i>=0; i--) {
 try {
 // Send data as an Integer
 mClients.get(i).send(Message.obtain(null,

 MSG_SET_INT_VALUE, intvaluetosend, 0));
 //Send data as a String
 Bundle b = new Bundle();
 b.putString("str1", "ab" + intvaluetosend + "cd");
 Message msg = Message.obtain(null, MSG_SET_STRING_VALUE);
 msg.setData(b);
 mClients.get(i).send(msg);
 } catch (RemoteException e) {
 // The client is dead. Remove it from the list;
 //we are going through the list from back to front so this is safe
 //to do inside the loop.
 mClients.remove(i);
 }
 }
 }

37

onStartCommand – onDestroy - My Service
 public int onStartCommand(Intent intent, int flags, int startId) {
 Log.i("MyService", "Received start id " + startId + ": " + intent);
 Toast.makeText(this,"Service started"+ startId ,

 Toast.LENGTH_LONG).show();
 return START_STICKY; // run until explicitly stopped.
 }

 public void onDestroy() {
 super.onDestroy();
 if (timer != null) {timer.cancel();}
 counter=0;
 Log.i("MyService", "Service Stopped.");
 Toast.makeText(this,"Service Stopped ", Toast.LENGTH_LONG).show();
 isRunning = false;
 }

 public IBinder onBind(Intent intent) {
 return mMessenger.getBinder();
 }

38

ServiceFullDemoActivity
public class ServiceFullDemoActivity extends Activity {
 Button btnStart, btnStop, btnBind, btnUnbind, btnUpby1, btnUpby10;
 TextView textStatus, textIntValue, textStrValue;
 Messenger mService = null;
 boolean mIsBound;
 final Messenger mMessenger = new Messenger(new Handler() {…});
 private ServiceConnection mConnection = new ServiceConnection() {…};
 public void onCreate(Bundle savedInstanceState) {…}
 protected void onDestroy() {…}
}

39

A full example
part 3:
activity implementation

Marco Ronchetti
Università degli Studi di Trento

40

Create Messenger – Activity
 final Messenger mMessenger = new Messenger(new Handler() {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MyService.MSG_SET_INT_VALUE:
 textIntValue.setText("Int Message: " + msg.arg1);
 break;
 case MyService.MSG_SET_STRING_VALUE:
 String str1 = msg.getData().getString("str1");
 textStrValue.setText("Str Message: " + str1);
 break;
 default:
 super.handleMessage(msg);
 }
 }
 });

41

Create ServiceConnection
private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 mService = new Messenger(service);
 textStatus.setText("Attached.");
 try {
 Message msg = Message.obtain(null, MyService.MSG_REGISTER_CLIENT);
 msg.replyTo = mMessenger;
 mService.send(msg);
 } catch (RemoteException e) {
 // In this case the service has crashed before we could even do anything with it
 }
 }

 public void onServiceDisconnected(ComponentName className) {
 // This is called when the connection with the service has been
 // unexpectedly disconnected - process crashed.
 mService = null;
 textStatus.setText("Disconnected.");
 }
 };

42

bind - unbind
void doBindService() {
 bindService(new Intent(this, MyService.class), mConnection, Context.BIND_AUTO_CREATE);
 mIsBound = true;

 textStatus.setText("Binding.");
 }
 void doUnbindService() {
 if (mIsBound) {
 // If we have received the service, and registered with it, then now is the time to unregister.
 if (mService != null) {

 try {
 Message msg = Message.obtain(null, MyService.MSG_UNREGISTER_CLIENT);
 msg.replyTo = mMessenger;
 mService.send(msg);
 } catch (RemoteException e) {// nothing special to do if the service has crashed.
 }

 }
 // Detach our existing connection.
 unbindService(mConnection);
 mIsBound = false;
 textStatus.setText("Unbinding.");
 }
 }

43

OnCreate
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 btnStart = (Button)findViewById(R.id.btnStart);
 btnStop = (Button)findViewById(R.id.btnStop);
 btnBind = (Button)findViewById(R.id.btnBind);
 btnUnbind = (Button)findViewById(R.id.btnUnbind);
 textStatus = (TextView)findViewById(R.id.textStatus);
 textIntValue = (TextView)findViewById(R.id.textIntValue);
 textStrValue = (TextView)findViewById(R.id.textStrValue);
 btnUpby1 = (Button)findViewById(R.id.btnUpby1);
 btnUpby10 = (Button)findViewById(R.id.btnUpby10);

 btnStart.setOnClickListener(btnStartListener);
 btnStop.setOnClickListener(btnStopListener);
 btnBind.setOnClickListener(btnBindListener);
 btnUnbind.setOnClickListener(btnUnbindListener);
 btnUpby1.setOnClickListener(btnUpby1Listener);
 btnUpby10.setOnClickListener(btnUpby10Listener);

 restoreMe(savedInstanceState);

 //If the service is running when the activity starts, we want to automatically bind to it.
 if (MyService.isRunning()) {
 doBindService() ;
}

44

Listeners
private OnClickListener btnStartListener = new OnClickListener() {
 public void onClick(View v){
 startService(new Intent(ServiceFullDemoActivity.this, MyService.class));
 }
 };
 private OnClickListener btnStopListener = new OnClickListener() {
 public void onClick(View v){
 doUnbindService();
 stopService(new Intent(ServiceFullDemoActivity.this, MyService.class));
 }
 };
 private OnClickListener btnBindListener = new OnClickListener() {
 public void onClick(View v){
 doBindService();
 }
 };
 private OnClickListener btnUnbindListener = new OnClickListener() {
 public void onClick(View v){
 doUnbindService();
 }
 };

45

Listeners
 private OnClickListener btnUpby1Listener = new OnClickListener() {
 public void onClick(View v){
 sendMessageToService(1);
 }
 };
 private OnClickListener btnUpby10Listener = new OnClickListener() {
 public void onClick(View v){
 sendMessageToService(10);
 }
 };
 private void sendMessageToService(int intvaluetosend) {
 if (mIsBound) {
 if (mService != null) {
 try {
 Message msg = Message.obtain(null, MyService.MSG_SET_INT_VALUE, intvaluetosend, 0);
 msg.replyTo = mMessenger;
 mService.send(msg);
 } catch (RemoteException e) {
 }
 }
 }
 }

46

onSaveInstanceState
 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putString("textStatus", textStatus.getText().toString());
 outState.putString("textIntValue", textIntValue.getText().toString());
 outState.putString("textStrValue", textStrValue.getText().toString());
 }
 private void restoreMe(Bundle state) {
 if (state!=null) {
 textStatus.setText(state.getString("textStatus"));
 textIntValue.setText(state.getString("textIntValue"));
 textStrValue.setText(state.getString("textStrValue"));
 }
 }

47

Manifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.exampleservice"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"

 android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".MyService"></service>
 </application>
 <uses-sdk android:minSdkVersion="13" />
</manifest>

48

Running service in processes
You can specify a process name with a colon in front

<service android:name=".MyService"
android:process=:myprocessname ></service>

Your service will then run as a different process - thus in a
different thread.

You can set this attribute so that each component runs in its
own process or so that some components share a process
while others do not.

You can also set it so that components of different
applications run in the same process—provided that the
applications share the same Linux user ID and are signed
with the same certificates.

49

Exercizes
1) Please have a look at the code on StackOverflow,
from where this code was extracted and adapted.

It uses also a Notification.

2) Try to have run multiple instances of the activity
accessing the service:
a)  Activating intent associated to the notification
b)  Writing yourself a second similar activity that uses

the service, and switching between the two
activities via the home

http://stackoverflow.com/questions/4300291/
example-communication-between-activity-and-
service-using-messaging

50

Content Providers

Marco Ronchetti
Università degli Studi di Trento

51

Content Provider
The Content provider design allows applications to
share data through a standard set of programming
interfaces.

And it's extensible: You can create your own custom
content provider to share your data with other
packages that works just like the built-in providers.

52

Default content providers
•  Contacts

•  Stores all contacts information. etc

•  Call Log Stores
•  call logs, for example: missed calls, answered calls. etc.

•  Browser
•  Use by browser for history, favorites. etc.

•  Media Store
•  Media files for Gallery, from SD Card. etc.

•  Setting
•  Phone device settings. etc.

1. Starting from API Level 5, Contacts Provider is
deprecated and superceded by ContactsContract.

53

Querying a Content Provider
To query a content provider, you provide a query string in the form
of a URI, with an optional specifier for a particular row, using the
following syntax:

<standard_prefix>://<authority>/<data_path>/<id>

For example, to retrieve all the bookmarks stored by your web
browsers (in Android), you would use the following content URI:

content://browser/bookmarks

Similarly, to retrieve all the contacts stored by the Contacts
application, the URI would look like this:

content://contacts/people

To retrieve a particular contact, you can specify the URI with a
specific ID:

content://contacts/people/3

54

package it.unitn.science.latemar;

import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.CallLog.Calls;
import android.util.Log;

public class ContentProviderActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Uri allCalls = Uri.parse("content://call_log/calls");
 Cursor c = managedQuery(allCalls, null, null, null, null);
 if (c.moveToFirst()) {
 do{
 String callType = "";
 switch (Integer.parseInt(c.getString(
 c.getColumnIndex(Calls.TYPE))))
 {
 case 1: callType = "Incoming";
 break;
 case 2: callType = "Outgoing";
 break;
 case 3: callType = "Missed";
 }
 Log.v("Content Providers",
 c.getString(c.getColumnIndex(Calls._ID)) + ", " +
 c.getString(c.getColumnIndex(Calls.NUMBER)) + ", " +
 callType) ;
 } while (c.moveToNext());
 }

 }
}

55

Error!
E/AndroidRuntime(541): java.lang.RuntimeException:
Unable to start activity ComponentInfo{it.unitn.science.latemar/
it.unitn.science.latemar.ContentProviderActivity}:
 java.lang.SecurityException: Permission Denial: opening provider
com.android.providers.contacts.CallLogProvider from ProcessRecord{41475a28
541:it.unitn.science.latemar/10041} (pid=541, uid=10041)
requires
android.permission.READ_CONTACTS or
android.permission.WRITE_CONTACTS

56

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="it.unitn.science.latemar"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="13" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".ContentProviderActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission
 android:name="android.permission.READ_CONTACTS">
 </uses-permission>
</manifest>

57

Screen properties

Marco Ronchetti
Università degli Studi di Trento

58

Screen related terms and concepts
Resolution The total number of physical pixels on a screen. When
adding support for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

59

Screen Sizes and Densities
Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
xlarge at least 960dp x 720dp
large at least 640dp x 480dp
normal at least 470dp x 320dp
small at least 426dp x 320dp

A set of four generalized densities:
Low density (120 dpi), ldpi
Medium density (160 dpi), mdpi
High density (240 dpi), hdpi
Extra high density (320 dpi), xhdpi

60

Density-independent pixel (dp)
A virtual pixel unit that you should use when defining UI
layout, to express layout dimensions or position in a
density-independent way.

The density-independent pixel is equivalent to one physical
pixel on a 160 dpi screen, (baseline for a "medium" density
screen).
 At runtime, the system transparently handles any scaling
of the dp units based on the actual density of the screen in
use.
px = dp * (dpi / 160). E.g.: on a 240 dpi screen, 1 dp equals
1.5 physical pixels.
You should always use dp units when defining your
application's UI, to ensure proper display on screens with
different densities.

61

Screen Sizes and Densities

http://developer.android.com/resources/dashboard/screens.html

Data of
February 1st
2012

62

Support of multiple
versions

Marco Ronchetti
Università degli Studi di Trento

63

http://android-developers.blogspot.it/2010/07/how-
to-have-your-cupcake-and-eat-it-too.html

http://android-developers.blogspot.it/2010/06/
future-proofing-your-app.html

64

Fragments

Marco Ronchetti
Università degli Studi di Trento

65

Fragments
http://developer.android.com/guide/topics/
fundamentals/fragments.html

66

Adapters:
a deeper insight

Marco Ronchetti
Università degli Studi di Trento

67

http://developer.android.com/resources/tutorials/
views/index.html

http://developer.android.com/resources/samples/
ApiDemos/src/com/example/android/apis/view/
index.html

http://developer.android.com/training/improving-
layouts/index.html

http://developer.android.com/guide/topics/ui/
declaring-layout.html

68

Basic UI elements:
Hello i18N

Marco Ronchetti
Università degli Studi di Trento

69

http://developer.android.com/resources/tutorials/
localization/index.html

70

The Zygote
http://coltf.blogspot.com/p/android-os-processes-
and-zygote.html

71

http://www.slideshare.net/RanNachmany/manipulating-
android-tasks-and-back-stack

http://www.vogella.de/articles/Android/article.html

http://www.vogella.de/articles/AndroidInternals/
article.html

http://benno.id.au/blog/2007/11/13/android-under-the-
hood

http://blog.vlad1.com/2009/11/19/android-hacking-
part-1-of-probably-many/

72

http://www.slideshare.net/retomeier/being-epic-
best-practices-for-building-android-apps

73

Fragment
A Fragment represents a behavior or a portion of user interface in an Activity. You can
combine multiple fragments in a single activity to build a multi-pane UI and reuse a
fragment in multiple activities. You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own input events, and which you can
add or remove while the activity is running (sort of like a "sub activity" that you can
reuse in different activities).

A fragment must always be embedded in an activity and the fragment's lifecycle is
directly affected by the host activity's lifecycle. For example, when the activity is
paused, so are all fragments in it, and when the activity is destroyed, so are all
fragments. However, while an activity is running (it is in the resumed lifecycle state),
you can manipulate each fragment independently, such as add or remove them. When
you perform such a fragment transaction, you can also add it to a back stack that's
managed by the activity—each back stack entry in the activity is a record of the
fragment transaction that occurred. The back stack allows the user to reverse a
fragment transaction (navigate backwards), by pressing the Back button.

When you add a fragment as a part of your activity layout, it lives in a ViewGroup
inside the activity's view hierarchy and the fragment defines its own view layout. You
can insert a fragment into your activity layout by declaring the fragment in the
activity's layout file, as a <fragment> element, or from your application code by adding
it to an existing ViewGroup. However, a fragment is not required to be a part of the
activity layout; you may also use a fragment without its own UI as an invisible worker
for the activity.

74

View
the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive UI components (buttons, text fields, etc.)

75

Broadcast receiver
A broadcast receiver is a component that responds to system-
wide broadcast announcements. Many broadcasts originate from
the system—for example, a broadcast announcing that the screen
has turned off, the battery is low, or a picture was captured.
Applications can also initiate broadcasts—for example, to let
other applications know that some data has been downloaded to
the device and is available for them to use. Although broadcast
receivers don't display a user interface, they may create a status
bar notification to alert the user when a broadcast event occurs.
More commonly, though, a broadcast receiver is just a "gateway"
to other components and is intended to do a very minimal
amount of work. For instance, it might initiate a service to
perform some work based on the event.

A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an Intent
object. For more information, see the BroadcastReceiver class.

76

Content Provider
Content providers manage access to a structured set of data. They
encapsulate the data, and provide mechanisms for defining data security.
Content providers are the standard interface that connects data in one
process with code running in another process.

When you want to access data in a content provider, you use the
ContentResolver object in your application's Context to communicate with
the provider as a client. The ContentResolver object communicates with the
provider object, an instance of a class that implements ContentProvider. The
provider object receives data requests from clients, performs the requested
action, and returns the results.

You don't need to develop your own provider if you don't intend to share
your data with other applications. However, you do need your own provider
to provide custom search suggestions in your own application. You also need
your own provider if you want to copy and paste complex data or files from
your application to other applications.

Android itself includes content providers that manage data such as audio,
video, images, and personal contact information. You can see some of them
listed in the reference documentation for the android.provider package.

77

Best practices

Marco Ronchetti
Università degli Studi di Trento

78

http://developer.android.com/guide/practices/
design/performance.html

79

Design

Marco Ronchetti
Università degli Studi di Trento

80

Android design
http://developer.android.com/design/index.html

