Notification

Marco Ronchetti
Universita degli Studi di Trento

Pending Intent

A PendinglIntent is a token that you give to another
application, which allows it to use the permissions of
your application to execute a predefined piece of code.

Intent notificationIntent = new Intent(this, MyClass.class);
PendingIntent contentIntent =
PendingIntent.getActivity(this, 0, notificationIntent, 0);
notification.setLatestEventInfo(context, "Title",
"something went wrong", contentIntent);

! Status Bar Notification
Send Notification

Cancel

’: New Alert, Click Me!

! Status Bar Notification
Send Notification

Cancel Notification

u Status Bar Notification

Send Notification

Cancel Notification

March 20, 2012

Notification Details... 11:41 AM
Browse Android Official Site by clicking me

Android

0]

B www.android.com

Discover Android
Browse Devices
Get Apps
Develop Apps

Q

Introducing Google Play

Introducing Android 4.0, Ice
Cream Sandwich

Android 4.0 brings an entirely new look and feel.
The lock screen, widgets, notifications, multi-
tasking and everything in between has been

SimpleNotification

public class SimpleNotification extends Activity {
private NotificationManager nm;
private int SIMPLE_NOTIFICATION_ID;
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

final Notification notifyDetails = new Notification(
R.drawable.android," New Alert, Click Me!",
System.currentTimeMillis());

Button cancel = (Button)findViewBylId(R.id.cancelButton);

cancel.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

nm.cancel(SIMPLE_NOTIFICATION_ID);

il

Adapted from http://saigeethamn.blogspot.it

SimpleNotification — part 2

Button start = (Button)findViewBylId(R.id.notifyButton);
start.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
Context context = getApplicationContext();
CharSequence contentTitle = "Notification Details...";

CharSequence contentText = "Browse Android Site by clicking me";

Intent notifyIntent = new Intent
(android.content.Intent. ACTION_VIEW,

Uri.parse("http//www.android.com"));

PendingIntent intent =

PendinglIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
android.content.Intent. FLAG_ACTIVITY NEW_TASK);

notifyDetails.setLatestEventInfo(context, contentTitle,
contentText, intent);
nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);

}

Flags

int DEFAULT_ALL Use all default values (where applicable).
int DEFAULT LIGHTS Use the default notification lights.

int DEFAULT_SOUND Use the default notification sound.

int DEFAULT_VIBRATE Use the default notification vibrate.

Bit to be bitwise-ored into the flags field
int FLAG_AUTO_CANCEL
should be set if the notification should be canceled when it is clicked by the user.
int FLAG_FOREGROUND_SERVICE
should be set if this notification represents a currently running service.
int FLAG_HIGH_PRIORITY

should be set if this notification represents a high-priority event that may be shown to the user even
if notifications are otherwise unavailable (that is, when the status bar is hidden).

int FLAG_INSISTENT

if set, the audio will be repeated until the notification is cancelled or the notification window is
opened.

int FLAG_NO_CLEAR

should be set if the notification should not be canceled when the user clicks the Clear all button.
int FLAG_ONGOING_EVENT

should be set if this notification is in reference to something that is ongoing, like a phone call.
int FLAG_ONLY_ALERT_ONCE

should be set if you want the sound and/or vibration play each time the notification is sent, even if it
m has not been canceled before that.

lint FLAG_SHOW_LIGHTS
. i should be set if you want the LED on for this notification.

6

Broadcast receivers

Marco Ronchetti
Universita degli Studi di Trento

Bradcast receiver

a component that responds to system-wide broadcast
announcements.

Many broadcasts originate from the system — for example, a
broadcast announcing that the screen has turned off, the
battery is low, or a picture was captured.

Applications can initiate broadcasts —e.g. to let other
applications know that some data has been downloaded to
the device and is available for them to use.

\ VRN

Broadcast receivers don't display a user interface, but they
can crate a status bar notification.

More commonly, a broadcast receiver is just a "gateway" to

P other components and is intended to do a very minimal
P amount of work e.g. it might initiate a service.

8

BN A
)

public class MyBroadcastReceiver extends BroadcastReceiver {

public void onReceive(Context context, Intent intent) {
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

) package="...I” android:versionCode="1" android:versionName="1.0">
} <application android:icon="@drawable/icon" android:label="@string/app_name" >

<receiver android:name=".MyBroadcastReceiver">
<intent-filter>
<action android:name="android.intent.action.TIME_SET”/>
</intent-filter>
</receiver>
</application>
<uses-sdk android:minSdkVersion="13" />
</manifest>

>adb shell

date +%s

1332793443

date -s +%s 1332793443

time 1332793443 -> 1332793443.0
settimeofday failed Invalid argument

r Adapted from saigeethamn.blogspot.it

public class MyBroadcastReceiver extends BroadcastReceiver {
private NotificationManager nm;
private int SIMPLE_NOTFICATION_ID;

@QOverride
public void onReceive(Context context, Intent intent) {
nm = (NotificationManager) context.getSystemService
(Context. NOTIFICATION_SERVICE);
Notification n= new Notification(R.drawable.android,"Time Reset!",
System.currentTimeMillis());
PendingIntent myIntent = PendingIntent.getActivity(context, 0,
new Intent(Intent. ACTION_VIEW, People. CONTENT_URI), 0);
n.setLatestEventInfo(context, "Time has been Reset",
"Click on me to view Contacts", mylIntent);
n | = Notification.FLAG_AUTO_CANCEL;
n | = Notification.DEFAULT_SOUND;
nm.notify(SIMPLE_NOTFICATION_ID, n);
Log.i(getClass().getSimpleName(),"Sucessfully Changed Time");

}
}

r

Adapted from saigeethamn.blogspot.it

GMOM

Sending broadcast events

(in Context)

sendBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, allowing an optional required
permission to be enforced.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.

No results are propagated from receivers and receivers
can not abort the broadcast.

Sending ordered broadcast events

(in Context)

sendOrderedBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, delivering them one at a time to
allow more preferred receivers to consume the
broadcast before it is delivered to less preferred
recelvers.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are

m run.

LocalBroadcastManager

Helper to register for and send broadcasts of Intents to
local objects within your process.

Advantages of Local vs Global B.M.:

the data you are broadcasting will not leave your
app

(you don't need to worry about leaking private
data).

it is not possible for other applications to send these
broadcasts to your app

(you don't need to worry about having security
holes)

it is more efficient than sending a global broadcast
through the system.

Services

Marco Ronchetti
Universita degli Studi di Trento

Service

An application component that can perform long-
running operations in the background and does not
provide a user interface.

So, what’s different from a Thread?

a) Services are declared in the Manifest
b) Services can be exposed to other processes

¢) Services do not need to be connected with an
Activity

Service

A service can essentially take two forms:

Started

A service is "started" when an application component (such as an activity) starts it by calling
startService(). Once started, a service can run in the background indefinitely, even if the
component that started it is destroyed. Usually, a started service performs a single operation and
does not return a result to the caller. For example, it might download or upload a file over the
network. When the operation is done, the service should stop itself.

Bound

A service is "bound" when an application component binds to it by calling bindService(). A

bound service offers a client-server interface that allows components to interact with the service,

send requests, get results, and even do so across processes with interprocess communication

(IPC). A bound service runs only as long as another a}l))plication component is bound to it.

10\1/Iultiple Cfomponents can bind to the service at once, but when all of them unbind, the service is
estroyed.

Although this documentation generally discusses these two ty(fes of services separately, your service
can work both ways —it can be started (to run indefinitely) and also allow binding. It's simply a
matter of whether you implement a couple callback methods: onStartCommand|() to allow
components to start it and onBind() to allow binding.

Regardless of whether your application is started, bound, or both, any application component can
use the service (even from a separate application), in the same way that any component can use an
activity — by starting it with an Intent.

However, you can declare the service as private, in the manifest file, and block access from other
applications.

Service lifecycle

. The service is stopped Al clients unbind by calling |
‘ by itself or a client :

Stop Service

import ...
public class SimpleService extends Service {
public IBinder onBind(Intent arg0) {

return null;

Service created ...

}
public void onCreate() {

super.onCreate();
Toast.makeText(this,"Service created ...", Toast. LENGTH_LONG).show();

}
public void onDestroy() {

super.onDestroy/();
Toast.makeText(this, "Service destroyed ...", Toast. LENGTH_LONG).show();

i
}
r Adapted from saigeethamn.blogspot.it @ ® |

import ...
public class SimpleServiceController extends Activity { B service
protected void onCreate(Bundle savedInstanceState) { Start Service

super.onCreate(savedInstanceState); S

setContentView(R.layout.main);
Button start = (Button)findViewByld(R.id.serviceButton);
Button stop = (Button)findViewByld(R.id.cancelButton);
start.setOnClickListener(startListener);
stop.setOnClickListener(stopListener);
}
private OnClickListener startListener = new OnClickListener() {
public void onClick(View v){
startService(new Intent(SimpleServiceController.this,SimpleService.class));
I
private OnClickListener stopListener = new OnClickListener() {
public void onClick(View v){

stopService(new Intent(SimpleServiceController.this,SimpleService.class));

H
} Adapted from saigeethamn.blogspot.it D

Service methods and IVs

int mStartMode; // indicates how to behave if the service is killed
IBinder mBinder; // interface for clients that bind
boolean mAllowRebind; // indicates whether onRebind should be used

public void onCreate()
The service is being created
public int onStartCommand(Intent intent, int flags, int startld) {

The service is starting, due to a call to startService()
public IBinder onBind(Intent intent) {

A client is binding to the service with bindService()
public boolean onUnbind(Intent intent) {

All clients have unbound with unbindService()
public void onRebind(Intent intent) {

A client is binding to the service with bindService() after onUnbind() has been
called

public void onDestroy/() {
.. The service is no longer used and is being destroyed

IntentService

a subclass for Services that handle asynchronous requests
(expressed as Intents) on demand.

Clients send requests through startService(Intent) calls; the
service is started as needed, handles each Intent in turn using a
worker thread, and stops itself when it runs out of work.

"work queue processor" pattern

To use it, extend IntentService and implement
onHandlelntent(Intent). IntentService will receive the Intents,
launch a worker thread, and stop the service as appropriate.

All requests are handled on a single worker thread -- they may
take as long as necessary (and will not block the application's
main loop), but only one request will be processed at a time.

A full example

part 1: introduction
and essential classes

Marco Ronchetti
Universita degli Studi di Trento

Get the Eclipse project from

(project declares Api version 13, even though an older one, like 8, would be fine)

&R v package it.unitn.scienci

B
@ import java.util.Arrayl

public class MyService - .
momgaene | gl ExampleService
private Timer timer .
private int counter
private static bool

ArraylList<Messenger: Stal’t SerViCG StOp SerVice

int mValue = @; //
static final int MS

- .
I&! ExampleService

Start Service Stop Service
static final int MSi |
. . : . mandtuaiidy: Bind to Service Unbind from Service
Bind to Service Unbind from Service final Messenger nie
Attached.

Status Goes Here Int Message: 429
Integer Value Goes Here B " S Message: ab429cd

switch (msg

St”ng Value Goes Here ,-; Increment by 1 Increment by 10

80verride
A public IBinder onBi
return mMesseng

Increment by 1 Increment by 10

Code adapfed S
from an example
on StackOverflow

03-27 17:00:32.437 (1226 |it.unitn. e
03-27 17:00:32.537 1226 | it.unitn.sci
03-27 17:00:32.637 (1226 |it.unitn.sci
03-27 17:00:32.735 1226 it.unitn
03-27 17:00:32.837 1226 it.unitn

03-27 17:00:32.937 1226 | it.unitn.

03-27 17:00:33.037 (1226 |it.unitn.

03-27 17:00:33.138 1226 it. = uotng Work.
03-27 17:00:33.236 (1226 |it.unitn.science...|TimerTick Timer doing work.426

03-27 17:00:33.337 1226 | it.unitn.science... TimerTick Timer doing work.427
03-27 17:00:33.437 (1226 |it.unitn.science... TimerTick Timer doing work.428

LR

4 ©Mom

Binder

Base class for a remotable object.

the core part of a lightweight remote procedure call
mechanism defined by the interface IBinder.

This class is an implementation of IBinder that
provides the standard support creating a local
implementation of such an object.

Parcel

A Parcel is a serialized object. It can contain both
flattened data that will be unflattened on the other
side of the IPC, and references to live iBinder objects
that will result in the other side receiving a proxy
IBinder connected with the original IBinder in the
Parcel.

Parcel is not a general-purpose serialization
mechanism. This class (and the corresponding
Parcelable API for placing arbitrary objects into a
Parcel) is designed as a high-performance IPC
transport.

Bundle

A mapping from String values to various Parcelable
types.

Handler

allows you to send and process Message and Runnable
objects associated with a thread's MessageQueue.

Each Handler instance is associated with a single thread
and that thread's message queue.

When you create a new Handler, it is bound to the thread/
message queue of the thread that is creating it -- from that
point on, it will deliver messages and runnables to that
message queue and execute them as they come out of the
message queue.

Handlers are used to

(1) to schedule messages and runnables to be executed as
some point in the tuture;

(2) to enqueue an action to be performed on a different
> thread than your own.

£W5, void handleMessage(Message msg)

' (v 2 »J.‘
9

\ Vi

Message

Defines a message containilr_llg a description and arbitrary data
object that can be sent to a Handler.

It contains two extra int fields and an extra object field that allow
you to not do allocations in many cases.

To create one, it’s best to use a factory method: Message.obtain()

Fields
Object obj
An arbitrary object to send to the recipient.
Messenger replyTo
Optional Messenger where replies to this message can be sent.
int what

User-defined message code so that the recipient can identity
what this message is about.

m setData(Bundle b) Bundle: a type of Parcel,
Sets a Bundle of arbitrary data values.

Messenger

Reference to a Handler, which others can use to send
messages to it. This allows for the implementation of
message-based communication across processes, by
creating a Messenger pointing to a Handler in one
process, and handing that Messenger to another
process.

ServiceConnection

Interface for monitoring the state of an application
service.

void onServiceConnected(ComponentName name, IBinder service)

Called when a connection to the Service has been
established, with the IBinder of the communication
channel to the Service.

void onServiceDisconnected(ComponentName name)

Called when a connection to the Service has been
lost.

java.util.Timer and TimerTask

Timer

facility for threads to schedule tasks for future
execution in a background thread. Tasks may be

scheduled for one-time execution, or for repeated

execution at regular intervals.

schedule(TimerTask task, Date time)
scheduleAtFixedRate(TimerTask task, Date firstTime, long period)

TimerTask

A task that can be scheduled for one-time or repeated

execution by a Timer.
public abstract void run()

A full example

part 2:
service implementation

Marco Ronchetti
Universita degli Studi di Trento

MyService

public class MyService extends Service {

private Timer timer = new Timer();

private int counter = 0, incrementby =1;
final Messenger mMessenger = new Messenger(new Handler() {...}};

ArrayList<Messenger> mClients = new ArrayList<Messenger>();
static final int MSG_REGISTER_CLIENT =1;

static final int MSG_UNREGISTER_CLIENT = 2;

static final int MSG_SET_INT _VALUE = 3;

static final int MSG_SET_STRING_VALUE =4;

private static boolean isRunning = false;

public static boolean isRunning() {return isRunning; }

public void onCreate() {...}

public int onStartCommand (Intent intent, int flags, int startld) {...}
public IBinder onBind(Intent intent){...}

public void onDestroy() {...}

Create Messenger — MyService

final Messenger mMessenger = new Messenger(new Handler() {
// Handler of incoming messages from clients.
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_REGISTER_CLIENT:
mClients.add(msg.replyTo);
break;
case MSG_UNREGISTER_CLIENT:
mClients.remove(msg.replyTo);
break;
case MSG_SET _INT_VALUE:
incrementby = msg.argl;
break;
default:
super.handleMessage(msg);

}
}

onCreate - MyService

public void onCreate() {

super.onCreate();
Log.i("MyService", "Service Created.");
Toast.makeText(this,"Service Created", Toast. LENGTH _LONG).show();
timer.scheduleAtFixedRate(new TimerTask(){ public void run() {
Log.i("TimerTick", "Timer doing work." + counter);
try |
counter += incrementby;
sendMessageToUI(counter);
} catch (Throwable t) {Log.e("TimerTick", "Timer Tick Failed.", t); }
i}, 0, 100L);
isRunning = true;

sendMessageToUl - onCreate - MyService

private void sendMessageToUI(int intvaluetosend) {
for (int i=mClients.size()-1; i>=0; i--) {
try {
// Send data as an Integer
mClients.get(i).send(Message.obtain(null,
MSG _SET INT VALUE, intvaluetosend, 0));
//Send data as a String
Bundle b = new Bundle();
b.putString("strl", "ab" + intvaluetosend + "cd");
Message msg = Message.obtain(null, MSG_SET _STRING_VALUE);
msg.setData(b);
mClients.get(i).send(msg);
} catch (RemoteException e) {
// The client is dead. Remove it from the list;
//we are going through the list from back to front so this is safe
//to do inside the loop.
mClients.remove(i);

onStartCommand - onDestroy - My Service

public int onStartCommand (Intent intent, int flags, int startld) {
Log.i("MyService", "Received start id " + startld + ": "' + intent);
Toast.makeText(this,"Service started"+ startld ,
Toast. LENGTH_LONG).show();
return START _STICKY; // run until explicitly stopped.

}

public void onDestroy() {
super.onDestroy();
if (timer != null) {timer.cancel();}
counter=0;
Log.i("MyService", "Service Stopped.");
Toast.makeText(this,"Service Stopped ", Toast. LENGTH_LONG).show();
isRunning = false;

}

public IBinder onBind(Intent intent) {
return mMessenger.getBinder();

ServiceFullDemoActivity

public class ServiceFullDemoActivity extends Activity {
Button btnStart, btnStop, btnBind, btnUnbind, btnUpby1, btnUpby10;
TextView textStatus, textIntValue, textStrValue;
Messenger mService = null;

boolean mIsBound;

final Messenger mMessenger = new Messenger(new Handler() {...});

private ServiceConnection mConnection = new ServiceConnection() {...};

public void onCreate(Bundle savedInstanceState) {...}

protected void onDestroy() {...}

A full example

part 3:
activity implementation

Marco Ronchetti
Universita degli Studi di Trento

Create Messenger — Activity

final Messenger mMessenger = new Messenger(new Handler() {
@Override
public void handleMessage(Message msg) {

switch (msg.what) {

case MyService. MSG_SET _INT_VALUE:
textIntValue.setText("Int Message: " + msg.argl);
break;

case MyService MSG_SET_STRING_VALUE:
String strl = msg.getData().getString("str1");
textStrValue.setText("Str Message: " + strl);
break;

default:

super.handleMessage(msg);

Create ServiceConnection

private ServiceConnection mConnection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
mService = new Messenger(service);
textStatus.setText("Attached.");
try {
Message msg = Message.obtain(null, MyService. MSG_REGISTER_CLIENT);
msg.replyTo = mMessenger;
mService.send(msg);
} catch (RemoteException e) {
// In this case the service has crashed before we could even do anything with it

}
}

public void onServiceDisconnected(ComponentName className) {
// This is called when the connection with the service has been
// unexpectedly disconnected - process crashed.
mService = null;
textStatus.setText("Disconnected.");

bind - unbind

void doBindService() {

bindService(new Intent(this, MyService.class), mConnection, Context. BIND_AUTO_CREATE);
mlsBound = true;

textStatus.setText("Binding.");
}

void doUnbindService() {
if (mIsBound) {

// If we have received the service, and registered with it, then now is the time to unregister.
if (mService != null) {

try {
Message msg = Message.obtain(null, MyService MSG_UNREGISTER_CLIENT);
msg.replyTo = mMessenger;
mService.send(msg);

} catch (RemoteException e) {// nothing special to do if the service has crashed.

}
}

// Detach our existing connection.

unbindService(mConnection);
mlIsBound = false;

textStatus.setText("Unbinding.");

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

btnStart = (Button)find ViewByld(R.id.);
btnStop = (Button)findViewById(R.id.);
btnBind = (Button)findViewByld(R.id.);
btnUnbind = (Button)find ViewByld(R.id.);
textStatus = (TextView)find ViewByld(R.id.);

textIntValue = (TextView)find ViewByld(R.id.
textStrValue = (TextView)find ViewByld(R.id.
btnUpby1 = (Button)find ViewByld(R.id.btnUpby1);
btnUpby10 = (Button)find ViewByld(R.id.btnUpby10);

btnStart.setOnClickListener(btnStartListener);
btnStop.setOnClickListener(btnStopListener);
btnBind.setOnClickListener(btnBindListener);
btnUnbind.setOnClickListener(btnUnbindListener);
btnUpby1.setOnClickListener(btnUpby1Listener);
btnUpby10.setOnClickListener(btnUpby10Listener);

restoreMe(savedInstanceState);

'%v ExampleService

Start Service Stop Service

Bind to Service Unbind from Service

Status Goes Here
Integer Value Goes Here
String Value Goes Here

Increment by 1 Increment by 10

/ /1f the service is running when the activity starts, we want to automatically bind to it.

Listeners

private OnClickListener btnStartListener = new OnClickListener() {
public void onClick(View v){
startService(new Intent(ServiceFullDemoActivity.this, MyService.class));

}
Iy
private OnClickListener btnStopListener = new OnClickListener() {
public void onClick(View v){
doUnbindService();
stopService(new Intent(ServiceFullDemoActivity.this, MyService.class));

}
Iy
private OnClickListener btnBindListener = new OnClickListener() {
public void onClick(View v){
doBindService();

}
Iy
private OnClickListener btnUnbindListener = new OnClickListener() {
public void onClick(View v){
doUnbindService();

Listeners

private OnClickListener btnUpbylListener = new OnClickListener() {
public void onClick(View v){
sendMessageToService(1);
}
b
private OnClickListener btnUpby10Listener = new OnClickListener() {
public void onClick(View v){
sendMessageToService(10);
}
b
private void sendMessageToService(int intvaluetosend) {
if (mIsBound) {
if (mService != null) {
try {
Message msg = Message.obtain(null, MyService. MSG_SET_INT_VALUE, intvaluetosend, 0);
msg.replyTo = mMessenger;
mService.send(msg);
} catch (RemoteException e) {

onSavelnstanceState

@Override
protected void onSavelnstanceState(Bundle outState) {
super.onSavelnstanceState(outState);
outState.putString("textStatus", textStatus.getText().toString());
outState.putString("textIntValue", textIntValue.getText().toString());
outState.putString("textStrValue", textStrValue.getText().toString());

}

private void restoreMe(Bundle state) {

if (state!=null) {
textStatus.setText(state.getString("textStatus"));
textIntValue.setText(state.getString("textIntValue"));
textStrValue.setText(state.getString("textStrValue"));

Manifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.exampleservice"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"

android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>
<service android:name=".MyService"></service>
</application>
<uses-sdk android:minSdkVersion="13" />
</manifest>

Running service in processes

You can specity a process name with a colon in front

<service android:name=".MyService"
android:process=:myprocessname ></service>

Your service will then run as a different process - thus in a
different thread.

You can set this attribute so that each component runs in its
own process or so that some components share a process
while others do not.

You can also set it so that components of different
applications run in the same process — provided that the
applications share the same Linux user ID and are signed
AW with the same certificates.

y, i)

Exercizes

1) Please have a look at the code on StackOvertlow,
from where this code was extracted and adapted.

It uses also a Notification.

http://stackoverflow.com/questions/4300291/
example-communication-between-activity-and-
service-using-messaging

2) Try to have run multiple instances of the activity
accessing the service:

a) Activating intent associated to the notification

b) Writing yourself a second similar activity that uses
the service, and switching between the two
activities via the home

Content Providers

Marco Ronchetti
Universita degli Studi di Trento

Content Provider

The Content provider design allows applications to
share data through a standard set of programming
interfaces.

And it's extensible: You can create your own custom
content provider to share your data with other
packages that works just like the built-in providers.

Default content providers

Contacts

Stores all contacts information. etc

Call Log Stores

call logs, for example: missed calls, answered calls. etc.

Browser
Use by browser for history, favorites. etc.

Media Store
Media files for Gallery, from SD Card. etc.

Setting
Phone device settings. etc.

1. Starting from API Level 5, Contacts Provider is
deprecated and superceded by ContactsContract.

Querying a Content Provider

To query a content provider, you provide a query string in the form
of a URI, with an optional specifier for a particular row, using the
following syntax:

<standard_prefix>:/ /<authority>/<data_path>/<id>

For example, to retrieve all the bookmarks stored by your web
browsers (in Android), you would use the following content URI:

content:/ /browser/bookmarks

Similarly, to retrieve all the contacts stored by the Contacts
application, the URI would look like this:

content:/ /contacts/people

To retrieve a particular contact, you can specify the URI with a
specific ID:

P content:/ /contacts/people/3

package it.unitn.science.latemar;

import android.app.Activity;

import android.database.Cursor;
import android.net.Uri;

import android.os.Bundle;

import android.provider.CallLog.Calls;
import android.util. Log;

public class ContentProviderActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Uri allCalls = Uri.parse('content:/ /call_log/calls");
Cursor ¢ = managedQuery(allCalls, null, null, null, null);
if (c.moveToFirst()) {
dof
String callType ="";
switch (Integer.parselnt(c.getString(
c.getColumnIndex(Calls. TYPE))))

{
case 1: callType = "Incoming";
break;
case 2: callType = "Outgoing";
break;
case 3: callType = "Missed";
}

Log.v("Content Providers",
c.getString(c.getColumnIndex(Calls._ID)) + ", " +
c.getString(c.getColumnIndex(Calls. NUMBER)) + ", " +
callType) ;

} while (c.moveToNext());

}
m }
}

L]
54

Error!

E/AndroidRuntime(541): java.lang.RuntimeException:
Unable to start activity ComponentInfo{it.unitn.science.latemar/

it.unitn.science.latemar.ContentProviderActivity}:

java.lang.SecurityException: Permission Denial: opening provider

com.android.providers.contacts.CallLogProvider from ProcessRecord{41475a28
541:it.unitn.science.latemar/10041} (pid=541, uid=10041)
requires

android.permission.READ_CONTACTS or
android.permission.WRITE_CONTACTS

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http;//schemas.android.com/apk/res/android"
package="it.unitn.science.latemar"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="13" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".ContentProviderActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission
android:name="android.permission.READ_CONTACTS">
</uses-permission>
</manifest>

Screen properties

Marco Ronchetti
Universita degli Studi di Trento

Screen related terms and concepts

Resolution The total number of physical pixels on a screen. When
addin supEort for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen,; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

P
j

u;

Screen Sizes and Densities

Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
xlarge at least 960dp x 720dp
large at least 640dp x 480dp
normal at least 470dp x 320dp
small at least 426dp x 320dp

A set of four generalized densities:
Low density (120 dpi), ldpi
Medium density (160 dpi), mdpi
High density (240 dpi), hdpi
ﬁ.Extra high density (320 dpi), xhdpi

59

Density-independent pixel (dp)

A virtual pixel unit that you should use when defining Ul
layout, to express layout dimensions or position in a
density-independent way.

The density-independent pixel is equivalent to one physical
pixel on a 160 dpi screen, (baseline for a "medium" density
J

screen).

At runtime, the system transparently handles any scaling
of the dp units based on the actual density of the screen in
use.

px=dp * (dpi / 160). E.g.: on a 240 dpi screen, 1 dp equals
1.5 physical pixels.

You should always use dp units when defining your

application's Ul, to ensure proper display on screens with
different densities.

Screen Sizes and Densities

\dpi | mdpl | hdpl | xhdpl Normal / Idpi
2.5%
67.1% 1. Normal / mdpi

Normal / xhdpi

Data of e — Small / Idpi

February 1¢ :
2012 ‘Xlarge / mdpi

Large / |dpi
Large / mdpi
Normal / hdpi

P N

r. http://developer.android.com/resources/dashboard/screens.html
| “

6

Support of multiple
versions

Marco Ronchetti
Universita degli Studi di Trento

http:/ /android-developers.blogspot.it/2010/07/how-
to-have-your-cupcake-and-eat-it-too.html

http:/ /android-developers.blogspot.it/2010/06/
future-proofing-your-app.html

Fragments

Marco Ronchetti
Universita degli Studi di Trento

Fragments

http:/ /developer.android.com/guide/ topics/
fundamentals/fragments.html

Adapters:
a deeper insight

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/resources/tutorials /
views/index.html

http:/ /developer.android.com/resources/samples/
ApiDemos/src/com/example/android /apis/view/
index.html

http:/ /developer.android.com/training/improving-
layouts/index.html

http:/ /developer.android.com/guide/topics/ui/
'M declaring-layout.html

L

Basic Ul elements:
Hello i18N

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/resources/ tutorials/
localization/index.html

The Zygote

http:/ / coltt.blogspot.com/p/android-os-processes-
and-zygote.html

http:/ /www.slideshare.net/ RanNachmany/manipulating-
android-tasks-and-back-stack

http:/ /www.vogella.de/articles/ Android /article.html

http:/ /www.vogella.de/articles/ AndroidInternals/
article.html

http:/ /benno.id.au/blog/2007/11/13 /android-under-the-
hood

http:/ /blog.vlad1l.com/2009/11/19/android-hacking-
' 450 .part—l-of—probably—many /
/1 I .

http:/ /www.slideshare.net/retomeier/being-epic-
best-practices-for-building-android-apps

Fragment

A Fragment represents a behavior or a portion of user interface in an Activity. You can
combine multiple fragments in a single activity to build a multi-pane UI and reuse a
fragment in multiple activities. You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own input events, and which you can
add or remove while the activity is running (sort of like a "sub activity" that you can
reuse in different activities).

A fragment must always be embedded in an activity and the fragment's lifecycle is
directly affected by the host activity's lifecycle. For example, when the activity is
ausec}ll, so are all fragments in it, and when the activity is destroyed, so are all
ragments. However, while an activity is running (it is in the resumed lifecycle state),
you can manipulate each fragment independently, such as add or remove them. When
you perform such a fragment transaction, you can also add it to a back stack that's
managed by the activity —each back stack entry in the activity is a record of the |
fragment transaction that occurred. The back stack allows the user to reverse a >
fragment transaction (navigate backwards), by pressing the Back button. |
=

When you add a fragment as a part of your activity layout, it lives in a ViewGroup
inside the activity's view hierarchy and the fragment c}l]efines its own view layout. You
can insert a fragment into your activity layout by declaring the fragment in the
activity's layout file, as a <fragment> element, or from your application code by adding
it to an existing ViewGroup. However, a fragment is not required to be a part of the
activity layout; you may also use a fragment without its own Ul as an invisible worker
for the activity.

View

the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive Ul components (buttons, text fields, etc.)

Broadcast receiver

A broadcast receiver is a component that responds to system-
wide broadcast announcements. Many broadcasts originate from
the system — for example, a broadcast announcing that the screen
has turned off, the battery is low, or a picture was captured.
Applications can also initiate broadcasts — for example, to let
other applications know that some data has been downloaded to
the device and is available for them to use. Although broadcast
receivers don't display a user interface, they may create a status
bar notification to alert the user when a broadcast event occurs.
More commonly, though, a broadcast receiver is just a "gateway"
to other components and is intended to do a very minimal
amount of work. For instance, it might initiate a service to
perform some work based on the event.

A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an Intent
object. For more information, see the BroadcastReceiver class.

Content Provider

Content 1providers manage access to a structured set of data. They
encapsulate the data, and provide mechanisms for defining data security.
Content providers are the standard interface that connects data in one
process with code running in another process.

When you want to access data in a content provider, you use the
ContentResolver object in your application's Context to communicate with
the provider as a client. The ContentResolver object communicates with the
provider object, an instance of a class that implements ContentProvider. The
provider object receives data requests from clients, performs the requested
action, and returns the results.

You don't need to develop your own provider if you don't intend to share
your data with other apizl ications. However, you do need your own provider
to provide custom search suggestions in your own application. You also need
your own provider if ﬁou want to copy and paste complex data or files from
your application to other applications.

Android itself includes content providers that manage data such as audio,
video, images, and personal contact information. You can see some of them
listed in the reference documentation for the android.provider package.

Best practices

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/guide/ practices/
design/performance.html

Design

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/design/index.html

GMOM

