Applications

Marco Ronchetti
Universita degli Studi di Trento

An Android application typically consists of one or
more related, loosely bound activities for the user to
interact with.

Android has an application launcher available at the I
Home screen, typically in a sliding drawer which
displays applications as icons, which the user can pick
to start an application.

Android ships with a rich set of applications that may
include email, calendar, browser, maps, text

. messaging, contacts, camera, dialer, music player,

settings and others.
P 5

@ Camera
com.androlg.camera

mpE *® -

API Demos Application Browser Calculator
Vi

N

Camera

&

You can replace it

com.android.email

Dev Tools Downloads Email

77N\

Gestures Messaging Music
Builder

¢ & #

Settings Spare Parts

1)

Recorder

See e.qg. http://xjaphx.wordpress.com/2011/06/12/create-application-launcher-as-a-list/

r

Application package

An application is a single APK (application package)
file. An APK file roughly has three main components.

Dalvik executable: all your Java source code
compiled down to Dalvik executable. This is the
code that runs your application.

Resources: everything that is not code (images,
audio/video clips, XML files describing layouts,
language packs, and so on.

Native libraries: e.g. C/C++ libraries.

Signhing applications

Android applications must be signed before they can
be installed on a device

To distribute your application commercially, you'll
want to sign it with your own key.

Distributing applications

Unlike the iPhone, on Android, there can be many
different Android stores or markets. Each one can
have its own set of policies with respect to what is
allowed, how the revenue is split, and so on.

The biggest market currently is Android Market run
by Google

Applications can also be distributed via the web.

When you download an APK file from a website by
-, using the Browser, the application represented by the
o, APK tile automatically gets installed on your phone.

lr“l

Permissions at Application Install -- Google Maps Permissions of an Installed Application -- gMail

Permissions

. . This application can access the following on your
Do you want to install this phone:
application?

PP + Your personal information

v Services that cost you money

directly call phone numbers

v Network communication
full Internet

Your location
coarse (network-based) location, fine

(GPS) location

Your accounts

> mail, manage the accounts list,
uthentication credentials of an

account

Network communication

full Internet access

Storage

modify/delete USB storage contents

Your accounts
Google Maps, manage the accounts list,
authentication credentials of an

System tools
prevent phone from sle
subscribed feeds, write sy
Storage

modify/delete USB storage contents

Show all
Install ‘ l Cancel

&y

/ |

Security

Android has a security framework.

http:/ /source.android.com/tech/security/index.html

The Android File System can be encrypted.

Encryption on Android uses the dm-crypt layer in the
Linux kernel.

Security model

Android OS is a multi-user Linux in which each
application is a different user.

By default, the system assigns each application a
unique Linux user ID (the ID is unknown to the
application). The system sets permissions for all the
files in an application so that only the user ID assigned
to that application can access them.

Each process has its own virtual machine (VM), so an
application's code runs in isolation from other
applications.

., By default, every application runs in its own Linux

m process.
j

<

Principle of least privilege

Principle of least privilege (or “need to know”)

Each application, by default, has access only to the
components that it requires to do its work and no
more.

Data sharing

It's possible to arrange for two applications to share
the same Linux user ID, in which case they are able to
access each other's files.

Applications with the same user ID can also arrange to
run in the same Linux process and share the same VM
(the applications must also be signed with the same

certificate). B

An application can request permission to access
device data such as the user's contacts, SMS messages,
the mountable storage (SD card), camera, Bluetooth,
and more. All application permissions must be

'ﬁ.gramed by the user at install time.

58

Process lifetime

Android

starts the process when any of the application's
components need to be executed,

shuts down the process when
it's no longer needed

the system must recover memory for other
applications.

The fundamental
components

Marco Ronchetti
Universita degli Studi di Trento

The fundamental components

- Activity
an application component that provides a screen with which users can interact in

order to do something, such as dial the phone, take a photo, send an email, or
view a map.

- Fragment (since 3.0)
a behavior or a portion of user interface in an Activity

- View
equivalent to Swing Component
- Service

an application component that can perform long-running operations in the
background and does not provide a user interface

- Intent

a passive data structure holding an abstract description of an operation to be

]};erformed. It activates an activity or a service. It can also be (as often in the case of
roadcastsc,? a description of something that has happened and is being

announce

- Broadcast receiver

component that enables an application to receive intents that are broadcast by the
system or by other applications.

- Content Provider
component that manages access to a structured set of data.

- AndroidManifest.xml

Android Virtual Devices

An application component that provides a screen with which users
can interact in order to do something, such as dial the phone, take a
photo, send an email, or view a map.

Each activity is given a window in which to draw its user interface.
The window typically fills the screen, but may be smaller than the
screen and float on top of other windows, or be embedded in another
activity (activityGroup).

Activities of the dialer application

217 @ 7.4 am) B Nl & 10:352m OE‘]ﬂ BH @ 749 am
! H * L0 4

Ciader Call log t Favorites

omna L TR
b

Oars in the Water ¥

Qars In the Water
Mcbie

~ Call moblle B

Phone numbers

" e IR

QOats And Feed

Obl Wan Kenobl

Mcbie

g Emall work Email addresses o

o Viewwork adress = CEEEE ©
Chat addresses O

Postal addresses 0

Oceans Eleven
Mobiie

(Jl?f"(ouples Ltd a Notes

Qedipus Complexities

Dialer Contacts View Contact New Contact

Activity

Typically, one activity in an application is specified as the "main"
activity, which is presented to the user when launching the
application for the first time.

Each activity can then start another activity in order to perform
different actions.

Each time a new activity starts, the previous activity is stopped,
but the system preserves the activity in a LIFO stack (the "activity
stack" or "back stack").

When a new activity starts, it is pushed onto the back stack and
takes user focus.

When the user is done with the current activity and presses the
63 Back button, it is popped from the stack (and destroyed) and the
P8 previous activity resumes.

It's similar to the function stack in ordinary programming,
with some difference

« oM 0w v aMe s L L E L LS

_’

BACK key

Activity Start Activity 2 Start Activity 3

4 ™\
Back Stack [Activity 1] Activity 2 Activity 3 Activity 2
Activity 1 Activity 2 Activity 1
Root activity for the task
Activity 1
Running Activity \ /

Destroyed activity

Activity lifecycle

User navigates
to the activity ‘
States (colored),
and
Callbacks (gray) ‘
Another activity comes
into the foreground
User returns
‘ + to the activity
Apps with higher priority
need memory onPauee) |
|
The activity is
no longer visible User navigates
‘ to the activity

—{onsmpo} J
]

The activity is finishing or
being destroyed by the system

'
| e

v

R

Activity lifecycle

The FOREGROUND lifetime

Another activity comes

into the foreground

User returns
+ 1o the activity

onPause()

Activity lifecycle

The VISIBLE lifetime

o

Another activity comes
into the foreground

1o the activity

The activity is

no longer visible User navigates

1o the activity

Activity lifecycle

onCreate()
v
onStart() 4—‘ onRestart()

‘ A
User navigates »
to the activity onResume() <

Another activity comes
into the foreground

The ENTIRE lifetime

User returns
+ 1o the activity

Apps with higher priority
need memory onPause()
|

The activity is
no longer visible User navigates

+ to the activity
onStop() I J
|

The activity is finishing or
being destroyed by the system

v

‘onDestroy()’

When stopped, your activity should release any large
objects, such as network or database connections.
When the activity resumes, you can reacquire the
necessary resources and resume actions that were
interrupted. These state transitions are all part of the
activity lifecycle.

When you create an application, you can assemble it
from activities that you create and from activities you
re-use from other applications. These activities are
m bound at runtime, so that newly installed applications
'r.can take advantage of already installed activities

Multiple entry-point for an app

Home Phone Application

An application can have multiple
entry points

> Dialer

1

ju 8

New
Contact

Edit
Contact

Fragment

A Fragment represents a behavior or a portion of user
interface in an Activity.

You can combine multiple fragments in a single
activity to build a multi-pane Ul and reuse a fragment
in multiple activities.

You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own

input events, and which you can add or remove while
the activity is running (sort of like a "sub activity" that
you can reuse in different activities).

View

the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive Ul components (buttons, text fields, etc.)

Service

A Service is an application component that can
perform long-running operations in the background
and does not provide a user interface.

Another application component can start a service and
it will continue to run in the background even if the
user switches to another application.

Additionally, a component can bind to a service to
interact with it and even perform interprocess
communication (IPC). For example, a service might
handle network transactions, play music, perform file
I/0O, or interact with a content provider, all from the

'ﬁ 'background.

73

Service

A service can essentially take two forms:

Started

A service is "started" when an application component (such as an activity)
starts it by calling startService(). Once started, a service can run in the
background indefinitely, even if the component that started it is destroyed. R

For example, it might download or upload a file over the network. When the
operation is done, the service should stop itself.

Bound

A service is "bound" when an application component binds to it by calling
bindService(). A bound service offers a client-server interface that allows
components to interact with the service, send requests, get results, and even
do so across processes with interprocess communication (IPC).

A bound service runs only as long as another application component is
bound to it.

Multiple components can bind to the service at once, but when all of them
unbind, the service is destroyed.

74

.dedicated to user interaction with your activities.

b

Service

You can declare the service as private, in the manifest file,
and block access from other applications.

Caution: A service runs in the main thread of its hosting
process — the service does not create its own thread and
does not run in a separate process (unless you specity
otherwise). This means that, if your service is going to do
any CPU intensive work or blocking operations (such as
MP3 playback or networking), you should create a new
thread within the service to do that work.

By using a separate thread, you will reduce the risk of
Application Not Responding (ANR) errors and the
application's main thread can remain dedicated to user
interaction with your activities.

Iru!

75

Service lifecycle

" The service is stopped Allclbmsunbindbycalllng
5 by itself or a client ;

77

P -

Broadcast receiver

A broadcast receiver is a component that responds to
system-wide broadcast announcements.

Many broadcasts originate from the system — for
example, a broadcast announcing that the screen has
turned off, the battery is low, or a picture was
captured. Applications can also initiate broadcasts —
for example, to let other applications know that some
data has been downloaded to the device and is
available for them to use.

Although broadcast receivers don't display a user
interface, they may create a status bar notification to
alert the user when a broadcast event occurs.

Content Provider

Content providers manage access to a structured set of
data. They encapsulate the data, and provide
mechanisms for defining data security. Content
providers are the standard interface that connects data
in one process with code running in another process.

Android itself includes content providers that manage
data such as audio, video, images, and personal
contact information.

s You can see some of them listed in the reference
documentation for the android.provider package.

ml
R

Intents

Three of the core components of an application — activities, services,
and broadcast receivers — are activated through messages, called
intents.

Intent messaging is a facility for late run-time binding between
components in the same or different applications. The intent itself, an
Intent object, is a passive data structure holding an abstract
description of an operation to be performed — or, often in the case of
broadcasts, a description of something that has happened and is
being announced.

In each case, the Android system finds the appropriate activity,
service, or set of broadcast receivers to respond to the intent,
instantiating them if necessary.

There is no overlap within these messaging systems:

Broadcast intents are delivered only to broadcast receivers, never
to activities or services.

An intent passed to startActivity() is delivered only to an activity,
never to a service or broadcast receiver, and so on.

Android Java packages

Marco Ronchetti
Universita degli Studi di Trento

Basic components

android.app
o implements the Application model for Android

android.content

o implements the concept of Content providers
android content.pm

o Package manager: permissions, installed {packages,
services, provider, applications, components}

android.content.res

o Access to resources

android.provider
o Contacts, MediaStore, Browser, Setting

GUI basics

android.view

o Menu, View, ViewGroup + listeners
android.view.animation

android.view.inputmethod
o Input methods framework

android.widget
o UI controls derived from View (Button, Checkbox...)

android.gesture
O create, recognize, load and save gestures

Graphics

android.graphics

o low level graphics tools such as canvases, color filters, points, and rectangles
that let you handle drawing to the screen directly.

o Bitmap, Canvas, Camera (3D transformation, not the camera!) , Color, Matrix,
Movie, Paint, Path, Rasterizer, Shader, SweepGradient, Typeface
android.graphics.drawable

o variety of visual elements that are intended for display only, such as bitmaps
and gradients

android.graphics.drawable.shapes

android.opengl

o opengl-related utility classes, not the opengl!
javax.microedition.khronos.opengles
javax.microedition.khronos.egl
javax.microedition.khronos.nio

android.renderscript

o low-level, hi%h performance means of carrying out mathematical calculations
and 3D graphics rendering

Text rendering

android.text

o classes used to render or track text and text spans on
the screen

android.text.method
o Classes that monitor or modify keypad input.
android.text.style
o Text styling mechanisms
android.service.textservice
o Provides classes that allow you to create spell checkers
android.view.textservice
o Use spelling checkers

Database, Web and location

android.database
o classes to explore data returned through a content provider.

android.datebase.sqlite

o the SQLite database management classes that an application
would use to manage its own private database. Applications
use these classes to manage private databases.

android.webkit
o tools for browsing the web.

android.location

o Address, Geocoder, Location, LocationManager,
LocationProvider

85

P com.google.android.maps

Network and telephony

android.net

o Socket-level network API - help with network access, beyond the normal
java.net.* APIs.

android.net.wifi
android.bluetooth

android.nfc

o Near Field Communication (NFC) is a set of short-range wireless technologies,
typically requiring a distance of 4cm or less to initiate a connection. NFC allows
you to share small payloads of data between an NFC tag and an Android-
powered device, or between two Android-powered devices.

android.telephony

o monitoring the basic phone information, plus utilities for manipulating phone
number strings, SMS

o CellLocation, PhoneNumberUltils, TelephonyManager
android.telephony.gsm

o Obtain Cell location of GSM
android.telephony.cdma

o Obtain Cell location of CDMA - CDMA2000 is a family of 3G mobile technology
standards

Media and speech

android.media

©0 manage various media interfaces in audio and video

o MediaPlayer, MediaRecorder, Ringtone, AudioManager, FaceDetector.
android.media.effect

o apply a variety of visual effects to images and videos
android.hardware

o support for hardware features, such as the camera and other sensors
android.drm

o Digital right management
android.mtp

o interact directly with connected cameras and other devices, using the
PTP (Picture Transfer Protocol)

android.speech
0 base class for recognition service implementations

android.speech.tts

o Text to Speech

General utilities

android.utils

o date/time manipulation, base64 encoders and decoders, string and number
conversion methods, and XML utilities.

android.sax
o XML parsing

android.test
o A framework for writing Android test cases and suites

android.preference

© manage application preferences and implement the preferences UL Using these
ensures that all the preferences within each application are maintained in the
same manner and the user experience is consistent with that of the system and
other applications

android.os

o basic operating system services, message passing, and inter-process
communication

o Binder (ipc), FileObserver (changes in files) Handler e Looper (for dealing with
message threads), BatteryManager, PowerManager

Still useful java packages

java.lang (e subpackages)
java.math
java.net + javax.net
java.io
java.nio
java.sqltjavax.sql
0 (android.database preferable if possible)
java.util

Other still useful packages

javax.crypto
javax.security

javax.xml

org.w3c.dom
org.xml.sax

org.apache.http (e subpackages)

Screen properties

Marco Ronchetti
Universita degli Studi di Trento

Screen related terms and concepts

Resolution The total number of physical pixels on a screen. When
addin support for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen,; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

Screen Sizes and Densities

Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:

xlarge screens are at least 960dp x 720dp
large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp

A set of generalized densities:
ldpi (low), mdpi (medium), tdpi (only Google TV, Nexus 7),

93

- hdpi (high), xhdpi (extra high) and xxhdpi (extra extra high)

Density-independent pixel

Density-independent pixel (dp) A virtual pixel unit that
you should use when defining Ul layout, to express
layout dimensions or position in a density-
independent way.

At runtime, the system transparently handles any
scaling of the dp units, as necessary, based on the
actual density of the screen in use.

You should always use dp units when defining your

., application's Ul, to ensure proper display of your Ul
. onscreens with ditferent densities.

l'“l

Pixel densities

The density-independent pixel is equivalent to one physical pixel on
a 160 dpi screen, which is the baseline density assumed by the
system for a "medium" density screen.

Idpi | mdpi | tvdpi | hdpi | xhdpi | xxhdpi | xxxhdpi
120 | 160 | 213 | 240 | 320 | 480 | 640

The ratio for asset scaling is:
Idpi | mdpi | tvdpi | hdpi | xhdpi | xxhdpi | xxxhdpi
075 | 1 | 133 |15 |2 | 3 | 4

Example images
95 ldpi | mdpi | tvdpi | hdpi | xhdpi | xxhdpi | xxxhdpi
A5, 36x36[48x48 [64x64 | 72x72[96x96 | 144 x 144 | 192x 192

Screen Sizes and Densities (2012)

idpl | mdpl | hdpl | xhdpl Normal / Idpi
2.5%
67.1% 1. Normal / mdpi

Normal / xhdpi

/Small / hdpi
Data of e — Small / Idpi

February 1¢ :
2012 ‘Xlarge / mdpi

Large / Idpi
Large / mdpi
Normal / hdpi

96

P N

'r. http://developer.android.com/resources/dashboard/screens.html

Screen Sizes and Densities (2015)
EEEZE T ETERECTE -
4.8%

Small 4.8%
Normal 8.7% 0.1% 38.3% 18.8% 15.9% 81.8%
Large 0.5% 5.1% 2.2% 0.6% 0.6% 9.0%
Xlarge 3.5% 0.3% 0.6% 4.4%
Total 5.3% 17.3% 2.3% 39.2% 20.0% 15.9%
xhdpi
xxhdpi
Small

-‘_“*—__-_'_' — Xlarge '»-"'-.n___ ~— Idpi

Large

tvdpi

Data collected during a 7-day period ending on February 2, 2015.
Any screen configurations with less than 0.1% distribution are not shown.

Una lettura consigliata...

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/design/index.html

