
Applications

Marco Ronchetti
Università degli Studi di Trento

49 49

An Android application typically consists of one or
more related, loosely bound activities for the user to
interact with.

Android has an application launcher available at the
Home screen, typically in a sliding drawer which
displays applications as icons, which the user can pick
to start an application.

Android ships with a rich set of applications that may
include email, calendar, browser, maps, text
messaging, contacts, camera, dialer, music player,
settings and others.

50 50

Application Launcher

You can replace it

See e.g. http://xjaphx.wordpress.com/2011/06/12/create-application-launcher-as-a-list/

51 51

Application package
An application is a single APK (application package)
file. An APK file roughly has three main components.

•  Dalvik executable: all your Java source code

compiled down to Dalvik executable. This is the
code that runs your application.

•  Resources: everything that is not code (images,
audio/video clips, XML files describing layouts,
language packs, and so on.

•  Native libraries: e.g. C/C++ libraries.

52 52

Signing applications
Android applications must be signed before they can
be installed on a device

To distribute your application commercially, you’ll
want to sign it with your own key.

53 53

Distributing applications
Unlike the iPhone, on Android, there can be many
different Android stores or markets. Each one can
have its own set of policies with respect to what is
allowed, how the revenue is split, and so on.

The biggest market currently is Android Market run
by Google

Applications can also be distributed via the web.
When you download an APK file from a website by
using the Browser, the application represented by the
APK file automatically gets installed on your phone.

54 54

Granting and checking permissions

55 55

Security
Android has a security framework.

http://source.android.com/tech/security/index.html

The Android File System can be encrypted.
Encryption on Android uses the dm-crypt layer in the
Linux kernel.

56 56

Security model
Android OS is a multi-user Linux in which each
application is a different user.
By default, the system assigns each application a
unique Linux user ID (the ID is unknown to the
application). The system sets permissions for all the
files in an application so that only the user ID assigned
to that application can access them.
Each process has its own virtual machine (VM), so an
application's code runs in isolation from other
applications.
By default, every application runs in its own Linux
process.

57 57

Principle of least privilege

Principle of least privilege (or “need to know”)

Each application, by default, has access only to the
components that it requires to do its work and no
more.

58 58

Data sharing
It's possible to arrange for two applications to share
the same Linux user ID, in which case they are able to
access each other's files.
Applications with the same user ID can also arrange to
run in the same Linux process and share the same VM
(the applications must also be signed with the same
certificate).

An application can request permission to access
device data such as the user's contacts, SMS messages,
the mountable storage (SD card), camera, Bluetooth,
and more. All application permissions must be
granted by the user at install time.

59 59

Process lifetime
Android
•  starts the process when any of the application's

components need to be executed,
•  shuts down the process when

•  it's no longer needed
•  the system must recover memory for other

applications.

The fundamental
components

Marco Ronchetti
Università degli Studi di Trento

61 61

The fundamental components
•  Activity

•  an application component that provides a screen with which users can interact in
order to do something, such as dial the phone, take a photo, send an email, or
view a map.

•  Fragment (since 3.0)
•  a behavior or a portion of user interface in an Activity

•  View
•  equivalent to Swing Component

•  Service
•  an application component that can perform long-running operations in the

background and does not provide a user interface
•  Intent

•  a passive data structure holding an abstract description of an operation to be
performed. It activates an activity or a service. It can also be (as often in the case of
broadcasts) a description of something that has happened and is being
announced.

•  Broadcast receiver
•  component that enables an application to receive intents that are broadcast by the

system or by other applications.
•  Content Provider

•  component that manages access to a structured set of data.
•  AndroidManifest.xml
•  Android Virtual Devices

62 62

An application component that provides a screen with which users
can interact in order to do something, such as dial the phone, take a
photo, send an email, or view a map.

 Each activity is given a window in which to draw its user interface.
The window typically fills the screen, but may be smaller than the
screen and float on top of other windows, or be embedded in another
activity (activityGroup).

Activity

Activities of the dialer application

63 63

Activity

Typically, one activity in an application is specified as the "main"
activity, which is presented to the user when launching the
application for the first time.

Each activity can then start another activity in order to perform
different actions.

Each time a new activity starts, the previous activity is stopped,
but the system preserves the activity in a LIFO stack (the "activity
stack" or "back stack").
 When a new activity starts, it is pushed onto the back stack and
takes user focus.

When the user is done with the current activity and presses the
Back button, it is popped from the stack (and destroyed) and the
previous activity resumes.

64 64

The activity stack
It’s similar to the function stack in ordinary programming,
with some difference

65 65

Activity lifecycle

States (colored),
and
Callbacks (gray)

66 66

Activity lifecycle

The FOREGROUND lifetime

67 67

Activity lifecycle

The VISIBLE lifetime

68 68

Activity lifecycle

The ENTIRE lifetime

69 69

When stopped, your activity should release any large
objects, such as network or database connections.
When the activity resumes, you can reacquire the
necessary resources and resume actions that were
interrupted. These state transitions are all part of the
activity lifecycle.

When you create an application, you can assemble it
from activities that you create and from activities you
re-use from other applications. These activities are
bound at runtime, so that newly installed applications
can take advantage of already installed activities

70 70

Multiple entry-point for an app

An application can have multiple
entry points

71 71

Fragment
A Fragment represents a behavior or a portion of user
interface in an Activity.

You can combine multiple fragments in a single
activity to build a multi-pane UI and reuse a fragment
in multiple activities.
You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own
input events, and which you can add or remove while
the activity is running (sort of like a "sub activity" that
you can reuse in different activities).

72 72

View
the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive UI components (buttons, text fields, etc.)

73 73

Service
A Service is an application component that can
perform long-running operations in the background
and does not provide a user interface.

Another application component can start a service and
it will continue to run in the background even if the
user switches to another application.
Additionally, a component can bind to a service to
interact with it and even perform interprocess
communication (IPC). For example, a service might
handle network transactions, play music, perform file
I/O, or interact with a content provider, all from the
background.

74 74

Service

A service can essentially take two forms:

Started
 A service is "started" when an application component (such as an activity)
starts it by calling startService(). Once started, a service can run in the
background indefinitely, even if the component that started it is destroyed.
For example, it might download or upload a file over the network. When the
operation is done, the service should stop itself.

Bound
 A service is "bound" when an application component binds to it by calling
bindService(). A bound service offers a client-server interface that allows
components to interact with the service, send requests, get results, and even
do so across processes with interprocess communication (IPC).
A bound service runs only as long as another application component is
bound to it.
Multiple components can bind to the service at once, but when all of them
unbind, the service is destroyed.

dedicated to user interaction with your activities.

75 75

Service

You can declare the service as private, in the manifest file,
and block access from other applications.

Caution: A service runs in the main thread of its hosting
process—the service does not create its own thread and
does not run in a separate process (unless you specify
otherwise). This means that, if your service is going to do
any CPU intensive work or blocking operations (such as
MP3 playback or networking), you should create a new
thread within the service to do that work.
By using a separate thread, you will reduce the risk of
Application Not Responding (ANR) errors and the
application's main thread can remain dedicated to user
interaction with your activities.

76 76

Service lifecycle

77 77

Broadcast receiver
A broadcast receiver is a component that responds to
system-wide broadcast announcements.
Many broadcasts originate from the system—for
example, a broadcast announcing that the screen has
turned off, the battery is low, or a picture was
captured. Applications can also initiate broadcasts—
for example, to let other applications know that some
data has been downloaded to the device and is
available for them to use.
Although broadcast receivers don't display a user
interface, they may create a status bar notification to
alert the user when a broadcast event occurs.

78 78

Content Provider
Content providers manage access to a structured set of
data. They encapsulate the data, and provide
mechanisms for defining data security. Content
providers are the standard interface that connects data
in one process with code running in another process.

Android itself includes content providers that manage
data such as audio, video, images, and personal
contact information.

You can see some of them listed in the reference
documentation for the android.provider package.

79 79

Intents
Three of the core components of an application — activities, services,
and broadcast receivers — are activated through messages, called
intents.

 Intent messaging is a facility for late run-time binding between
components in the same or different applications. The intent itself, an
Intent object, is a passive data structure holding an abstract
description of an operation to be performed — or, often in the case of
broadcasts, a description of something that has happened and is
being announced.

In each case, the Android system finds the appropriate activity,
service, or set of broadcast receivers to respond to the intent,
instantiating them if necessary.
There is no overlap within these messaging systems:
•  Broadcast intents are delivered only to broadcast receivers, never

to activities or services.
•  An intent passed to startActivity() is delivered only to an activity,

never to a service or broadcast receiver, and so on.

Android Java packages

Marco Ronchetti
Università degli Studi di Trento

81 81

Basic components
android.app

�  implements the Application model for Android

android.content
�  implements the concept of Content providers

android content.pm
�  Package manager: permissions, installed {packages,

services, provider, applications, components}

android.content.res
�  Access to resources

android.provider
�  Contacts, MediaStore, Browser, Setting

82 82

GUI basics
android.view

�  Menu, View, ViewGroup + listeners

android.view.animation
android.view.inputmethod

�  Input methods framework

android.widget
�  UI controls derived from View (Button, Checkbox…)

android.gesture
�  create, recognize, load and save gestures

83 83

Graphics
android.graphics

�  low level graphics tools such as canvases, color filters, points, and rectangles
that let you handle drawing to the screen directly.

�  Bitmap, Canvas, Camera (3D transformation, not the camera!) , Color, Matrix,
Movie, Paint, Path, Rasterizer, Shader, SweepGradient, Typeface

android.graphics.drawable
�  variety of visual elements that are intended for display only, such as bitmaps

and gradients
android.graphics.drawable.shapes

android.opengl

�  opengl-related utility classes, not the opengl!
javax.microedition.khronos.opengles
javax.microedition.khronos.egl
javax.microedition.khronos.nio

android.renderscript

�  low-level, high performance means of carrying out mathematical calculations
and 3D graphics rendering

84 84

Text rendering
android.text

�  classes used to render or track text and text spans on
the screen

android.text.method
�  Classes that monitor or modify keypad input.

android.text.style
�  Text styling mechanisms

android.service.textservice
�  Provides classes that allow you to create spell checkers

android.view.textservice
�  Use spelling checkers

85 85

Database, Web and location
android.database

�  classes to explore data returned through a content provider.
android.datebase.sqlite

�  the SQLite database management classes that an application
would use to manage its own private database. Applications
use these classes to manage private databases.

android.webkit

�  tools for browsing the web.

android.location
�  Address, Geocoder, Location, LocationManager,

LocationProvider
com.google.android.maps

86 86

Network and telephony
android.net

�  Socket-level network API - help with network access, beyond the normal
java.net.* APIs.

android.net.wifi
android.bluetooth
android.nfc

�  Near Field Communication (NFC) is a set of short-range wireless technologies,
typically requiring a distance of 4cm or less to initiate a connection. NFC allows
you to share small payloads of data between an NFC tag and an Android-
powered device, or between two Android-powered devices.

android.telephony

�  monitoring the basic phone information, plus utilities for manipulating phone
number strings, SMS

�  CellLocation, PhoneNumberUtils, TelephonyManager
android.telephony.gsm

�  Obtain Cell location of GSM
android.telephony.cdma

�  Obtain Cell location of CDMA - CDMA2000 is a family of 3G mobile technology
standards

87 87

Media and speech
android.media

�  manage various media interfaces in audio and video
�  MediaPlayer, MediaRecorder, Ringtone, AudioManager, FaceDetector.

android.media.effect
�  apply a variety of visual effects to images and videos

android.hardware
�  support for hardware features, such as the camera and other sensors

android.drm
�  Digital right management

android.mtp
�  interact directly with connected cameras and other devices, using the

PTP (Picture Transfer Protocol)

android.speech
�  base class for recognition service implementations

android.speech.tts
�  Text to Speech

88 88

General utilities
android.utils

�  date/time manipulation, base64 encoders and decoders, string and number
conversion methods, and XML utilities.

android.sax
�  XML parsing

android.test

�  A framework for writing Android test cases and suites

android.preference
�  manage application preferences and implement the preferences UI. Using these

ensures that all the preferences within each application are maintained in the
same manner and the user experience is consistent with that of the system and
other applications

android.os

�  basic operating system services, message passing, and inter-process
communication

�  Binder (ipc), FileObserver (changes in files) Handler e Looper (for dealing with
message threads), BatteryManager, PowerManager

89 89

Still useful java packages
java.lang (e subpackages)
java.math
java.net + javax.net
java.io
java.nio
java.sql+javax.sql

�  (android.database preferable if possible)

java.util

90 90

Other still useful packages
javax.crypto
javax.security
javax.xml

org.w3c.dom
org.xml.sax

org.apache.http (e subpackages)

Screen properties

Marco Ronchetti
Università degli Studi di Trento

92 92

Screen related terms and concepts
Resolution The total number of physical pixels on a screen. When
adding support for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

93 93

Screen Sizes and Densities
Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
xlarge screens are at least 960dp x 720dp
large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp

A set of generalized densities:
 ldpi (low), mdpi (medium), tdpi (only Google TV, Nexus 7),
hdpi (high), xhdpi (extra high) and xxhdpi (extra extra high)

94 94

Density-independent pixel
Density-independent pixel (dp) A virtual pixel unit that
you should use when defining UI layout, to express
layout dimensions or position in a density-
independent way.

At runtime, the system transparently handles any
scaling of the dp units, as necessary, based on the
actual density of the screen in use.

You should always use dp units when defining your
application's UI, to ensure proper display of your UI
on screens with different densities.

95 95

Pixel densities
The density-independent pixel is equivalent to one physical pixel on
a 160 dpi screen, which is the baseline density assumed by the
system for a "medium" density screen.

ldpi | mdpi | tvdpi | hdpi | xhdpi | xxhdpi | xxxhdpi
120 | 160 | 213 | 240 | 320 | 480 | 640

The ratio for asset scaling is:
ldpi | mdpi | tvdpi | hdpi | xhdpi | xxhdpi | xxxhdpi
0.75 | 1 | 1.33 | 1.5 | 2 | 3 | 4

Example images
ldpi | mdpi | tvdpi | hdpi | xhdpi | xxhdpi | xxxhdpi
36 x 36| 48 x 48 | 64 x 64 | 72 x 72 | 96 x 96 | 144 x 144 | 192 x 192

96 96

Screen Sizes and Densities (2012)

http://developer.android.com/resources/dashboard/screens.html

Data of
February 1st
2012

97 97

Screen Sizes and Densities (2015)

Una lettura consigliata…

Marco Ronchetti
Università degli Studi di Trento

99 99

Android design
http://developer.android.com/design/index.html

