
Applications

Marco Ronchetti
Università degli Studi di Trento

2 2

Tools behind the scenes
dx

•  allows to convert Java .class files into .dex (Dalvik
Executable) files.

aapt (Android Asset Packaging Tool)
•  packs Android applications into an .apk (Android

Package) file.
adb (Android debug bridge)

ADT (Android Development Tools for Eclipse)
•  A development tool provided by Google to perform

automatic conversion from .class to .dex files and to
create the apk during deployment. It also provides
debugging tools, and an Android device emulator.

Getting started:
Hello Android

Marco Ronchetti
Università degli Studi di Trento

4 4

android.app.application
How shall we start?

As we know already, there is no main…

But there is an ”application” class in the API.
(actually, android.app.application)

Probably we should subclass that, like we do with
java.applet.Applet or with
javax.servlet.http.HttpServlet?

5 5

NO!

Application is a base class ONLY for keeping a global
application state.

We need to subclass another thing: Activity

6 6

HelloAndroid
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

7 7

HelloAndroid
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setText("Hello, Android");
 setContentView(tv);
 }
}

8 8

Launching the emulator…

9 9

HelloAndroid: questions.
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

•  What is an Activity?
•  What is onCreate?
•  What is a Bundle?
•  What is R?

•  What is a TextView??

Dissecting the HelloWorld

Marco Ronchetti
Università degli Studi di Trento

11 11

Class Activity

An activity is a single, focused thing that the user can do.

Almost all activities interact with the user, so the Activity class takes care
of creating a window for you in which you can place your UI with
setContentView(int).

Doesn’t it reminds you of “JFrame” and “setContentPane()?

12 12

Class Activity

An activity is a single, focused thing that the user can do.

Almost all activities interact with the user, so the Activity class takes care
of creating a window for you in which you can place your UI with
setContentView(int).

Doesn’t it reminds you of “JFrame” and “setContentPane()?

Interface to global information
about an application environment.

13 13

While activities are often presented to
the user as full-screen windows, they
can also be used in other ways: as
floating windows (via a theme with
R.attr.windowIsFloating set) or
embedded inside of another activity
(using ActivityGroup).

Class Activity

14 14

Resources
You should always externalize resources (e.g. images
and strings) from your application code, so that you
can:
•  maintain them independently.
•  provide alternative resources, e.g.:

•  different languages
•  different screen sizes

Resources must be organized in your project's res/
directory, with various sub-directories that group
resources by type and configuration.

15 15

The R class
When your application is compiled, aapt generates the
R class, which contains resource IDs for all the
resources in your res/ directory.

For each type of resource, there is an R subclass (for
example, R.layout for all layout resources) and for
each resource of that type, there is a static integer (for
example, R.layout.main). This integer is the resource
ID that you can use to retrieve your resource.

More about resources in future lectures.

16 16

R.Java in gen/
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.example.helloandroid;
public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

17 17

Res/layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</LinearLayout>

18 18

onCreate(Bundle b)
Callback invoked when the activity is starting.

This is where most initialization should go.

If the activity is being re-initialized after previously
being shut down then this Bundle contains the data it
most recently supplied in
onSaveInstanceState(Bundle), otherwise it is null.

Note: a Bundle is a sort of container for serialized
data.

19 19

TextView
Displays text to the user and optionally allows them to
edit it. A TextView is a complete text editor, however
the basic class is configured to not allow editing; see
EditText for a subclass that configures the text view for
editing. This class represents the basic building block for user

interface components. A View occupies a rectangular
area on the screen and is responsible for drawing and

event handling. View is the base class for widgets, which
are used to create interactive UI components (buttons,

text fields, etc.).

Doesn’t it remind you the java.awt.Component?

20 20

The project

21 21

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".HelloAndroidActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

22 22

project.properties
This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!

This file must be checked in Version Control Systems.

To customize properties used by the Ant build system use,
"ant.properties", and override values to adapt the script to your
project structure.

Project target.
target=android-15

The fundamental
components

Marco Ronchetti
Università degli Studi di Trento

24 24

The fundamental components
•  Activity

•  an application component that provides a screen with which users can
interact in order to do something, such as dial the phone, take a photo, send
an email, or view a map.

•  Fragment (since 3.0)
•  a behavior or a portion of user interface in an Activity

•  View
•  equivalent to Swing Component

•  Service
•  an application component that can perform long-running operations in the

background and does not provide a user interface
•  Intent

•  a passive data structure holding an abstract description of an operation to be
performed. It activates an activity or a service. It can also be (as often in the
case of broadcasts) a description of something that has happened and is
being announced.

•  Broadcast receiver
•  component that enables an application to receive intents that are broadcast

by the system or by other applications.
•  Content Provider

•  component that manages access to a structured set of data.

25 25

Peeking into an application
Packaging: APK File (Android Package)
Collection of components

•  Components share a set of resources

•  Preferences, Database, File space

•  Components share a Linux process
•  By default, one process per APK

•  APKs are isolated
•  Communication via Intents or AIDL (Android

Interface Definition Language)

•  Every component has a managed lifecycle

Slide borrowed from Dominik Gruntz (and modified)

ONE APPLICATION, ONE PROCESS, MANY ACTIVITIES

26 26

Activity
Not exactly what you might imagine…

Wordnet definitions:
•  something that people do or cause to happen
•  a process occurring in living organisms
•  a process existing in or produced by nature

(rather than by the intent of human beings)

27 27

Activities

•  “single” UI screens
•  One visible at the time (Well. Almost…)
•  One active at the time
•  Stacked like a deck of cards

A rather misleading term… it’s not a “computer
activity”, like a process.
It’s rather an environment where a “user activity” is
performed

28 28

An application component that provides a screen with which users
can interact in order to do something, such as dial the phone, take a
photo, send an email, or view a map.

 Each activity is given a window in which to draw its user interface.
The window typically fills the screen, but may be smaller than the
screen and float on top of other windows, or be embedded in another
activity (activityGroup).

Activity

Activities of the dialer application

29 29

Multiple entry-point for an app

An application can have multiple
entry points

Typically, one activity in an application is specified as the "main"
activity, which is presented to the user when launching the
application for the first time.

BUT

30 30

Activity
Each activity can start another activity in order to perform
different actions.

Each time a new activity starts, the previous activity is
stopped.

The system preserves the activity in a LIFO stack (the
"activity stack" or "back stack").

The new activity it is pushed on top of the back stack and
takes user focus.

When the user is done with the current activity and presses
the BACK button, the current activity is popped from the
stack (and destroyed) and the previous activity resumes.

31 31

The activity stack
It’s similar to the function stack in ordinary programming,
with some difference

32 32

Activity lifecycle

States (colored),
and
Callbacks (gray)

33 33

Activity lifecycle

The FOREGROUND lifetime

34 34

Activity lifecycle

The VISIBLE lifetime

When stopped, your activity
should release costly
resources, such as network
or database connections.

When the activity resumes,
you can reacquire the
necessary resources and
resume actions that were
interrupted.

35 35

Activity lifecycle

The ENTIRE lifetime

36 36

The shocking news…
An activity can start
a second activity in
a DIFFERENT application!
(and hence in a different process…)

We need a name
for this “thing”:

We’ll call it

“a task”

37 37

Task
Not exactly what you might imagine…

Wordnet definitions:
•  activity directed toward making or doing

something
•  work that you are obliged to perform for

moral or legal reasons

38 38

Tasks

Task (what users view as application)

•  Collection of related activities
•  Capable of spanning multiple processes
•  Associated with its own UI history stack

Slide borrowed from Dominik Gruntz

39 39

Tasks
An App defines at least one task, may define more.

Activities may come from different applications
(favoring reuse).

Android maintains a seamless user experience by
keeping the activities in the same task.

Tasks may be moved in the background.

40 40

Tasks
The Home screen is the starting place for most tasks.

When the user touches an icon in the application launcher
(or a shortcut on the Home screen), that application's task
comes to the foreground.

If no task exists for the application (the application has not
been used recently), then a new task is created and the
"main" activity for that application opens as the root
activity in the stack.

If the application has been used recently, its task is resumed
(in general with its state preserved: more on this in the next
lecture).

41 41

Switching among apps
To switching among apps:
long press the home button and you’ll see a window
of the 6 most recently used apps.

Tap the app you want to switch to.

42 42

Task Management
Default behavior:
New activity is added to the same task stack.
NOTE: Activity can have multiple instances, in
different tasks or in the same task!

Google recommends:
“Let Android manage it for you. You do not need to
bother with multitasking management!”

43 43

Process priorities
Active process Critical priority

Visible process High Priority
Started service process

Background process Low Priority
Empty process

44 44

Task Managers ?
Several apps on the store offer a task manager functionality
(to kill inactive apps). Are they needed?

Lots of services and applications constantly run in the
background just like they do on Windows. However, and this is
important, they do not have to use up a ton of resources. A
service or app can be loaded, yet use almost no additional
memory, and 0% CPU until it actually has to do something.

In general, killing off stuff is a waste of time. Android
automatically asks apps to close when it needs more memory.
Killing off processes also means it'll slow your phone down, as
when you do need them again the system will need to reload
them.

Basic tips:
having troubles…

Marco Ronchetti
Università degli Studi di Trento

46 46

A bugged program
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class BugActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Object o = null;
 o.toString();
 setContentView(R.layout.main);
 }
}

Basic tips:
printing on the console

Marco Ronchetti
Università degli Studi di Trento

48 48

Printing in Eclipse

49 49

The Logger console

Log.d("CalledActivity","OnCreate ");

