
1

Basic UI elements:
Android Menus (basics)

Marco Ronchetti
Università degli Studi di Trento

2

SimpleMenu

3

Layout & Strings
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
<TextView
 android:id="@+id/tf1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/output" />
</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">This is Activity A1</string>
 <string name="app_name">SimpleMenu</string>
 <string name="output">no results yet...</string>
</resources>

4

SimpleMenu – A1
public class A1 extends Activity {
 int nClicks=0;
 protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);
 setContentView(R.layout.layout1);
 }
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;

 MenuItem item1=menu.add(base,1,1,"Increase");
 MenuItem item2=menu.add(base,2,2,"Decrease");
 return true;
 }
 public boolean onOptionsItemSelected(MenuItem item) {
 TextView tf = (TextView) findViewById(R.id.tf1);

 if (item.getItemId()==1) increase();
 else if (item.getItemId()==2) decrease();
 else return super.onOptionsItemSelected(item);
 tf.setText("Clicks :"+nClicks);
 return true;
 }

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

private void increase() {
 nClicks++;
 }
 private void decrease() {
 nClicks--;
 }

}

Menu is created

Respond to a
Menu event

5

SimpleMenu – A1
public class A1 extends Activity {
 int nClicks=0;
 protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);
 setContentView(R.layout.layout1);
 }
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;

 MenuItem item1=menu.add(base,1,1,"Increase");
 MenuItem item2=menu.add(base,2,2,"Decrease");
 return true;
 }
 public boolean onOptionsItemSelected(MenuItem item) {
 TextView tf = (TextView) findViewById(R.id.tf1);

 if (item.getItemId()==1) increase();
 else if (item.getItemId()==2) decrease();
 else return super.onOptionsItemSelected(item);
 tf.setText("Clicks :"+nClicks);
 return true;
 }

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

private void increase() {
 nClicks++;
 }
 private void decrease() {
 nClicks--;
 }

}

Menu is created

Respond to a
Menu event

Group

ID

Order

This could be a
resource

6

Calling Activities in other
apps: Android Intents

Marco Ronchetti
Università degli Studi di Trento

7

Re-using activities
When you create an application, you can assemble it
from
•  activities that you create
•  activities you re-use from other applications.

An app can incorporate activities from other apps.

Yes, but how? By means of Intents

These activities are bound at runtime: newly installed
applications can take advantage of already installed
activities

8

Our App

9

Our activities

10

Our code – IntentUtils - 1
package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

public class IntentUtils {

 public static void invokeWebBrowser(Activity activity) {

 Intent intent=new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("http://latemar.science.unitn.it"));
 activity.startActivity(intent);

 }

 public static void invokeWebSearch(Activity activity) {

 Intent intent=new Intent(Intent.ACTION_WEB_SEARCH,
 Uri.parse("http://www.google.com"));
 activity.startActivity(intent);

 }

11

Our code – IntentUtils - 2

 public static void dial(Activity activity) {

 Intent intent=new Intent(Intent.ACTION_DIAL);
 activity.startActivity(intent);

 }

 public static void showDirections(Activity activity){
 Intent intent = new Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://maps.google.com/maps? saddr=Bolzano&daddr=Trento")
 activity.startActivity(intent);

 }
}

12

Our Code: IntentsActivity -1
package it.unitn.science.latemar;
import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.TextView;

public class IntentsActivity extends Activity {
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv=new TextView(this);
 tv.setText("Push the menu button!");
 setContentView(tv);
 }

 public boolean onCreateOptionsMenu(Menu menu){

 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;
 MenuItem item1=menu.add(base,1,1,"invokeWebBrowser-VIEW");
 MenuItem item2=menu.add(base,2,2,"invokeWebBrowser-SEARCH");
 MenuItem item3=menu.add(base,3,3,"showDirections");
 MenuItem item5=menu.add(base,4,4,"dial");
 return true;

 }

13

Our Code: IntentsActivity -2
 public boolean onOptionsItemSelected(MenuItem item) {

 System.err.println("item="+item.getItemId());
 if (item.getItemId()==1)
 IntentUtils.invokeWebBrowser(this);
 else if (item.getItemId()==2)
 IntentUtils.invokeWebSearch(this);
 else if (item.getItemId()==3)
 IntentUtils.showDirections(this);
 else if (item.getItemId()==4)
 IntentUtils.dial(this);
 else
 return super.onOptionsItemSelected(item);
 return true;

 }
}

14

Intent structure
and resolution

Marco Ronchetti
Università degli Studi di Trento

15

Intent structure
Who will perform the action?
•  Component name (can be unnamed)
Which action should be performed?
•  Action identifier (a string)
Which data should the action act on ?
•  Data The URI of the data to be acted on
How we classify the action to be performed?
•  Category A (usually codified) string.
How do we directly pass data?
•  Extras Key-value pairs for additional information that

should be delivered to the component handling the
intent

How do we specify behavior modification?
•  Flags Flags of various sorts.

16

Examples of action/data pairs
 ACTION_VIEW content://contacts/people/1
•  Display information about the person whose identifier is "1".

ACTION_DIAL content://contacts/people/1
•  Display the phone dialer with the person filled in.

 ACTION_VIEW tel:123
•  Display the phone dialer with the given number filled in. Note how

the VIEW action does what what is considered the most reasonable
thing for a particular URI.

 ACTION_DIAL tel:123
•  Display the phone dialer with the given number filled in.

ACTION_EDIT content://contacts/people/1
•  Edit information about the person whose identifier is "1".

 ACTION_VIEW content://contacts/people/
•  Display a list of people, which the user can browse through.

17

Standard Actions Identifiers
 ACTION_MAIN
 ACTION_VIEW
 ACTION_ATTACH_DATA
 ACTION_EDIT
 ACTION_PICK
 ACTION_CHOOSER
 ACTION_GET_CONTENT
 ACTION_DIAL
 ACTION_CALL
 ACTION_SEND
 ACTION_SENDTO
 ACTION_ANSWER
 ACTION_INSERT
 ACTION_DELETE
 ACTION_RUN
 ACTION_SYNC
 ACTION_PICK_ACTIVITY
 ACTION_SEARCH
 ACTION_WEB_SEARCH
 ACTION_FACTORY_TEST

18

For details see http://developer.android.com/reference/android/content/Intent.html#CATEGORY_ALTERNATIVE

Standard Categories

19

Implicit intents and intent resolution
Implicit intents do not name a target (the field for the
component name is blank).

In the absence of a designated target, the Android system
must find the best component (or components) to handle
the intent.

It does so by comparing the contents of the Intent object to
intent filters, structures associated with components that can
potentially receive intents.

Filters advertise the capabilities of a component and
delimit the intents it can handle. They open the component
to the possibility of receiving implicit intents of the
advertised type. If a component does not have any intent
filters, it can receive only explicit intents. A component
with filters can receive both explicit and implicit intents.

20

Intent Filters
Only three aspects of an Intent object are consulted
when the object is tested against an intent filter:
action
data (both URI and data type)
category
The extras and flags play no part in resolving which
component receives an intent.

21

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".HelloAndroidActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

22

Intents
Intent messaging is a facility for late run-time binding
between components in the same or different applications.

The intent itself, an Intent object, is a passive data structure
holding an abstract description of an operation to be
performed — or, often in the case of broadcasts, a
description of something that has happened and is being
announced.

There are separate mechanisms for delivering intents to
each type of component.

23

Using intents with activities
An Intent object is passed to Context.startActivity() or
Activity.startActivityForResult() to launch an activity
or get an existing activity to do something new. (It can
also be passed to Activity.setResult() to return
information to the activity that called
startActivityForResult().)

24

Other uses of Intents

 An Intent object is passed to Context.startService() to initiate a
service or deliver new instructions to an ongoing service. Similarly,
an intent can be passed to Context.bindService() to establish a
connection between the calling component and a target service. It
can optionally initiate the service if it's not already running.

 Intent objects passed to any of the broadcast methods (such as
Context.sendBroadcast(), Context.sendOrderedBroadcast(), or
Context.sendStickyBroadcast()) are delivered to all interested
broadcast receivers. Many kinds of broadcasts originate in system
code.

In each case, the Android system finds the appropriate activity,
service, or set of broadcast receivers to respond to the intent,
instantiating them if necessary. There is no overlap within these
messaging systems: Broadcast intents are delivered only to broadcast
receivers, never to activities or services. An intent passed to
startActivity() is delivered only to an activity, never to a service or
broadcast receiver, and so on.

25

Sensors

Marco Ronchetti
Università degli Studi di Trento

26

Sensor categories
Motion sensors
•  measure acceleration forces and rotational forces

along three axes. This category includes
accelerometers, gravity sensors, gyroscopes.

Environmental sensors
•  measure various environmental parameters, such as

ambient air temperature and pressure, illumination,
and humidity. This category includes barometers,
photometers, and thermometers.

Position sensors
•  measure the physical position of a device. This

category includes orientation sensors and
magnetometers.

27

Basic code for managing sensors
 public class SensorActivity extends Activity, implements SensorEventListener {
 private final SensorManager sm;
 private final Sensor sAcc;
 public SensorActivity() {
 sm= (SensorManager)getSystemService(SENSOR_SERVICE);
 sAcc= sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 }
 protected void onPause() {
 super.onPause();
 sm.unregisterListener(this);
 }
 protected void onResume() {
 super.onResume();
 sm.registerListener(this, sAcc, SensorManager.SENSOR_DELAY_NORMAL);
 }
 public void onAccuracyChanged(Sensor sensor, int accuracy) { }
 public void onSensorChanged(SensorEvent event) { }
 }

28

SensorManager
SensorManager sm=Context.getSystemService(SENSOR_SERVICE);

List<Sensor> getSensorList(int type)
•  get the list of available sensors of a certain type. Sensor
Sensor getDefaultSensor(int type)
•  Use this method to get the default sensor for a given type

void registerListener(SensorEventListener listener, Sensor sensor, int rate)
•  Registers a SensorEventListener for the given sensor.
void unregisterListener(SensorEventListener listener, Sensor sensor)
•  Unregisters a listener for the sensors with which it is registered.
void unregisterListener(SensorEventListener listener)
•  Unregisters a listener for all sensors.

•  Some methods for transforming data (Vector to matrix representation etc.)

29

Sensor types
int constants of the Sensor class describing sensor
types:
TYPE_ACCELEROMETER
 TYPE_ALL A constant describing all sensor types.
TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE
TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY
TYPE_ROTATION_VECTOR

30

Accelerometer
“Sensor's values are in meters/second^2 units. A sensor
measures the acceleration applied to the device. For this
reason, when the device is sitting on a table (and obviously
not accelerating), the accelerometer reads a magnitude of g
= 9.81 m/s^2. Similarly, when the device is in free-fall and
therefore dangerously accelerating towards to ground at
9.81 m/s^2, its accelerometer reads a magnitude of 0 m/
s^2.” (Android Developers – sensors)

31

Orientation sensor
“A compass is a navigational instrument for determining
direction relative to the Earth's magnetic poles. It
consists of a magnetized pointer (usually marked on the
North end) free to align itself with Earth's magnetic
field.” (Compass EN Wiki)
In Android's terminology it is called Orientation
sensor.

32

Gyroscope
“A gyroscope is an instrument consisting of a rapidly spinning
wheel so mounted as to use the tendency of such a wheel to
maintain a fixed position in space, and to resist any force which
tries to change it. The way it will move if a twisting force is
applied depends on the extent and orientation of the force and the
way the gyroscope is mounted. A free vertically spinning
gyroscope remains vertical as the carrying vehicle tilts, so
providing an artificial horizon. A horizontal gyroscope will
maintain a certain bearing, and therefore indicate a vessel's
heading as it turns. Modern gyroscopes (including those built-in
in smartphones) no longer have a spinning wheel.” (Gyroscope
Cambridge Encyclopedia)
“All values are in radians/second and measure the rate of
rotation around the X, Y and Z axis. The coordinate system is the
same as is used for the acceleration sensor.” (Android
Developers – sensors) Rotation is positive in the counter-
clockwise direction.

33

Sensor class
float getMaximumRange()
•  maximum range of the sensor in the sensor's unit.
int getMinDelay()
•  minimum delay allowed between two events in

microsecond or zero if this sensor only returns a value
when the data it's measuring changes

String getName()
float getPower()
•  the power in mA used by this sensor while in use
float getResolution()
•  resolution of the sensor in the sensor's unit.
int getType()
String getVendor()
int getVersion()

34

SensorManager sm= (SensorManager)getSystemService(SENSOR_SERVICE);
List<Sensor> sensorList = sm.getSensorList(Sensor.TYPE_ALL);
StringBuilder sensorString = new StringBuilder("Sensors:\n");
for(int i=0; i<sensorList.size(); i++) {
 sensorString.append(sensorList.get(i).getName()).append(", \n");
}

HTC EVO 4G
BMA150 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor
CM3602 Proximity sensor
CM3602 Light sensor

Samsung Nexus-S
KR3DM 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor
GP2A Light sensor
GP2A Proximity sensor
K3G Gyroscope sensor
Gravity Sensor
Linear Acceleration Sensor
Rotation Vector Sensor

35

Code examples
•  http://www.vogella.com/articles/AndroidSensor/

article.html accelerometer and compass examples

•  http://developer.android.com/guide/topics/
sensors/sensors_overview.html and following
pages

•  http://developer.android.com/resources/
samples/ApiDemos/src/com/example/android/
apis/os/RotationVectorDemo.html a more complex
example with 3D graphics

36

Interface SensorEventListener
abstract void onAccuracyChanged(Sensor sensor, int
accuracy)
•  Called when the accuracy of a sensor has changed.
abstract void onSensorChanged(SensorEvent event)
•  Called when sensor values have changed.

37

Sensors limitation - 1
From Jim Steele
Using available sensors in the Android platform: current
limitations and expected improvements

Comparing the sensors on these two phones demonstrates the
sensor fragmentation now found in Android:

1) Non-standard sensor availability: The Nexus-S has a gyroscope
(from ST Micro), but the EVO does not. In fact, most Android devices
do not have a gyroscope. There is no standard availability of sensors
across devices.

2) Non-standard sensor capability: The BMA150 is a Bosch
Sensortec 10-bit accelerometer, and the KR3DM is a ST Micro 12-bit
accelerometer (using a special part number). In fact, there is no
standard capability requirement for sensors across devices to ensure
consistent
resolution, noise floor, or update rate.

38

Sensors limitation - 2
3) Sensors not fully specified: The AK8973 is an AKM magnetometer, which
is only 8-bits. Analyzing this data stream shows it is low-pass filtered. This
fact is not published on the phone or even the sensor datasheet. Many
sensors have characteristics not specified such
as bias changes, non-uniform gain, and skew (coupling between
measurement axes). Algorithms that use sensors without knowing these
extra characteristics may produce incorrect information.

4) Broken virtual sensors: The AKM sensor driver abstracts out an
orientation virtual sensor which is derived from the combination of two
sensors: the accelerometer and magnetometer. However, support for this
virtual sensor was dropped early on, so the TYPE_ORIENTATION
sensor is deprecated and the method SensorManager.getOrientation()
should be used instead. Furthermore, the new virtual sensors introduced in
Android 2.3 (Gingerbread) are not supported on all devices.

The sensor differences between just these two phones is substantial. So when
a developer is faced with writing apps utilizing sensors across as many
devices as possible, it is a daunting task.

Furthermore, the Android platform is not optimized for real-time sensor
data acquisition.

39

What can you do with
accelerometer and gyroscope?
http://www.starlino.com/imu_guide.html

“This guide is intended to everyone interested in inertial MEMS (Micro-Electro-
Mechanical Systems) sensors, in particular Accelerometers and Gyroscopes as
well as combination IMU devices (Inertial Measurement Unit).”
- what does an accelerometer measure
- what does a gyroscope (aka gyro) measure
- how to convert analog-to-digital (ADC) readings that you get from these sensor
to physical units (those would be g for accelerometer, deg/s for gyroscope)
- how to combine accelerometer and gyroscope readings in order to obtain
accurate information about the inclination of your device relative to the ground
plane

http://www.starlino.com/dcm_tutorial.html

40

Emulator limits
The emulator does not emulate sensors, so what can
you do without a physical device?

BUT…

There is an app that emulates many sensors, and that
you can use as data provider!

41

SensorSimulator
OpenIntents SensorSimulator lets you simulate sensor
data with the mouse in real time. Moreover, you can
simulate your battery level and your gps position too,
using a telnet connection.

Now you can also record a sequence with states from
a real device.

See
http://code.google.com/p/openintents/wiki/SensorSimulator

42

Fragments

43

Fragments
A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

 Fragments can be assembled to create an activity during
the application design phase, and added to, or removed
from an activity during application runtime to create a
dynamically changing user interface.

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

A fragment can be thought of as a functional “sub-activity”
with its own lifecycle similar to that of a full activity.

44

Using fragments

45

Fragments lifecycle
Method Description

onAttach() The fragment instance is associated with an activity instance.The activity is not
yet fully initialized

onCreate() Fragment is created

onCreateView() The fragment instance creates its view hierarchy. The inflated views become part
of the view hierarchy of its containing activity.

onActivityCreated()
Activity and fragment instance have been created as well as thier view hierarchy.
At this point, view can be accessed with the findViewById() method.
example.

onResume() Fragment becomes visible and active.

onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.

onStop() Fragment becomes not visible.

!

46

Defining a new fragment (from code)
To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example, ListFragment, DialogFragment,
PreferenceFragment or WebViewFragment.

47

Defining a new fragment (from code)
public class DetailFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {
 View view=inflater.inflate(

 R.layout.fragment_rssitem_detail,
 container, false);

 return view;
 }
 public void setText(String item) {
 TextView view = (TextView)

 getView().findViewById(R.id.detailsText);
 view.setText(item);
 }
}

48

XML-based fragments
<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment_one"
android:name="com.example.myfragmentdemo.FragmentOne"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true" tools:layout="@layout/
fragment_one_layout" />

</RelativeLayout>

49

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout you typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager().beginTransaction();
ft.replace(R.id.your_placehodler, new
YourFragment());
ft.commit();

A new Fragment will replace an existing Fragment that was previously
added to the container.

50

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
 getFragmentManager().
 findFragmentById(R.id.detail_frag);

if (fragment==null) {

 // start new Activity
} else {

 fragment.update(...);
}

51

Communication: activity -> fragment
In order for an activity to communicate with a
fragment, the activity must identify the fragment
object via the ID assigned to it using the
findViewById() method. Once this reference has been
obtained, the activity can simply call the public
methods of the fragment object.

52

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A)  the fragment must define a listener interface, which is
then implemented within the activity class.

public class MyFragment extends Fragment {
 AListener activityCallback;
 public interface AListener {

 public void someMethod(int par1, String par2);
 }
 …

53

Communication: fragment-> activity
B.  the onAttach() method of the fragment class needs to be

overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verify that it implements the interface.

public void onAttach(Activity activity) {
 super.onAttach(activity);
 try { activityCallback = (AListener) activity;
 } catch (ClassCastException e) {
 throw new ClassCastException(

 activity.toString()
 + " must implement ToolbarListener");

} }

54

Communication: fragment-> activity
C.  The next step is to call the callback method of the

activity from within the fragment. When and how
this happens is entirely dependent on the
circumstances under which the activity needs to be
contacted by the fragment. For the sake of an
example, the following code calls the callback
method on the activity when a button is clicked:

public void buttonClicked(View view) {
 activityCallback.someMethod(arg1, arg2);
}

55

Communication: fragment-> activity
All that remains is to modify the activity class so that
it implements the ToolbarListener interface.
public class MyActivity extends
FragmentActivity implements
MyFragment.AListener {
 public void someMethod(String arg1, int arg2)

 {
 // Implement code for callback method

 }
.
.
}

56

Esempio
vedi
http://www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

