Basic Ul elements:
Android Menus (basics)

Marco Ronchetti
Universita degli Studi di Trento

. SimpleMenu

This is Activity Al
no results yet...

. SimpleMenu

This is Activity Al
Clicks :1

Increase

Decrease

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="hello">This is Activity A1</string>
<string name="app_name">SimpleMenu</string>
<string name="output">no results yet...</string>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlIns:android=
"http;//schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill _parent"
android:orientation="vertical" >
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello" />
<TextView
android:id="@+id/tf1"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/output" />
</LinearLayout>

</resources>

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.view.View;

super.onCreate(icicle); import android.widget.Button;

setContentView(R.layout.layoutl); import android.widget.TextView;
|

public boolean onCreateOptionsMenu(Menu menu){

public class Al extends Activity {
int nClicks=0;
protected void onCreate(Bundle icicle) {

super.onCreateOptionsMenu(menu); .
int base=Menu.FIRST; < Menu is created

Menultem iteml=menu.add(base,1,1,"Increase");

Menultem item2=menu.add(base,2,2,"Decrease");
return true;

}

public boolean onOptionsItemSelected(Menultem item) {
TextView tf = (TextView) findViewByld(R.id.tf1);
if (item.getItemld()==1) increase();

Respond to a
Menu event

private void increase() {

else if (item.getIltemlId()==2) decrease(); nClicks++;
else return super.onOptionsltemSelected(item); }
tf.setText("Clicks :"+nClicks); private void decrease() {
return true; nClicks--;

} !

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.view.View;
super.onCreate(icicle); D import android.widget.Button;
setContentView(R.layout! import android.widget.TextView;
} \

public boolean onCre

public class Al extends Activity {
int nClicks=0;
protected void onCreate(Bundle icicle) {

super.onCreateOptionsMe
int base=Menu.FIRST; Menu is created
Menultem iteml=menu.add(base,1,1,"Increase;—""_ This could be a
Menultem item2=menu.add(base,2,2,"Decrease"); resource

return true;

}

public boolean onOptionsItemSelected(Menultem item) {
TextView tf = (TextView) findViewByld(R.id.tf1);
if (item.getItemld()==1) increase();

Respond to a
Menu event

private void increase() {

else if (item.getIltemlId()==2) decrease(); nClicks++;
else return super.onOptionsltemSelected(item); }
tf.setText("Clicks :"+nClicks); private void decrease() {
return true; nClicks--;

} !

Calling Activities in other
apps: Android Intents

Marco Ronchetti
Universita degli Studi di Trento

Re-using activities

When you create an application, you can assemble it
from

activities that you create
activities you re-use from other applications.

An app can incorporate activities from other apps.
Yes, but how? By means of Intents

These activities are bound at runtime: newly installed
applications can take advantage of already installed

.activities
7'"-

. Intents

h the menu button!

GMOM

. Intents

Push the menu button!

invokeWebBrowser-VIEW
invokeWebBrowser-SEARCH
showDirections

GIE

latemar.science.unitn.it/s¢

& 6:40

—
-

Web Images Places News

Google

Signin

iGoogle Settings Help

View Google in: Mobile | Classic
Go to Google ltalia

© 2012 - New Privacy

more

Directions

@ Bolzano
Trento

Add Destination - Show options

® R % =3

A13 and A22 59.1 km, 42 mins

Driving directions to Trento, Italy

This route has tolls.

Bolzano Province of Bolzano-Bozen
Italy

1. Head south on Piazza della
Stazione toward Via Garibaldi

2. Continue onto Via Garibaldi

MNO

®

Our code - IntentUtils - 1

package it.unitn.science.latemar;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

public class IntentUtils {

public static void invokeWebBrowser(Activity activity) {
Intent intent=new Intent(Intent. ACTION_VIEW);
intent.setData(Uri.parse("http;//latemar.science.unitn.it"));
activity.startActivity (intent);

}

public static void invokeWebSearch(Activity activity) {
Intent intent=new Intent(Intent. ACTION_WEB_SEARCH,
Uri.parse("http.//www.google.com"));
activity.startActivity(intent);

Our code - IntentUtils - 2

public static void dial(Activity activity) {
Intent intent=new Intent(Intent. ACTION_DIAL);
activity.startActivity(intent);

public static void showDirections(Activity activity){
Intent intent = new Intent(android.content.Intent ACTION_VIEW,

Uri.parse("http:/ /maps.google.com/maps? saddr=Bolzano&daddr=Trento")
activity.startActivity(intent);

Our Code: IntentsActivity -1

package it.unitn.science.latemar;
import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.widget.TextView;

public class IntentsActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
TextView tv=new TextView(this);
tv.setText("Push the menu button!");
setContentView(tv);

}

public boolean onCreateOptionsMenu(Menu menu){
super.onCreateOptionsMenu(menu);

int base=Menu.FIRST;

Menultem iteml=menu.add(base,,1,"invokeWebBrowser-VIEW");
Menultem item2=menu.add(base,2,2,"invokeWebBrowser-SEARCH");
Menultem item3=menu.add(base,3,3,"showDirections");

Menultem item5=menu.add(base4,4,"dial");

return true;

lz.S |
L /3

Our Code: IntentsActivity -2

public boolean onOptionsltemSelected(Menultem item) {

System.err.println("item="+item.getItemld());

if (item.getltemId()==1)
IntentUtils.invokelWebBrowser(this);

else if (item.getItemld()==2)
IntentUtils.invokelWebSearch(this);

else if (item.getItemId()==3)
IntentUtils.showDirections(this);

else if (item.getItemld()==4)
IntentUtils.dial(this);

else
return super.onOptionsltemSelected(item);
return true;

Intent structure
and resolution

Marco Ronchetti
Universita degli Studi di Trento

Who will perform the action?
Component name (can be unnamed)
Which action should be performed?
Action identifier (a string)
Which data should the action act on ?
Data The URI of the data to be acted on
How we classify the action to be performed?
Category A (usually codified) string.
How do we directly pass data?

Extras Key-value pairs for additional information that
should be delivered to the component handling the
intent

How do we specify behavior modification?
Flags Flags of various sorts.

4 ©Meom

Examples of action/data pairs

ACTION_VIEW content://contacts/people/1
Display information about the person whose identifier is "1".

ACTION_DIAL content://contacts/people/1
Display the phone dialer with the person filled in.

ACTION_VIEW tel:123

Display the phone dialer with the given number filled in. Note how
the VIEW action does what what is considered the most reasonable
thing for a particular URI.

ACTION_DIAL tel:123
Display the phone dialer with the given number filled in.

ACTION_EDIT content://contacts/people/1
Edit information about the person whose identifier is "1".

ACTION_VIEW content://contacts/people/
Display a list of people, which the user can browse through.

Standard Actions ldentifiers

ACTION_MAIN
ACTION_VIEW
ACTION_ATTACH_DATA
ACTION_EDIT
ACTION_PICK
ACTION_CHOOSER
ACTION_GET_CONTENT
ACTION_DIAL
ACTION_CALL
ACTION_SEND
ACTION_SENDTO
ACTION_ANSWER
ACTION_INSERT
ACTION_DELETE
ACTION_RUN
ACTION_SYNC
ACTION_PICK_ACTIVITY
ACTION_SEARCH
ACTION_WEB_SEARCH
ACTION_FACTORY_TEST

For details see hitp://developer.android.com/reference/android/content/Intent.ntmI# CATEGORY ALTERNATIVE

Standard Categories

String CATEGORY_ALTERNATIVE Set if the activity should be considered as an alternative action to the data the user is currently viewing.

String CATEGORY_APP_BROWSER Used with ACTION_MAIN to launch the browser application.

String | CATEGORY_APP_CALCULATOR Used with ACTION MAIN to launch the calculator application.

String CATEGORY_APP_CALENDAR Used with ACTION MAIN to launch the calendar application.

String | CATEGORY_APP_CONTACTS Used with ACTION MAIN to launch the contacts application.

Sting | CATEGORY_APP_EMAIL Used with ACTION MAIN to launch the email application.

String CATEGORY_APP_GALLERY Used with ACTION MAIN to launch the gallery application.
String CATEGORY_APP_MAPS Used with ACTION_MAIN to launch the maps application.

String CATEGORY_APP_MARKET This activity allows the user to browse and download new applications.

String CATEGORY_APP_MESSAGING Used with ACTION_ MAIN to launch the messaging application.

String CATEGORY_APP_MUSIC Used with ACTION_ MAIN to launch the music application.
String CATEGORY_BROWSABLE Activities that can be safely invoked from a browser must support this category.

String CATEGORY_CAR_DOCK An activity to run when device is inserted into a car dock.

String CATEGORY_CAR_MODE Used to indicate that the activity can be used in a car environment.
String CATEGORY_DEFAULT Set if the activity should be an option for the default action (center press) to perform on a piece of data.

String = CATEGORY_DESK_DOCK An activity to run when device is inserted into a car dock.

String CATEGORY_DEVELOPMENT_PREFERENCE This activity is a development preference panel.

String CATEGORY_EMBED Capable of running inside a parent activity container.
String CATEGORY_FRAMEWORK_INSTRUMENTATION_TEST To be used as code under test for framework instrumentation tests.

String | CATEGORY_HE_DESK_DOCK An activity to run when device is inserted into a digital (high end) dock.

Sting = CATEGORY_HOME This is the home activity, that is the first activity that is displayed when the device boots.

String CATEGORY EEg Provides information about the package it is in; typically used if a package does not contain a CATEGORY LAUNCHER to provid
__String | CATEGORY_LAUNCHER) Should be displayed in the top-level launcher.

Sting =~ CATEGORY_LE_DESK_DOCK An activity to run when device is inserted into a analog (low end) dock.

CATEGORY_MONKEY This activity may be exercised by the y or other test tools.

CATEGORY_OPENABLE Used to indicate that a GET_CONTENT intent only wants URIs that can be cpened with ContentResolver.openinputStream.
CATEGORY_PREFERENCE) This activity is a preference panel.
CATEGORY_SAMPLE_CODE To be used as an sample code example (not part of the normal user experience).

CATEGORY_SELECTED_ALTERNATIVE Set if the activity should be considered as an alternative selection action to the data the user has currently selected.

Intended to be used as a tab inside of an containing TabActivity.

To be used as a test (not part of the normal user experience).

String CATEGORY_UNIT_TEST To be used as a unit test (run through the Test Harness).

18

Implicit intents and intent resolution

Implicit intents do not name a target (the field for the
component name is blank).

In the absence of a designated target, the Android system
must find the best component (or components) to handle
the intent.

It does so by comparing the contents of the Intent object to

intent filters, structures associated with components that can
potentially receive intents.

\ Vi

Filters advertise the capabilities of a component and
delimit the intents it can handle. They open the component
to the possibility of receiving implicit intents of the
advertised type. If a component does not have any intent
filters, it can receive only explicit intents. A component
lwith filters can receive both explicit and implicit intents.

Intent Filters

Only three aspects of an Intent object are consulted
when the object is tested against an intent filter:

action
data (both URI and data type)
category

The extras and flags play no part in resolving which
component receives an intent.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8" 7>

<manifest xmlns:android="http.//schemas.android.com/apk/res/android"
package="com.example.helloandroid"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="15" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".HelloAndroidActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>

i | </application>

'< /manifest>

Intents

Intent messaging is a facility for late run-time binding
between components in the same or different applications.

The intent itself, an Intent object, is a passive data structure
holding an abstract description of an operation to be
performed — or, often in the case of broadcasts, a
description of something that has happened and is being
announced.

There are separate mechanisms for delivering intents to
each type of component.

Using intents with activities

An Intent object is passed to Context.startActivity() or
Activity.startActivityForResult() to launch an activity
or get an existing activity to do something new. (It can
also be passed to Activity.setResult() to return
information to the activity that called
startActivityForResult().)

Other uses of Intents

An Intent object is passed to Context.startService() to initiate a
service or deliver new instructions to an ongoing service. Similarly,
an intent can be passed to Context.bindService() to establish a
connection between the calling component and a target service. It
can optionally initiate the service if it's not already running.

Intent objects passed to any of the broadcast methods (such as
Context.sendBroadcast(), Context.sendOrderedBroadcast(), or
Context.sendStickyBroadcast()) are delivered to all interested
br(c)iadcast receivers. Many kinds of broadcasts originate in system
code.

\ Vi

In each case, the Android system finds the appropriate activity,

service, or set of broadcast receivers to respond to the intent,

instantiating them if necessary. There is no overlap within these

. messaging systems: Broadcast intents are delivered only to broadcast
receivers, never to activities or services. An intent passed to

47, startActivity() is delivered only to an activity, never to a service or

' broadcast receiver, and so on.

Sensors

Marco Ronchetti
Universita degli Studi di Trento

Sensor categories

Motion sensors

measure acceleration forces and rotational forces
along three axes. This category includes
accelerometers, gravity sensors, gyroscopes.

Environmental sensors

measure various environmental parameters, such as
ambient air temperature and pressure, illumination,
and humidity. This category includes barometers,

= | photometers, and thermometers.

Position sensors

measure the physical position of a device. This
category includes orientation sensors and
magnetometers.

P -
i

Basic code for managing sensors

public class SensorActivity extends Activity, implements SensorEventListener {
private final SensorManager sm;
private final Sensor sAcc;
public SensorActivity() {
sm= (SensorManager)getSystemService(SENSOR_SERVICE);
sAcc= sm.getDefaultSensor(Sensor.TYPE_ ACCELEROMETER);
!
protected void onPause() {
super.onPause();
sm.unregisterListener(this);
}
protected void onResume() {
super.onResume();
sm.registerListener(this, sAcc, SensorManager.SENSOR_DELAY_ NORMAL);
}
public void onAccuracyChanged(Sensor sensor, int accuracy) { }
public void onSensorChanged(SensorEvent event) { }

SensorManager

SensorManager sm=Context.getSystemService(SENSOR_SERVICE);

List<Sensor> getSensorList(int type)

get the list of available sensors of a certain type. Sensor
Sensor getDefaultSensor(int type)

Use this method to get the default sensor for a given type

void registerListener(SensorEventListener listener, Sensor sensor, int rate)
Registers a SensorEventListener for the given sensor.

void unregisterListener(SensorEventListener listener, Sensor sensor)
Unregisters a listener for the sensors with which it is registered.
void unregisterListener(SensorEventListener listener)

Unregisters a listener for all sensors.

Some methods for transforming data (Vector to matrix representation etc.)

P -
'R

Sensor types

int constants of the Sensor class describing sensor
types:

TYPE_ACCELEROMETER
TYPE_ALL A constant describing all sensor types.
TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE

TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY

TYPE_ROTATION_VECTOR

Accelerometer

“Sensor's values are in meters/second”2 units. A sensor
measures the acceleration applied to the device. For this
reason, when the device s sitting on a table (and obviously
not accelerating), the accelerometer reads a magnitude of g
= 9.81 m/s"2. Similarly, when the device 1s in free-fall and
therefore dangerously accelerating towards to ground at
9.81 m/s"2, its accelerometer reads a magnitude of 0 m/
s72.” (Android Developers - sensors)

Orientation sensor

“A compass is a navigational instrument for determining
direction relative to the Earth's magnetic poles. It
consists of a magnetized pointer (usually marked on the
North end) free to align itself with Earth's magnetic
field.” (Compass EN Wiki)

In Android's terminology it is called Orientation
Sensor.

Gyroscope

“A gyroscope is an instrument consisting of a rapidly spinning
wheel so mounted as to use the tendency of such a wheel to
maintain a fixed position in space, and to resist any force which
tries to change it. The way it will move if a twisting force s
applied depends on the extent and orientation of the force and the
way the gyroscope is mounted. A free vertically spinning
gyroscope remains vertical as the carrying vehicle tilts, so
providing an artificial horizon. A horzzontaldgyroscope will
maintain a certain bearing, and therefore indicate a vessel's
heading as it turns. Modern gyroscopes (including those built-in
) in smartphones) no longer have a spinning wheel.” (Gyroscope
Cambridge Encyclopedia)

=
“All values are in radians/second and measure the rate of I
i

rotation around the X, Y and Z axis. The coordinate system is the
same as is used for the acceleration sensor.” (Androi
Developers - sensors) Rotation is positive in the counter-
clockwise direction.

Sensor class

float getMaximumRange()
maximum range of the sensor in the sensor's unit.
int getMinDelay/()

minimum delay allowed between two events in
microsecond or zero if this sensor only returns a value
when the data it's measuring changes

String getName()
float getPower()
the power in mA used by this sensor while in use
float getResolution()
resolution of the sensor in the sensor's unit.
int getType()
String getVendor()
' .int getVersion()

L+

SensorManager sm= (SensorManager)getSystemService(SENSOR_SERVICE);
List<Sensor> sensorList = sm.getSensorList(Sensor.TYPE_ALL);
StringBuilder sensorString = new StringBuilder("Sensors:\n");

for(int i=0; i<sensorList.size(); i++) {

sensorString.append(sensorList.get(i).getName()).append(", \n");

}

HTC EVO 4G

BMAT150 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor

CM3602 Proximity sensor

CM3602 Light sensor

Samsung Nexus-$

KR3DM 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor

GP2A Light sensor

GP2A Proximity sensor

K3G Gyroscope sensor

Gravity Sensor

Linear Acceleration Sensor
Rotation Vector Sensor

Code examples

- http:/ /www.vogella.com/articles/ AndroidSensor/
article.html accelerometer and compass examples

- http://developer.android.com/guide/topics/
sensors/sensors_overview.html and following

pages

- http://developer.android.com/resources/
samples/ ApiDemos/src/com/example/android/
apis/os/RotationVectorDemo.html a more complex
example with 3D graphics

Interface SensorEventListener

abstract void onAccuracyChanged(Sensor sensor, int
accuracy)

Called when the accuracy of a sensor has changed.
abstract void onSensorChanged(SensorEvent event)
Called when sensor values have changed.

Sensors limitation - 1

From Jim Steele

Using available sensors in the Android platform: current
limitations and expected improvements

Comparing the sensors on these two phones demonstrates the I
sensor fragmentation now found in Android: .

1) Non-standard sensor availability: The Nexus-S has a gyroscope
(from ST Micro), but the EVO does not. In fact, most Android devices
do not have a gyroscope. There is no standard availability of sensors
across devices.

2) Non-standard sensor capability: The BMA150 is a Bosch
Sensortec 10-bit accelerometer, and the KR3DM is a ST Micro 12-bit
accelerometer (using a special part number). In fact, there is no
standard capability requirement for sensors across devices to ensure
consistent

M resolution, noise floor, or update rate.

'k

Sensors limitation - 2

3) Sensors not fully specified: The AK8973 is an AKM magnetometer, which
is only 8-bits. Analyzing this data stream shows it is low-pass filtered. This
fact is not published on the phone or even the sensor datasheet. Many
sensors have characteristics not specified such

as bias changes, non-uniform gain, and skew (coupling between
measurement axes). Algorithms that use sensors without knowing these
extra characteristics may produce incorrect information.

4) Broken virtual sensors: The AKM sensor driver abstracts out an
orientation virtual sensor which is derived from the combination of two
sensors: the accelerometer and magnetometer. However, support for this
virtual sensor was dropped early on, so the TYPE_ORIENTK ION

sensor is deprecated and the method SensorManager.getOrientation()
should be used instead. Furthermore, the new virtual sensors introduced in
Android 2.3 (Gingerbread) are not supported on all devices.

The sensor differences between just these two phones is substantial. So when
a developer is faced with writing apps utilizing sensors across as many
devices as possible, it is a daunting task.

Furthermore, the Android platform is not optimized for real-time sensor
data acquisition.

What can you do with
accelerometer and gyroscope?

http:/ /www.starlino.com/imu_guide.html

A Guide To using IMU (Accelerometer and Gyroscope

Devices) in Embedded Applications.

“This guide is intended to everyone interested in inertial MEMS (Micro-Electro-
Mechanical Systems) sensors, in particular Accelerometers and Gyroscopes as
well as combination IMU devices (Inertial Measurement Unit).”

- what does an accelerometer measure

- what does a gyroscope (aka gyro) measure

- how to convert analog-to-digital (ADC) readings that you get from these sensor
to physical units (those would be g for accelerometer, deg/s for gyroscope)

- how to combine accelerometer and gyroscope readings in order to obtain

accurate information about the inclination of your device relative to the ground
plane

http:/ /www.starlino.com/dcm_tutorial.html

m DCM Tutorial — An Introduction to Orientation

rl Kinematics
9

L

3

Emulator limits

The emulator does not emulate sensors, so what can
you do without a physical device?

BUT...

There is an app that emulates many sensors, and that
you can use as data provider!

SensorSimulator

Openlntents SensorSimulator lets you simulate sensor
data with the mouse in real time. Moreover, you can
simulate your battery level and your gps position too,
using a telnet connection.

Now you can also record a sequence with states from
a real device.

See

http:/ /code.google.com/p/openintents/wiki/SensorSimulator

Fragments

Fragments

A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

Fragments can be assembled to create an activity during
the application design phase, and added to, or removed

from an activity during application runtime to create a
dynamically changing user interface.

\ Vi

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

oA fragment can be thought of as a functional “sub-activity”
ith its own lifecycle similar to that of a full activity.

GMOM

Fragments lifecycle
Method Description
The fragment instance is associated with an activity instance.The activity is not
onAttach() e s
yet fully initialized
onCreate() Fragment is created
. The fragment instance creates its view hierarchy. The inflated views become part
onCreateView() X
of the view hierarchy of its containing activity.
Activity and fragment instance have been created as well as thier view hierarchy.
onActivityCreated() | At this point, view can be accessed with the £indViewById () method.
example.
onResume() Fragment becomes visible and active.
onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.
onStop() Fragment becomes not visible.

ZIS.
y,)

Defining a new fragment (from code)

To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example, ListFragment, DialogFragment,
PreferenceFragment or WebViewFragment.

Defining a new fragment (from code)

public class DetailFragment extends Fragment ({

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) ({

View view=inflater.inflate(

R.layout. fragment rssitem detail,
container, false);
return view;
}
public void setText (String item) ({
TextView view = (TextView)
getView() .findViewById(R.id.detailsText) ;

view.setText (item) ;

XML-based fragments

<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout width="match parent"

android:layout height="match_ parent"”
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment one"
android:name="com.example.myfragmentdemo.FragmentOne"

android:layout width="match parent"

android:layout height="wrap content"”

android:layout alignParentLeft="true"

android:layout centerVertical="true" tools:layout="@layout/
fragment one layout" />

</Relativelayout>

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout C}l/ou typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager () .beginTransaction() ;
ft.replace(R.id.your placehodler, new
YourFragment()) ;

ft.commit () ;

A new Fragment will replace an existing Fragment that was previously
added to the container.

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
getFragmentManager () .
findFragmentById(R.id.detail fragq);

if (fragment==null) ({

// start new Activity
} else {

fragment.update(...);

}

Communication: activity -> fragment

In order for an activity to communicate with a
fragment, the activity must identity the fragment
object via the ID assigned to it using the

find ViewByld() method. Once this reference has been
obtained, the activity can simply call the public
methods of the fragment object.

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A) the fragment must define a listener interface, which is

then implemented within the activity class.
public class MyFragment extends Fragment ({

Alistener activityCallback;
public interface AListener ({
public void someMethod (int parl, String par2?);

Communication: fragment-> activity

B. the onAttach() method of the fragment class needs to be
overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verity that it implements the interface. | S

public void onAttach (Activity activity) ({
super .onAttach (activity) ;

try { activityCallback = (AListener) activity;
} catch (ClassCastException e) {
throw new ClassCastException (
activity.toString()
+ " must implement ToolbarListener") ;

Communication: fragment-> activity

C. The next step is to call the callback method of the
activity from within the fragment. When and how
this happens is entirely dependent on the
circumstances under which the activity needs to be
contacted by the fragment. For the sake of an I
example, the following code calls the callback
method on the activity when a button is clicked:

public void buttonClicked (View view) ({

activityCallback.someMethod (argl, arg2) ;

Communication: fragment-> activity

All that remains is to modify the activity class so that
it implements the ToolbarListener interface.

public class MyActivity extends
FragmentActivity implements
MyFragment.AListener ({

public void someMethod (String argl, int arg2)
{
// Implement code for callback method

}

Esempio

vedi
http:/ /www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

