Adapters

Marco Ronchetti
Universita degli Studi di Trento

Adapter - AdapterView

AdapterView:

a view whose children are determined by an Adapter.

Adapter:

a bridge between an AdapterView and the underlying
data for that view.

The Adapter:
- provides access to the data items.
- makes a View for each item in the data set.

Visualizing data

ViewGroup

AdapterView Adapter

ListAdapter
CursorAdapter

ArrayAdapter

. Adapters1

Red Bull

McLaren

public class AdapterslActivity extends ListActivity { -

@Override L Extends Activity, Williams
public void onCreate(Bundle state) { designed to simplify the Toro Rosso
super.onCreate(savedInstanceState); handling of ListViews.

Mercedes

ListView listView = getListView(); No setContentView! Renault

Data x= new Data(); Force India

String[] values= x.getValues(); A default | i
efault layout,

ArravAdapter<String> adapter =)
y p o P You can see ifs code here:

new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1,

values);
listView.setAdapter(adapter);

public class Data {
} private String[] values = new String]] {
‘ "Red Bull", "McLaren", "Ferrari",
"Williams", "Toro Rosso", "Mercedes",
"Renault", "Force India", "Sauber" };
public String[] getValues(){return values;}

4) e

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
R.layout.simple_element, values);

simple_element.xml

<?xml version="1.0" encoding="utf-8" ?> B Adapterst

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent" e
android:layout_height="fill_parent" MeLaren
android:padding="10dp" Ferrari
android:textSize="16sp" o
android:textColor="#FF0000"
android:background="#00FFFF"> 1o Hess

</TextView> Mercedes

Renault

Force India

Sauber

listView.setOnltemClickListener(new OnltemClickListener() { ,
public void onltemClick(AdapterView<?> parent, Add this
View view, int position, long id) { fragment fo
// When clicked, show a toast onCreate
Toast.makeText(getApplicationContext(),
x.getMapped(((TextView) view).getText().toString()),
Toast. LENGTH_SHORT).show();

public class Data {

private String[] values = new String]] {
D B Adapters? "Red Bull", "McLaren", "Ferrari",

_—— "Williams", "Toro Rosso", "Mercedes",
"Renault", "Force India", "Sauber" };

private HashMap<String,String> hm;
Ferrari Data() {
Williams hm=new HashMap<String,String>();
- hm.put("Ferrari", "Alonso, Massa");

}

McLaren

Mercedes

Renault

public String[] getValues(){return values;}
Force India public String getMapped(String key){
return hm.get(key);

}
}

Sauber

Alonso, Massa

Toast

A toast is a view containing a quick little message for
the user (shown for a time interval).

When the view is shown to the user, appears as a
floating view over the application. It will never receive
focus.

It is as unobtrusive as possible, while still showing the
user the information you want them to see.

setGravity(), setDuration(), set Text(), view()

Adapter

int getCount()

How many items are in the data set represented by this Adapter.
boolean isEmpty()

true if dataset is empty
Object getltem(int k)

Get the k-th data item

What to do when the data change?

void registerDataSetObserver(DataSetObserver o)

Register an observer that is called when changes happen to the data used
by this adapter.

void unregisterDataSetObserver(DataSetObserver o)
Unregister an observer that has previously been registered

Class DataSetObserver
onChanged()

« called when the entire data set has changed

AdapterView

int getFirstVisiblePosition()

int getLastVisiblePosition()

Returns the position within the adapter's data set for the first (last) item
displayed on screen.

getAdapter() / setAdapter()

setOnltemClickListener(AdapterView.OnltemClickListener listener)
setOnltemSelectedListener(AdapterView.OnltemSelectedListener listener)

Object getltemAtPosition(int position)

setSelection(int position)

For more demos and details...
See Lars Vogel:

http:/ /www.vogella.de/articles/ AndroidListView /article.html

Home
@vogel]a Android ListView and ListActivity - Tutorial il
Tutorial Lars Vogel
(31 s Version 3.1

by Lars Vogel
Copyright © 2010, 2011, 2012 Lars Vogel

In the next lectures, we'll discuss Filters and Olbservers

Application Context

Marco Ronchetti
Universita degli Studi di Trento

The Context

An interface to global information about an
application environment.

It allows accessing application-specific resources and
classes, as well as up-calls for application-level
operations such as launching activities, broadcasting
and receiving intents, etc.

[LN/

We have seen it in various cases:
Activity is subclass of Context
new Intent(Context c, Class c);
isIntentAvailable(Context context, String action)

A global Application Context

Is there a simple way to maintain and access the application context
from everywhere it’s needed?

a) Modify the Android Manifest adding the “name” parameter to the

application tag
<application android:name="myPackage. MyApplication”> ...
</application> , o o
public class MyApplication extends Application{
private static Context context;
public void onCreate(){
super.onCreate();
b) Write the class My Application.context = getApplicationContext();
}

public static Context getAppContext() {
return MyApplication.context;

}
}

c) Access MyApplication.getAppContext() to get your application
Pe context statically from eveywhere.

Internal Database

Marco Ronchetti
Universita degli Studi di Trento

Why an internal database?

Useful for easy handling of structured data.

The main classes

SQLiteOpenHelper

responsible for creating, opening, and upgrading a
program’s database.

SQLiteDatabase

responsible for communicating changes to the data
within the database.

Cursor

exposes results from a query on a SQLiteDatabase.
ContentValues
a convenience map to pass values

SQLiteOpenHelper

SQLiteOpenHelper(Context context, String name,
SQLiteDatabase.CursorFactory factory, int version)

- context The application context
- name of the db file (null for an in-memory db)

- factory for creating (custom) cursor objects, or
null for the default

- version number of the database (starting at 1)

SQLiteOpenHelper - lifecycle

onCreate getWritableDatabase()
onOpen

onClose

onUpgrade
onCreate()
onDowngrade |
| IR Return
getWritableDatabase Cached

onOpen()
getReadableDatabase reference |
Cache DB

SQLiteOpenHelper

Call close() when the handle to DB is not needed any
more (you can reaccess it later).

If the DB is opened for reading and you call
getWritableDatabase, it gets closed and reopened.

Utility class: ContentValues

ContentValues (similar to Extras)
A key-value map. Methods:

void put(String s, #TYPE# val);

Object get(String s);
#TYPE# getAs#TYPE# (String s): getAsByte,

getAsByteArray, getAsFloat, getAsInteger,
getAsLong, getAsShort, getAsString

Set keySet(), Set valueSet()

int size(); void clear();

SQLiteDatabase

long insert(String table, String nullColumnHack, ContentValues values)
table: the table to insert the row into

nullColumnHack: optional; may be null. Trick to enter an empty row: put
in the field the name of the column where a NULL is explicitly inserted.

values this map contains the initial column values for the row. The keys
should be the column names and the values the column values I

Returns the ID

long replace(String table, String nullColumnHack, ContentValues values)

int delete (String table, String whereClause, String[] whereArgs)
Es:
delete("MyTable", "A=?, B<?, C>?", new String[] {"pippo", "2", "6"});
means delete * from MyTable where A="pippo", B<2, C<6;

returns the number of affected rows

m void execSQL (String sql) where sql is an sql query NOT returning values.

Cursor query (String table, String[] columns, String selection, String|]
selectionArgs, String groupBy, String having, String orderBy)

table The table name to compile the query against.

columns A list of which columns to return. Passing null will return all
columns

selection list of rows to return, formatted as an SQL WHERE clause
(excluding the WHERE itself). Passing null will return all rows for the
given table.

selectionArgs You may include ?s in selection, which will be replaced by
the values from selectionArgs, in order that they appear in the selection.
The values will be bound as Strings.

roupBy how to group rows, formatted as an SQL GROUP BY clause
%excluding the GROUP BY itself). Passing null will cause the rows to not
be grouped.
having which row groups to include in the cursor, if row groull?ling is
being used, formatted as an SQL HAVING clause (excluding the

HAVING itself). Passing null will cause all row grougl)s to be included,
and is required when row grouping is not being used.

orderBy How to order the rows, formatted as an SQL ORDER BY clause
(excluding the ORDER BY itself). Passing null will use the default sort
order, which may be unordered.

L =

SQLiteDatabase

close()

DB Status
isOpen()
isReadOnly()

Transaction support
beginTransaction()
endTransaction()

setTransactionSuccessful()

Utility class: Cursor

provides random read-write access to the result set returned by a
database query

Metadata methods:
int getCount()
Returns the numbers of rows in the cursor.
int getColumnCount()
Return total number of columns
String getColumnName(int columnIndex)

Returns the column name at the given zero-based column
index.

String [] getColumnNames()

Returns a string array holding the names of all of the
columns in the result set in the order in which they were

listed in the result. FIELD TYPE BLOB
int getType(int columnIndex) FIELD_TYPE_FLOAT

Returns data type of the given column's value. FIELD_TYPE INTEGER
FIELD_TYPE_NULL

FIELD_TYPE_STRING

O

\ Ve

w

Utility class: Cursor

Position check
boolean isFirst()
boolean isAfterLast()
boolean isBeforeFirst()

boolean isLast()
Position move

boolean move(int offset)

Move the cursor by a relative amount, forward or backward, from the current
position.

boolean moveToPosition(int position)
Move the cursor to an absolute position.

All the move methods
return true
If the move was successful

boolean moveToFirst()

Move the cursor to the first row.
boolean moveToLast()

Move the cursor to the last row.
boolean moveToNext()

Move the cursor to the next row.
boolean moveToPrevious()
Move the cursor to the previous row.

Utility class: Cursor

void close()

closes the Cursor, releasing all of its resources and
making it completely invalid.

boolean isClosed)()
return true if the cursor is closed

Getter methods
double getDouble(int columnIndex)
float getFloat(int columnIndex) |z
int getInt(int columnIndex) All the getter methods
long getLong(int columnIndex) refurn the value

of the requested column

short getShort(int columnIndex) o5 e seeciies fyee

String getString(int columnIndex)
byte[] getBlob(int columnIndex)

Utility methods in Context

String[] databaseList()

- Returns an array of strings naming the private
databases associated with this Context's application
package.

boolean deleteDatabase(String name)

- Delete an existing private SQLiteDatabase
associated with this Context's application package.

Cied

Marco Ronchetti
Universita degli Studi di Trento

Derived by Lars Vogel, with modifications

Delete First

alfa beta

ORM - DAO

MODEL UML |

ARCHITECTURE

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout ... android:orientation="vertical" >

<LinearLayout android:id="@+id/group" ...

android:orientation="vertical" >

<Button android:id="@+id/add" ... android:text="Add New"

android:onClick="onClick"/>
<EditText android:id="@+id/editText1"
<EditText android:id="@+id/editText2"

</LinearLayout>
<ListView
android:id="@android:id/list"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello" />
</LinearLayout>

... ><requestFocus /> </EditText>
.. ></EditText>

P saLiite

Add New

alfa

beta

Delete First

alfa beta

r

package it.unitn.science.latemar;
import ...

Our Activity

public class SQLliteActivity extends ListActivity {
private PersonDAO dao;
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
dao = new PersonDAO_DB_impl();
dao.open();

List<Person> values = dao.getAllPersons();

// Use the SimpleCursorAdapter to show the

// elements in a ListView

ArrayAdapter<Person> adapter = new ArrayAdapter<Person>(this,
android.R.layout.simple_list_item_1, values);

setListAdapter(adapter);

Our Activity

@QOverride
protected void onResume() {

dao.open(); super.onResume();

@QOverride
protected void onPause() {
dao.close(); super.onPause();

// Will be called via the onClick attribute of the buttons in main.xml
public void onClick(View view) {
ArrayAdapter<Person> adapter = (ArrayAdapter<Person>) getListAdapter();
Person person = null;
final EditText tf1 = (EditText) findViewByld(R.id.editText1);
final EditText tf2 = (EditText) findViewByld(R.id.editText2);

Our Activity

switch (view.getId()) {
case R.id.add:
String name=tf1l.getText().toString();

String surname=tf2.getText().toString();

person = dao.insertPerson(new Person(name,surname));

adapter.add(person); tfl.setText(“”); tf2.setText(“”);

break;

case R.id.delete:

if (getListAdapter().getCount() > 0) {
person = (Person) getListAdapter().getltem(0);
dao.deletePerson(person);
adapter.remove(person);

break;
}
adapter.notifyDataSetChanged();
m }// end of method
'r l} // end of class
¥

MODEL -

ARCHITECTURE

; ‘v.
,: ‘ \ N W
- Y

N\

: PRRAANS

— —— L ——— —— S~
— — .

package it.unitn.science.latemar;

public class Person {

private long id;

private String name;

private String surname;

Person(){} }

Person(String name, String surname){
this.name=name;
this.surname=surname;

this.id=-1; // means: not in DB

}

Person(long id, String name, String surname){

this.name=name;
this.surname=surname;

this.id=id; // means: not in DB

public long getld() { return id; }
public void setld(long id) { this.id = id;}
public String getName() { return name; }
public void setName(String name) {
this.name = name; }
public String getSurname() {
return surname; }
public void setSurname(String surname) {
this.surname = surname; }
@QOverride
public String toString() {
return name+" "+surname;

}

SMOoM

ORM - DAO

MODEL UML |

ARCHITECTURE

[LN/

The DAO interface

package it.unitn.science.latemar;

import java.util.List;

public interface PersonDAO {
public void open();
public void close();

public Person insertPerson(Person person) ;
public void deletePerson(Person person) ;
public List<Person> getAllPerson() ;

MODEL -

ARCHITECTURE

'|“l=_“ ‘ ! ‘, ‘y‘
' '

; ‘v.
,: ‘ \ N W
- Y

N\

: PRRAANS

— —— L ——— —— S~
— — .

package it.unitn.science.latemar;

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class MySQLiteHelper extends SQLiteOpenHelper {
public static final String TABLE_PEOPLE = "people";
public static final String COLUMN_ID ="_id";
Define public static final String COLUMN_NAME = "name";
constants public static final String COLUMN_SURNAME = "surname”’;
private static final String DATABASE_NAME = "contacts.db";
private static final int DATABASE_VERSION = 1;
// Database creation sql statement
private static final String DATABASE_CREATE = "create table "
+ TABLE_PEOPLE + "("
+ COLUMNLID + " integer primary key autoincrement, "
+ COLUMN_NAME + " text not null,"
+ COLUMN_SURNAME + " text not null);”;
public MySQLiteHelper(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);

Using default Cursor factory

L (©Mem

The DB - part 2

@QOverride
public void onCreate(SQLiteDatabase database) {
database.execSQL(DATABASE_CREATE);

@Override
public void onUpgrade(SQLiteDatabase db,
int oldVersion, int newVersion) {
Log.w(MySQLiteHelper.class.getName(),
"Upgrading database from version " + oldVersion + " to ”

+ newVersion + ", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS " + TABLE_PEOPLE);
onCreate(db);

package it.unitn.science.latemar;
import ...

The DAO implementation - DB

public class PersonDAO_DB_impl implements PersonDAO {

private SQLiteDatabase database;
private MySQLiteHelper dbHelper;
private String[] allColumns = { MySQLiteHelper. COLUMN_ID,
MySQLiteHelper. COLUMN_NAME,
MySQLiteHelper. COLUMN_SURNAME};
@Override
public void open() throws SQLException {
if (dbHelper==null) dbHelper =
new MySQLiteHelper(MyApplication.getAppContext());
database = dbHelper.getWritableDatabase();

}

@Override .
public void close() { Using the code

we discussed
dbHelper.close(); Eacces:s he
}

Global Context

The DAO impl. — utility methods

private ContentValues personToValues(Person person) {
ContentValues values = new ContentValues();

values.put(MySQLiteHelper. COLUMN_NAME, 'IFrolgnBObj ect
O

person.getName());
values.put(MySQLiteHelper. COLUMN_SURNAME,
person.getSurname());

return values;

private Person cursorToPerson(Cursor cursor) {

long id = cursor.getLong(0); From DB

String name=cursor.getString(1); To Object

String surname=cursor.getString(2);
return new Person(id,name,surname);

The DAO impl. — data access 1

@Override
public Person insertPerson(Person person) {
long insertld = database.insert(MySQLiteHelper.TABLE_PEOPLE, null,
personToValues(person));

// Now read from DB the inserted person and return it

Cursor cursor = database.query(MySQLiteHelper. TABLE_PEOPLE,
allColumns, MySQLiteHelper. COLUMN_ID +"=2?",
new String][] {""+insertId}, null, null, null);

cursor.moveToFirst();

Person p=cursorToPerson(cursor);

cursor.close();

return p;

The DAO impl. — data access 2

@Override
public void deletePerson(Person person) {

long id = person.getId();

//database.delete(MySQLiteHelper. TABLE_PEOPLE,
// MySQLiteHelper. COLUMN_ID +" =" +1id,

/4 null);

database.delete(MySQLiteHelper. TABLE_PEOPLE,
MySQLiteHelper. COLUMN_ID + " =?",
new Stril‘lg[] {““"‘id});

RED version preferred to the BLUE one!

The DAO impl. — data access 3

@Override
public List<Person> getAllPersons() | Select * from people
List<Person> people = new ArrayList<Person>();
Cursor cursor = database.query(MySQLiteHelper. TABLE_PEOPLE,
allColumns, null, null, null, null, null);

cursor.moveToFirst();
while (!cursor.isAfterLast()) {
Person person = cursorToPerson(cursor);
people.add(person);
cursor.moveToNext();
}
cursor.close(); / Remember to always close the cursor!
return people;

