How to access your database

from the development
environment

Marco Ronchetti
Universita degli Studi di Trento

P savlite
Add New

alfa

beta
Delete First

alfa beta

Camera

Lmoms

App management

Data management

App info FI

SQLlite .

= App info

SQLlite

version 1.0
Force stop

STORAGE
Total
App

USB storage app
Data
SD card

Clear data

Uninstall

40.00KB
32.00KB
0.00B
8.00KB
0.00B

Remove

s App info

from list

GMOM

Open the DDMS Perspective

Transitions Animations

J

HC &SP SE

'sonDAO_DB_impl.ja] ‘m Personl

03

(Bundle savedInstanceState) {
avedInstanceState);
.layout.main);

DAO_DB_impl(this);

ues = dao.getAllPersons();

eCursorAdapter to show the
ListView

son> adapter = new ArrayAdapt
R.layout.simple_list_item_1,

dapter);

Minimize
Zoom

New Window
New Editor

Open Perspe
Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

Navigation

Android SDK Manager
& AVD Manager

[4 Run Android Lint
Bring All to Front

>

¥M ndroids.pptx

%5 Debug
&/ Java Browsing

&]CVS Repository Exploring
poms

Debug

o Hierarchy View
g’Java (default)

&’Java Browsing
Tg’]ava Type Hierarchy
4, Pixel Perfect
<J=Plug-in Development
% Resource

EBTeam Synchronizing
X XML

(cancel

) (

OK

)

N

Find your DB

1) Look info data/data/YOURPACKAGE/databases/YOURDATABASE.db

O00 [5] DDMS - SQLlite/src/it/unitn/science/latemar/MySQLiteHelper.java - Eclipse SDK - /Use

=i BB IR|BHE]$-0-Q |OF | P A5/ |00k vy

{ ~\ 7
Devices &3 =08 "*’3}, Threads (Heap (Allocation Tracker ﬁﬁl File Explorer £3
1k | G @ 0?;:", % |@ I@ < || Name] Size[Date [Tlme [Permissions |Info

Name ‘ ‘ 1 ¥ (= data 2012-03-04 23:52 drwxrwx--x
v B) emulator-5554 Online TeuEla| @& 2012-03-06 21:37 drwxrwxr-x
system_process 90 8600 » (= app 2012-03-11 09:37 drwxrwx--x
com.android.systemui 142 8601 b (= app-private 2012-02-28 14:28 drwxrwx--X
com.android.inputmethod... 156 8602 PBbaclfup 2012-03-10 19:27 drwx------
com.android.phone 170 8603 » (= dalvik-cache 2012-03-11 09:37 drwxrwx--x
com.android.launcher 185 8604 V& data) 2012-03-01 12:53 drwxrwx--X
com.android.settings 210 8605 » (= com.android.backupconfirm 2012-02-28 14:29 drwxr-x--x
android.process.acore 235 8606 » (= com.android.browser 2012-03-01 13:01 drwxr-x--x
com.android.deskclock 260 8607 » (= com.android.calculator2 2012-02-28 14:29 drwxr-x--x
com.android.calendar 291 8613 » (= com.android.calendar 2012-02-28 14:29 drwxr-x--x
i o » (= com.android.camera 2012-03-01 18:31 drwxr-x--x
com.android.contacts 318 8617 L) L snemnen e cnmex

P (= com.svox.pico 2012-02-28 14:30 drwxr-x--x
¥ (= it.unitn.science.latemar 2012-03-11 09:41 drwxr-x--x
P (= cache 2012-03-11 09:41 drwxrwx--x

¥ (= databases 2012-03-11 09:41 drwxrwx--x
contacts.db 5120 2012-03-11 09:42 -rw-rw----
contacts.db-journal 0 2012-03-11 09:42 -rw-rw----

P =lib 2012-03-01 12:53 drwxr-xr-x

P (= jp.co.omronsoft.openwnn 2012-02-28 14:29 drwxr-x--x

3) Use sqglite on your PC (in your_sdk_dir/tools)

2) Pull the file on your PC

Use the following script, and

#!sh
adb shell "chmod 777 /data/data/com.mypackage/databases/store.db"
adb pull /data/data/com.mypackage/databases/store.db

OR

Run remote shell

adb -s <serialNumber> <command> to access a device

TTURIAV L VaAL LW AT N

lerminale adb 80x24

MarcoRonchetti-MacBookS00:platform-tools ronchet$cd Aapplications/Utilitiessan
roid-sdk-macosx/platform-tools

MarcoRonchetti-MacBook500:platform-tools ronchet$./adb -s emulator-5554 shell

pwd

sqlite3

SQL1i te wversion 3.7.4

Enter ".help" for instructions

Enter 5QL statements terminated with a ";"
sqlite> .exit

4

adb

adb is in your android-sdk/platform-tools directory

It allows you to:
Run shell commands on an emulator or device
Copy files to/from an emulator or device
Manage the state of an emulator or device |
Manage port forwarding on an emulator or device

It is a client-server program that includes three components:
A client, which runs on your development machine.

A daemon, which runs as a background process on each
emulator or device instance.

A server, which runs as a background process on your
development machine and manages communication between

P the client and the daemon.
".See http://developer.android.com/guide/developing/tools/adb.html
: _

b

A graphical sqglite browser

http:/ /sqlitebrowser.sourceforge.net/index.html

R Create and CompaCt database fﬂes OO0 0 =1 SQLite Database Browser - /Users/ronchet/Desktop/_tmp/contacts.db
: : NS e¢Fo e B N
- Create, define, modify and delete tables T Database Stracture- RN - Execote 50}
- Create, define and delete indexes o — 5 T =
- Browse, edit, add and delete records i — — |
1] 1lalfa beta |

- Search records
- Import and export records as text

- Import and export tables from/to CSV files
- Import and export databases from/to SQL dump files
Issue SQL queries and inspect the results

Examine a log of all SQL commands issued by the application

T VA AR Batabasn rwmes

IR LAY I M

Testing and deploying on
your device

Marco Ronchetti
Universita degli Studi di Trento

Configure device
1) Turn on "USB Debugging" on your device.

On the device, go in

0 Android <4: Settings > Applications > Development
o0 Android>=4: Settings > Developer options

and enable USB debugging

2) Load driver on PC (win-linux, on Mac not needed)

000 Android Device Chooser
° M Selectad ble with droid 3.2.
3) Check in shell: adb devices e e
'Serial Number AVD Name Targ

et Debug State
B emulator-5554 Testd + Android 4.0.3 Yes Online

4) In Eclipse, you'll have the choice = # == v

() Launch a new Android | Device
l Make sure the version of OS is .
| correct both in project properties
m And in manifest! [0 Use same device for future launches (cancel) (ok)

'rl See http://developer.android.com/guide/developing/device.html

irlf' @

Alternative, simple way to deploy

e.g. to give your app to your friends

Get Dropbox both on PC and Android device
Copy your apk from bin/res into dropbox (on PC)

Open dropbox on Android device, and open your apk

By sharing your dropbox with others you can easily
pass your app.

www.dropbox.com

DAO Implementation
File System

Marco Ronchetti
Universita degli Studi di Trento

1) Get a (raw) source

File f; ... ; InputStream s = new FilelInputStream(f);

Socket s; ... ; InputStream s=s.getinputStream();

StringBuffer b; ... ; InputStream s = new StringBufferinputStream(f);

2) Add functionality

Reader r=new InputStringReader(s); //bridge class

DatalnputString dis=snew DatalnputString(s); //primitive data
ObjectinputString ois=new ObjectinputString(s); //serialized objects

3) Compose multiple functionalities
InputStream es=new FilteredinputStream
new BufferedinputStream |
new PushBacklputStream(s)));

L ©Mel

Choose the type of source!

You can choose among four types of basic sources:

BYTE CHARACTER

SOURCE InputStream OutputStream Reader Writer

Both file and directory information is available via the
File class, or the classes (like Path) in the nio package.

Byte Based Character Based
Input Output Input Output
Reader Writer
Basic InputStream OutputStream
InputStreamReader OutputStreamWriter

Arrays ByteArraylnputStream ByteArrayOutputStream CharArrayReader CharArrayWriter

FileInputStream FileOutputStream . .
Files FileReader FileWriter
RandomAccessFile RandomAccessFile
Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter
Buffering BufferedInputStream BufferedOutputStream BufferedReader Buffered Writer
Filtering FilterInputStream FilterOutputStream FilterReader Filter Writer
. PushbackInputStream PushbackReader
Parsing
StreamTokenizer LineNumberReader
Strings StringReader StringWriter
Data DatalnputStream DataQOutputStream
Data - . . .
Formatted PrintStream PrintWriter

Objects ObjectInputStream ObjectOutputStream

Utilities = SequencelnputStream

Android internal file I/0

String FILENAME = "hello_file";
String string = "hello world!";

FileOutputStream fos = openFileOutput(FILENAME,
Context. MODE_PRIVATE); // called in a Context

fos.write(string.getBytes());
fos.close();

Using temporary files

File file = new File(getCacheDir(), "temp.txt");
try {

file.createNewFile();

FileWriter fw = new FileWriter(file);

BufferedWriter bw = new BufferedWriter(fw);

bw.write("Hello World\n");

bw.close();
} catch (IOException e) {

Toast.makeText(this,
"Error creating a file!”

,Toast LENGTH_SHORT).show();

}

When the device is low on internal storage space, Android may delete these cache
files to recover space.

You should not rely on the system to clean up these files for you.
Clean the cache files yourself

m stay within a reasonable limit of space consumed, such as 1IMB.

Other useful methods

getFilesDir()
Get the absolute path where internal files are saved.
getDir()

Creates (or opens an existing) directory within your
internal storage space.

deleteFile()
Deletes a file saved on the internal storage.

fileList()

Returns an array of files currently saved by your
application.

The DAO interface

package it.unitn.science.latemar;

import java.util.List;

public interface PersonDAO {
public void open();
public void close();

public Person insertPerson(Person person) ;
public void deletePerson(Person person) ;
public List<Person> getAllPerson() ;

package it.unitn.science.latemar;
import ...

The DAO implementation - FS

public class PersonDAO_FS_impl implements PersonDAO |{
DataOutputStream fos;
DatalnputStream fis;
Context context=MyApplication.getAppContext();
final String FILENAME="contacts”;

@Qverride
public void open() {

try {
fos=new DataOutputStream(

context.openFileOutput(FILENAME, Context MODE_APPEND)

);
} catch (FileNotFoundException e) {e.printStackTrace();}

}
@QOverride

public void close() { This should
try { never happen
fos.close();
} catch (IOException e) {e.printStackTrace();}

The DAO impl. — data access 2

@Override
public Person insertPerson(Person person) {

try { write as
fos.writeUTF(person.getName()); — Unicode

fos.writeUTF(person.getSurname());
} catch (IOException e) { e.printStackTrace(); }
return person;

@Override
public void deletePerson(Person person) {
Log.d("trace","deletePerson DAO_FS - UNIMPLEMENTED!");

The DAO impl. — data access 3

@Override
public List<Person> getAllPersons() {
List<Person> list=new ArrayList<Person>();
try { fis=new DatalnputStream(context.openFileInput(FILENAME));
} catch (FileNotFoundException e) {
e.printStackTrace(); return list;

}
while (true) {

try {

String name=fis.readUTF();
String surname=fis.readUTF();

Person p=new Person(name, surname);
list.add(p);

} catch (EOFException e) { break;

} catch (IOException e) { e.printStackTrace(); break; }

}
try { fis.close(); } catch (IOException e) { e.printStackTrace(); }

return list;

B saviite

Add New

Delete First

@y

¥ sadlite

B saiite P saviite

Add New - Add New - Add New

Restart...

A

uno
Delete First

A uno

B B
dué dua

Delete First Delete First -

A uno B due

B due

¥ satlite

Add New

Delete First
A uno

B due

Serializing any-size objects to a random access file

http:/ /blog.donkersautomatisering.nl/2011/06/29/
serializing-arbitrarily-sized-objects-to-a-random-
access-file/

Index-file Data-file

See iava.io
Class RandomAccessFile

External Files

Marco Ronchetti
Universita degli Studi di Trento

External storage

Every Android-compatible device supports a shared
"external storage" that you can use to save files.

It can be:
a removable storage media (such as an SD card)

an internal (non-removable) storage.

Files saved to the external storage
are world-readable

can be modified by the user when the USB card
storage in moved on a computer!

Possible states of external media

String Environment.getExternalStorageState();

MEDIA_MOUNTED

media is present and mounted at its mount point with read/write access.
MEDIA_MOUNTED_READ_ONLY

media is present and mounted at its mount point with read only access.
MEDIA_NOFS

media is present but is blank or is using an unsupported filesystem | .
MEDIA_CHECKING

media is present and being disk-checked
MEDIA_UNMOUNTED

media is present but not mounted
MEDIA_SHARED

media is in SD card slot, unmounted, and shared as a mass storage device.
MEDIA_UNMOUNTABLE

media is present but cannot be mounted.

MEDIA_REMOVED

.. boolean Environment.isExternalStorageEmulated()
media is not present.

boolean Environment.isExternalStorageRemovable()

£ MEDIA BAD_REMOVAL
media was removed before it was unmounted.

Standard directories (constants):

DIRECTORY_DOWNLOADS

tiles that have been downloaded by the user.
DIRECTORY_MOVIES

movies that are available to the user.
DIRECTORY_PICTURES

pictures that are available to the user.
DIRECTORY_DCIM

The traditional location for pictures and videos when mounting the device as a
camera.

Places for audio files:

DIRECTORY_MUSIC

music for the user.
DIRECTORY_ALARMS

alarms sounds that the user can select (not as regular music).
DIRECTORY_NOTIFICATIONS

notifications sounds that the user can select (not as regular music).
DIRECTORY_PODCASTS

podcasts that the user can select (not as regular music).
DIRECTORY_RINGTONES

ringtones that the user can select (not as regular music).

Other Environment static methods

static File getRootDirectory()
Gets the Android root directory (typically returns /system).

static File getDataDirectory()
Gets the Android data directory (typically returns /data).

static File getDownloadCacheDirectory()

Gets the Android Download /Cache content directory. Here go temporary files that N
are specific to your application If the user uninstalls your application, this
directory and all its contents will be deleted. You should manage these cache files
and remove those that aren't needed in order to preserve file space.

static File getExternalStorageDirectory()

Gets the Android external storage directory. Here go files that are specific to your

apfvlication If the user uninstalls your application, this directory and all its contents
will be deleted.

static File getExternalStoragePublicDirectory(String type)

Get a top-level public external storage directory for placing files of a particular
pe. This is where the user will typically place and manage their own files. Here

go files that are not specific to your application and that should rnot be deleted

when your application is uninstalled

Rooting a device

Marco Ronchetti
Universita degli Studi di Trento

Rooting

The process of allowing users of Android devices to get
root access. Varies widely by device, as it usually exploits a
security weakness in the firmware shipped from the
factory.

Goal:

to overcome limitations imposed by that carriers and
hardware manufacturers

to alter or replace system applications and settings

to run specialized apps that require administrator-level
permissions

to perform other operations that are otherwise
inaccessible to a normal Android user.

The process of rooting
.On the iphone: jailbreaking

b

e.g.. CyanogenMod

a replacement firmware. Offers several features, like:

an OpenVPN client,
a reboot menu,
support for Wi-Fi, Bluetooth, and USB tethering,

CPU overclocking and performance enhancements,
app permissions management

Over 1.5 M installations

Is it legal?

On July 26, 2010, the U.S. Copyright office announced
a new exemption making it officially legal to root a
device and run unauthorized third-party applications,
as well as the ability to unlock any cell phone for use
on multiple carriers.

Industry reaction

concern about improper functioning of devices
running unofficial software and related support
costs.

offers features for which carriers would otherwise
charge a premium

Technical obstacles have been introduced in many
devices (e.g. locked bootloaders).

In 2011 an increasing number of devices shipped with
unlocked or unlockable bootloaders.

“HTC is committed to listening to users and
delivering customer satistaction. We have heard your
voice and starting now, we will allow our bootloader
to be unlocked for 2011 models going forward.

It is our responsibility to caution you that not all
claims resulting or caused by or from the unlocking of
the bootloader may be covered under warranty.

We strongly suggest that you do not unlock the

bootloader unless you are confident that you
understand the risks involved.”

r

See e.g. hitp://htcdev.com/bootloader/ @ ® |

Fragments

Fragments

A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

Fragments can be assembled to create an activity during
the application design phase, and added to, or removed

from an activity during application runtime to create a
dynamically changing user interface.

\ Vi

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

oA fragment can be thought of as a functional “sub-activity”
ith its own lifecycle similar to that of a full activity.

GMOM

Fragments lifecycle
Method Description
The fragment instance is associated with an activity instance.The activity is not
onAttach() e s
yet fully initialized
onCreate() Fragment is created
. The fragment instance creates its view hierarchy. The inflated views become part
onCreateView() X
of the view hierarchy of its containing activity.
Activity and fragment instance have been created as well as thier view hierarchy.
onActivityCreated() | At this point, view can be accessed with the £indViewById () method.
example.
onResume() Fragment becomes visible and active.
onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.
onStop() Fragment becomes not visible.

ZIS.
)

Defining a new fragment (from code)

To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example, ListFragment, DialogFragment,
PreferenceFragment or WebViewFragment.

Defining a new fragment (from code)

public class DetailFragment extends Fragment ({

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) ({

View view=inflater.inflate(

R.layout. fragment rssitem detail,
container, false);
return view;
}
public void setText (String item) ({
TextView view = (TextView)
getView() .findViewById(R.id.detailsText) ;

view.setText (item) ;

XML-based fragments

<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout width="match parent"

android:layout height="match_ parent"”
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment one"
android:name="com.example.myfragmentdemo.FragmentOne"

android:layout width="match parent"

android:layout height="wrap content"”

android:layout alignParentLeft="true"

android:layout centerVertical="true" tools:layout="@layout/
fragment one layout" />

</Relativelayout>

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout C}l/ou typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager () .beginTransaction() ;
ft.replace(R.id.your placehodler, new
YourFragment()) ;

ft.commit () ;

A new Fragment will replace an existing Fragment that was previously
added to the container.

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
getFragmentManager () .
findFragmentById(R.id.detail fragq);

if (fragment==null) ({

// start new Activity
} else {

fragment.update(...);

}

Communication: activity -> fragment

In order for an activity to communicate with a
fragment, the activity must identity the fragment
object via the ID assigned to it using the

find ViewByld() method. Once this reference has been
obtained, the activity can simply call the public
methods of the fragment object.

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A) the fragment must define a listener interface, which is

then implemented within the activity class.
public class MyFragment extends Fragment ({

Alistener activityCallback;
public interface AListener ({
public void someMethod (int parl, String par2?);

Communication: fragment-> activity

B. the onAttach() method of the fragment class needs to be
overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verity that it implements the interface. | S

public void onAttach (Activity activity) ({
super .onAttach (activity) ;

try { activityCallback = (AListener) activity;
} catch (ClassCastException e) {
throw new ClassCastException (
activity.toString()
+ " must implement ToolbarListener") ;

Communication: fragment-> activity

C. The next step is to call the callback method of the
activity from within the fragment. When and how
this happens is entirely dependent on the
circumstances under which the activity needs to be
contacted by the fragment. For the sake of an I
example, the following code calls the callback
method on the activity when a button is clicked:

public void buttonClicked (View view) ({

activityCallback.someMethod (argl, arg2) ;

Communication: fragment-> activity

All that remains is to modify the activity class so that
it implements the ToolbarListener interface.

public class MyActivity extends
FragmentActivity implements
MyFragment.AListener ({

public void someMethod (String argl, int arg2)
{
// Implement code for callback method

}

Esempio

vedi
http:/ /www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

