
1

Preferences

Marco Ronchetti
Università degli Studi di Trento

2

SharedPreferences
SharedPreferences allows to save and retrieve
persistent key-value pairs of primitive data types. This
data will persist across user sessions (even if your
application is killed).

 getSharedPreferences(String name, int mode)
- Uses multiple preferences files identified by name, which you specify
with the first parameter.

 getPreferences()
- Use this if you need only one preferences file for your Activity. This
simply calls the underlying getSharedPreferences(String, int) method by
passing in this activity's class name as the preferences name

A method
of Contex

A method
of Activity

3

SharedPreferences methods
boolean contains(String key)
Checks whether the preferences contains a preference.

T getT(String key, T defValue)
 Retrieve a T value from the preferences where T={int,
float, boolean, long, String, Set<String>}.

SharedPreferences.Editor edit()
All changes you make in an editor are batched, and
not copied back to the original SharedPreferences until
you call commit() or apply()

Value returned
If key does not exist

4

SharedPreferences.Editor methods
Void apply(), boolean commit()
Commit your preferences changes back

Editor putT(String key)
 Stores a T value in the preferences where T={int, float,
boolean, long, String, Set<String>}.

Editor remove(String key)
Mark in the editor that a preference value should be
removed

Editor clear ()
Mark in the editor that all preference values should be
removed

5

User Preferences
Shared preferences are not strictly for saving "user
preferences," such as what ringtone a user has chosen.

For creating user preferences for your application, you
should use PreferenceActivity, which provides an
Activity framework for you to create user preferences,
which will be automatically persisted (using shared
preferences).

It is based on Fragments

6

Threads

Marco Ronchetti
Università degli Studi di Trento

7

Threads
When an application is launched, the system creates a thread of
execution for the application, called "main” or “UI thread”
This thread dispatches events to the user interface widgets, and
draws (uses the android.widget and android.view packages).

Unlike Java AWT/Swing, separate threads are NOT created
automatically.
Methods that respond to system callbacks (such as onKeyDown() to
report user actions or a lifecycle callback method) always run in the
UI thread.

If everything is happening in the UI thread, performing long
operations such as network access or database queries will block the
whole UI. When the thread is blocked, no events can be dispatched,
including drawing events. From the user's perspective, the
application appears to hang.

If the UI thread is blocked for more than 5 sec the user is presented
with the”ANR - application not responding” dialog.

8

the Andoid UI toolkit is not thread-safe !

Consequence:

you must not manipulate your UI from a worker
thread—all manipulation to the user interface must be
done within the UI thread.

You MUST respect these rules:
•  Do not block the UI thread
•  Do not access the Android UI toolkit from outside

the UI thread

9

An example from android developers
public void onClick(View v) {
 Bitmap b = loadImageFromNetwork(

 "http://example.com/image.png");
 myImageView.setImageBitmap(b);
}

WRONG!
Potentially
Slow
Operation!

public void onClick(View v) {

 .start();
}

new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork(
 "http://example.com/image.png");
 myImageView.setImageBitmap(b);
 })

WRONG!
A non UI thread
accesses the UI!

10

Still not the solution…

public void onClick(View v) {
 Bitmap b;

 .start();
 myImageView.setImageBitmap(b);
}

new Thread(new Runnable() {
 public void run() {
 b = loadImageFromNetwork(
 "http://example.com/image.png");
 })

WRONG!
This does not wait for the
thread to finish!

11

The solution

public void onClick(View v) {

 .start();
}

new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork(
 "http://example.com/image.png");
 myImageView.post(

 })

 new Runnable() {
 public void run() {
 mImageView.setImageBitmap(bitmap);
 }
}

public boolean post (Runnable action)
•  Causes the Runnable to be sent to the UI thread and to be run

therein. It is invoked on a View from outside of the UI thread.

OK! This code will
be run in
the UI thread

public boolean postDelayed (Runnable action, long delayMillis)

12

Java reminder: varargs
void f(String pattern, Object... arguments);

The three periods after the final parameter's type
indicate that the final argument may be passed
•  as an array or
•  as a sequence of arguments.

Varargs can be used only in the final argument
position.

Object a, b, c, d[10];
…
f(“hello”,d);
f(“hello”,a,b,c);

13

Varargs example
public class Test {
 public static void main(String args[]){ new Test(); }

 Test(){
 String k[]={"uno","due","tre"};
 f("hello",k);
 f("hello",“alpha“,“beta“);
 // f("hello“,“alpha“,“beta“,k); THIS DOES NOT WORK!
 }

 void f(String s, String... d){
 System.out.println(d.length);
 for (String k:d) {
 System.out.println(k);
 }
 }

}

14

AsyncTask<Params,Progress,Result>
Creates a new asynchronous task. The constructor
must be invoked on the UI thread.

AsyncTask must be subclassed, and instantiated in the
UI thread.
Methods to be overridden:

method where when

void onPreExecute() UI Thread before

Result doInBackground(Params...) Separate new
thread

during

void onProgressUpdate(Progress…) UI Thread

void onPostExecute(Result) UI Thread after

15

The more elegant solution
public void onClick(View v) {
 new DownloadImageTask().execute("http://example.com/image.png");
}

private class DownloadImageTask extends AsyncTask<String, Void, Bitmap> {
 protected Bitmap doInBackground(String... urls) {
 return loadImageFromNetwork(urls[0]);
 }
 protected void onPostExecute(Bitmap result) {
 mImageView.setImageBitmap(result);
 }
 }

16

public class AsyncDemoActivity extends ListActivity {
 private static final String[] item{"uno","due","tre","quattro",

 "cinque","sei”, "sette","otto","nove",
 "dieci","undici","dodici",};

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView listView = getListView();

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new ArrayList<String>()));

 new AddStringTask().execute();
 }

Using Progress
package it.unitn.science.latemar;
import …

Adapted from the source code of
http://commonsware.com/Android/

17

Using Progress

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(1000);
 }
 return(null);
 }
 @SuppressWarnings("unchecked")
 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter<String>)getListAdapter()).add(item[0]);
 }

@Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemoActivity.this,

 "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

This is an inner class!

18

Using the ProgressBar

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
 <ProgressBar
 android:id="@+id/pb1"
 android:max="10"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 style="@android:style/Widget.ProgressBar.Horizontal"
 android:layout_marginRight="5dp" />
</LinearLayout>

public class AsyncDemoActivity2
 extends Activity {
 ProgressBar pb;
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);
 setContentView(R.layout.main);
 pb=(ProgressBar) findViewById(R.id.pb1);
 new AddStringTask().execute();
 }

19

Using the ProgressBar
 class AddStringTask extends AsyncTask<Void, Integer, Void> {
 @Override
 protected void doInBackground(Void... unused) {
 int item=0;
 while (item<10){
 publishProgress(++item);
 SystemClock.sleep(1000);
 }
 }
 @Override
 protected void onProgressUpdate(Integer... item) {
 pb.setProgress(item[0]);
 }
}

20

Notification

Marco Ronchetti
Università degli Studi di Trento

21

Notification Bar

PULL
DOWN

22

SimpleNotification
public class SimpleNotification extends Activity {
 private NotificationManager nm;
 private int SIMPLE_NOTIFICATION_ID;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 final Notification notifyDetails = new Notification(

 R.drawable.android,"New Alert, Click Me!",
 System.currentTimeMillis());

 Button cancel = (Button)findViewById(R.id.cancelButton);
 cancel.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 nm.cancel(SIMPLE_NOTIFICATION_ID);
 }});}

Adapted from http://saigeethamn.blogspot.it

23

SimpleNotification – part 2
 Button start = (Button)findViewById(R.id.notifyButton);
 start.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 Context context = getApplicationContext();
 CharSequence contentTitle = "Notification Details...";

 CharSequence contentText = "Browse Android Site by clicking me";
 Intent notifyIntent = new Intent
 (android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.android.com"));
 PendingIntent intent =

 PendingIntent.getActivity(SimpleNotification.this, 0, notifyIntent,
 android.content.Intent.FLAG_ACTIVITY_NEW_TASK);

 notifyDetails.setLatestEventInfo(context, contentTitle,
 contentText, intent);

 nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);
 }
 });
 }}

24

Basic UI elements:
Defining Activity UI in the
code

Marco Ronchetti
Università degli Studi di Trento

25

UI Programmatically
public class UIThroughCode extends Activity {
 LinearLayout lLayout;
 TextView tView;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 lLayout = new LinearLayout(this);
 lLayout.setOrientation(LinearLayout.VERTICAL);
 lLayout.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,

 LayoutParams.MATCH_PARENT));
 tView = new TextView(this);
 tView.setText("Hello, This is a view created programmatically! ”)");
 tView.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,

 LayoutParams.WRAP_CONTENT));
 lLayout.addView(tView);
 setContentView(lLayout);
 }
}

From http://saigeethamn.blogspot.it

26

Basic UI elements:
Menus, a deeper insight

Marco Ronchetti
Università degli Studi di Trento

27

OptionMenu
public class A1 extends Activity {

 …
 public boolean onCreateOptionsMenu(Menu menu){

 super.onCreateOptionsMenu(menu);
 int base=Menu.FIRST;
 MenuItem item1=menu.add(base,1,1,"Increase");
 MenuItem item2=menu.add(base,2,2,"Decrease");
 return true;
 }

 public boolean onOptionsItemSelected(MenuItem item) {
 ...

 }

Menu is created
In code

public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.option_menu, menu);
 return true;
 }

Menu is created
From XML

28

option_menu.xml
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/increase"
 android:title="@string/increase" />
 <item android:id="@+id/decrease"
 android:title="@string/decrease" />

</menu>

29

Dynamically changing menu
Menu onPrepareOptionsMenu() (Activity class).

you get the Menu object as it currently exists, and you
can modify it (add, remove, or disable items).

Android < 3.0:
•  the system calls onPrepareOptionsMenu() each time

the user opens the options menu.

Android >= 3.0
•  When you want to perform a menu update, you

must call invalidateOptionsMenu() to request that
the system calls onPrepareOptionsMenu().

30

Menu types
Traditional menus are awkward on a small screen.
⇒  Three stages menus:

�  Option Menu (< 3.0) / Action Bar (>=3.0)
�  Context Menu (< 3.0) / Contextual Action mode(>=3.0)
�  Popup Menu

31

PopupMenu

32

Popup Menu
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/
android">

 <item android:id="@+id/next"
 android:title="@string/next" />
 <item android:id="@+id/previous"
 android:title="@string/previous" />
 <item android:id="@+id/list"
 android:title="@string/list" />

</menu>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello World, PopupMenu1!</string>
 <string name="app_name">PopupMenu</string>
 <string name="next">Next</string>
 <string name="previous">Previous</string>
 <string name="list">List</string>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />
 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="showPopup"
 android:text="Click me" />
</LinearLayout>

33

Popup Menu

public void showPopup(View button) {
 PopupMenu popup = new PopupMenu(this, button);
 popup.getMenuInflater().inflate(R.menu.popup, popup.getMenu());
 popup.setOnMenuItemClickListener(new

 PopupMenu.OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem item) {
 Toast.makeText(PopupMenu1.this, "Clicked popup menu item " +

 item.getTitle(), Toast.LENGTH_LONG).show();
 return true;
 }
 });
 popup.show();
 }
}

public class PopupMenu1 extends Activity {
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

34

ContextMenu

LONG
CLICK

CLICK

35

context_menu.xml
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/edit"
 android:title="@string/edit" />
 <item android:id="@+id/save"
 android:title="@string/save" />
 <item android:id="@+id/delete"
 android:title="@string/delete" />
 <item android:id="@+id/view"
 android:title="@string/view" />

</menu>

36

Strings
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">ShowContextMenu</string>
 <string name="app_name">Context Menu Example</string>
 <string name="edit">Edit</string>
 <string name="save">Save</string>
 <string name="delete">Delete</string>
 <string name="view">View</string>
<string-array name="names">
 <item>Ferrari</item>
 <item>McLaren</item>
 <item>Red Bull</item>
</string-array>
</resources>

37

ContextMenu
public class ShowContextMenu extends ListActivity {
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.names)));
 registerForContextMenu(getListView());
 }

 public void onCreateContextMenu(ContextMenu menu,

 View v, ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.context_menu, menu);
 }

38

Responding to event
 public boolean onContextItemSelected(MenuItem item) {
 AdapterContextMenuInfo info =

 (AdapterContextMenuInfo) item.getMenuInfo();
 String[] names = getResources().getStringArray(R.array.names);
 switch(item.getItemId()) {
 case R.id.delete:
 Toast.makeText(this,
 Toast t=Toast.makeText(this, "Sorry, deleting " +

 ((TextView)info.targetView).getText()
 + " is not allowed", Toast.LENGTH_LONG).show();

 return true;
 default:
 Toast.makeText(this, "You have chosen the " + item.getTitle() +
 " context menu option for " + names[(int)info.id],
 Toast.LENGTH_SHORT).show();
 return true;
 }
 }

3.5 sec

2.0 sec

for (int i=0; i < 2; i++){ Toast.makeText(this, "blah", Toast.LENGTH_LONG).show(); }

39

A similar concept: QuickAction

Not (yet) a standard API!
For a hint in the implementation see

http://www.londatiga.net/it/how-to-create-quickaction-dialog-in-android/

displays contextual actions in a list view

40

Contextual action mode

LONG
CLICK

CLICK

41

Contextual action mode
public class ShowContextMenu extends ListActivity {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.names)));
 //registerForContextMenu(getListView());
 ListView listView=getListView();
 final Context ctx=this;
 listView.setChoiceMod(ListView.CHOICE_MODE_MULTIPLE_MODAL);
 listView.setMultiChoiceModeListener(new MultiChoiceModeListener() {

 …
 });
 }
}

42

MultiChoiceModeListener
listView.setMultiChoiceModeListener(new MultiChoiceModeListener() {
 public boolean onCreateActionMode(ActionMode mode, Menu menu) {

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.context_menu, menu);
 mode.setTitle("selection");
 return true;

 }
 public void onDestroyActionMode(ActionMode mode) {
 // Here you can make any necessary updates to the activity when
 // the CAB is removed. By default, selected items are deselected/unchecked
 }
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 // Here you can perform updates to the CAB due to an invalidate() request
 return true;
 }

43

MultiChoiceModeListener
 public void onItemCheckedStateChanged(ActionMode mode,

 int position, long id, boolean checked) {
 // Here you can do something when items are selected/de-selected,
 // such as update the title in the CAB
 String[] names = getResources().getStringArray(R.array.names);
 if (checked) mode.setTitle(names[position]);

 }

44

MultiChoiceModeListener
public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 switch(item.getItemId()) {

 case R.id.delete:
 Toast t=Toast.makeText(ctx, "Sorry, deleting " +
 mode.getTitle() + " is not allowed”, Toast.LENGTH_LONG);
 t.show();
 mode.finish();
 return true;

 default:
 Toast.makeText(ctx, "You have chosen the " + item.getTitle() +
 " context menu option for " + mode.getTitle(),
 Toast.LENGTH_LONG).show();
 mode.finish();
 return true;

 }
}

