Broadcast receivers

Marco Ronchetti
Universita degli Studi di Trento

Bradcast receiver

a component that responds to system-wide broadcast
announcements.

Many broadcasts originate from the system — for example, a
broadcast announcing that the screen has turned off, the
battery is low, or a picture was captured.

Applications can initiate broadcasts —e.g. to let other
applications know that some data has been downloaded to
the device and is available for them to use.

\ VRN

Broadcast receivers don't display a user interface, but they
can crate a status bar notification.

More commonly, a broadcast receiver is just a "gateway" to
P other components and is intended to do a very minimal
P amount of work e.g. it might initiate a service.
2

BN A
)

public class MyBroadcastReceiver extends BroadcastReceiver {

public void onReceive(Context context, Intent intent) {
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

) package="...I” android:versionCode="1" android:versionName="1.0">
} <application android:icon="@drawable/icon" android:label="@string/app_name" >

<receiver android:name=".MyBroadcastReceiver">
<intent-filter>
<action android:name="android.intent.action.TIME_SET”/>
</intent-filter>
</receiver>
</application>
<uses-sdk android:minSdkVersion="13" />
</manifest>

>adb shell

date +%s

1332793443

date -s +%s 1332793443

time 1332793443 -> 1332793443.0
settimeofday failed Invalid argument

r Adapted from saigeethamn.blogspot.it

public class MyBroadcastReceiver extends BroadcastReceiver {
private NotificationManager nm;
private int SIMPLE_NOTFICATION_ID;

@QOverride
public void onReceive(Context context, Intent intent) {
nm = (NotificationManager) context.getSystemService
(Context. NOTIFICATION_SERVICE);
Notification n= new Notification(R.drawable.android,"Time Reset!",
System.currentTimeMillis());
PendingIntent myIntent = PendingIntent.getActivity(context, 0,
new Intent(Intent. ACTION_VIEW, People. CONTENT_URI), 0);
n.setLatestEventInfo(context, "Time has been Reset",
"Click on me to view Contacts", mylIntent);
n | = Notification.FLAG_AUTO_CANCEL;
n | = Notification.DEFAULT_SOUND;
nm.notify(SIMPLE_NOTFICATION_ID, n);
Log.i(getClass().getSimpleName(),"Sucessfully Changed Time");

}
}

r

Adapted from saigeethamn.blogspot.it

GMOM

Sending broadcast events

(in Context)

sendBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, allowing an optional required
permission to be enforced.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are
run.

No results are propagated from receivers and receivers
can not abort the broadcast.

Sending ordered broadcast events

(in Context)

sendOrderedBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, delivering them one at a time to
allow more preferred receivers to consume the
broadcast before it is delivered to less preferred
recelvers.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are

LocalBroadcastManager

Helper to register for and send broadcasts of Intents to
local objects within your process.

Advantages of Local vs Global B.M.:

the data you are broadcasting will not leave your
app

(you don't need to worry about leaking private
data).

it is not possible for other applications to send these
broadcasts to your app

(you don't need to worry about having security
holes)

it is more efficient than sending a global broadcast
through the system.

Services

Marco Ronchetti
Universita degli Studi di Trento

Service

An application component that can perform long-
running operations in the background and does not
provide a user interface.

So, what’s different from a Thread?

a) Services are declared in the Manifest
b) Services can be exposed to other processes

¢) Services do not need to be connected with an
Activity

Service

A service can essentially take two forms:

Started

A service is "started" when an application component (such as an activity) starts it by calling
startService(). Once started, a service can run in the background indefinitely, even if the
component that started it is destroyed. Usually, a started service performs a single operation and
does not return a result to the caller. For example, it might download or upload a file over the
network. When the operation is done, the service should stop itself.

Bound

A service is "bound" when an application component binds to it by calling bindService(). A

bound service offers a client-server interface that allows components to interact with the service,

send requests, get results, and even do so across processes with interprocess communication

(IPC). A bound service runs only as long as another a}l))plication component is bound to it.

10\1/Iultiple Cfomponents can bind to the service at once, but when all of them unbind, the service is
estroyed.

Although this documentation generally discusses these two ty(fes of services separately, your service
can work both ways —it can be started (to run indefinitely) and also allow binding. It's simply a
matter of whether you implement a couple callback methods: onStartCommand|() to allow
components to start it and onBind() to allow binding.

Regardless of whether your application is started, bound, or both, any application component can
use the service (even from a separate application), in the same way that any component can use an
activity — by starting it with an Intent.

However, you can declare the service as private, in the manifest file, and block access from other
applications.

Service lifecycle

. The service is stopped Al clients unbind by calling |
‘ by itself or a client :

Stop Service

import ...
public class SimpleService extends Service {
public IBinder onBind(Intent arg0) {

return null;

Service created ...

}
public void onCreate() {

super.onCreate();
Toast.makeText(this,"Service created ...", Toast. LENGTH_LONG).show();

}
public void onDestroy() {

super.onDestroy/();
Toast.makeText(this, "Service destroyed ...", Toast. LENGTH_LONG).show();

i
}
r Adapted from saigeethamn.blogspot.it @ ® |

import ...
public class SimpleServiceController extends Activity { B service
protected void onCreate(Bundle savedInstanceState) { Start Service

super.onCreate(savedInstanceState); S

setContentView(R.layout.main);
Button start = (Button)findViewByld(R.id.serviceButton);
Button stop = (Button)findViewByld(R.id.cancelButton);
start.setOnClickListener(startListener);
stop.setOnClickListener(stopListener);
}
private OnClickListener startListener = new OnClickListener() {
public void onClick(View v){
startService(new Intent(SimpleServiceController.this,SimpleService.class));
I
private OnClickListener stopListener = new OnClickListener() {
public void onClick(View v){

stopService(new Intent(SimpleServiceController.this,SimpleService.class));

H
} Adapted from saigeethamn.blogspot.it D

Service methods and IVs

int mStartMode; // indicates how to behave if the service is killed
IBinder mBinder; // interface for clients that bind
boolean mAllowRebind; // indicates whether onRebind should be used

public void onCreate()
The service is being created
public int onStartCommand(Intent intent, int flags, int startld) {

The service is starting, due to a call to startService()
public IBinder onBind(Intent intent) {

A client is binding to the service with bindService()
public boolean onUnbind(Intent intent) {

All clients have unbound with unbindService()
public void onRebind(Intent intent) {

A client is binding to the service with bindService() after onUnbind() has been
called

public void onDestroy/() {
.. The service is no longer used and is being destroyed

IntentService

a subclass for Services that handle asynchronous requests
(expressed as Intents) on demand.

Clients send requests through startService(Intent) calls; the
service is started as needed, handles each Intent in turn using a
worker thread, and stops itself when it runs out of work.

"work queue processor" pattern

To use it, extend IntentService and implement
onHandlelntent(Intent). IntentService will receive the Intents,
launch a worker thread, and stop the service as appropriate.

All requests are handled on a single worker thread -- they may
take as long as necessary (and will not block the application's
main loop), but only one request will be processed at a time.

A full example

part 1: introduction
and essential classes

Marco Ronchetti
Universita degli Studi di Trento

Get the Eclipse project from

(project declares Api version 13, even though an older one, like 8, would be fine)

&R v package it.unitn.scienci

B
@ import java.util.Arrayl

public class MyService - .
momgaene | gl ExampleService
private Timer timer .
private int counter
private static bool

ArraylList<Messenger: Stal’t SerViCG StOp SerVice

int mValue = @; //
static final int MS

- .
I&! ExampleService

Start Service Stop Service
static final int MSi |
. . : . mandtuaiidy: Bind to Service Unbind from Service
Bind to Service Unbind from Service final Messenger nie
Attached.

Status Goes Here Int Message: 429
Integer Value Goes Here B " S Message: ab429cd

switch (msg

St”ng Value Goes Here ,-; Increment by 1 Increment by 10

80verride
A public IBinder onBi
return mMesseng

Increment by 1 Increment by 10

Code adapfed S
from an example
on StackOverflow

03-27 17:00:32.437 (1226 |it.unitn. e
03-27 17:00:32.537 1226 | it.unitn.sci
03-27 17:00:32.637 (1226 |it.unitn.sci
03-27 17:00:32.735 1226 it.unitn
03-27 17:00:32.837 1226 it.unitn

03-27 17:00:32.937 1226 | it.unitn.

03-27 17:00:33.037 (1226 |it.unitn.

03-27 17:00:33.138 1226 it. = uotng Work.
03-27 17:00:33.236 (1226 |it.unitn.science...|TimerTick Timer doing work.426

03-27 17:00:33.337 1226 | it.unitn.science... TimerTick Timer doing work.427
03-27 17:00:33.437 (1226 |it.unitn.science... TimerTick Timer doing work.428

LR

4 ©Mom

Binder

Base class for a remotable object.

the core part of a lightweight remote procedure call
mechanism defined by the interface IBinder.

This class is an implementation of IBinder that
provides the standard support creating a local
implementation of such an object.

Parcel

A Parcel is a serialized object. It can contain both
flattened data that will be unflattened on the other
side of the IPC, and references to live iBinder objects
that will result in the other side receiving a proxy
IBinder connected with the original IBinder in the
Parcel.

Parcel is not a general-purpose serialization
mechanism. This class (and the corresponding
Parcelable API for placing arbitrary objects into a
Parcel) is designed as a high-performance IPC
transport.

Bundle

A mapping from String values to various Parcelable
types.

Handler

allows you to send and process Message and Runnable
objects associated with a thread's MessageQueue.

Each Handler instance is associated with a single thread
and that thread's message queue.

When you create a new Handler, it is bound to the thread/
message queue of the thread that is creating it -- from that
point on, it will deliver messages and runnables to that
message queue and execute them as they come out of the
message queue.

Handlers are used to

(1) to schedule messages and runnables to be executed as
some point in the tuture;

(2) to enqueue an action to be performed on a different
> thread than your own.

£W5, void handleMessage(Message msg)

' (v 2 »J.‘
9

\ Vi

Message

Defines a message containilr_llg a description and arbitrary data
object that can be sent to a Handler.

It contains two extra int fields and an extra object field that allow
you to not do allocations in many cases.

To create one, it’s best to use a factory method: Message.obtain()

Fields
Object obj
An arbitrary object to send to the recipient.
Messenger replyTo
Optional Messenger where replies to this message can be sent.
int what

User-defined message code so that the recipient can identity
what this message is about.

m setData(Bundle b) Bundle: a type of Parcel,
Sets a Bundle of arbitrary data values.

Messenger

Reference to a Handler, which others can use to send
messages to it. This allows for the implementation of
message-based communication across processes, by
creating a Messenger pointing to a Handler in one
process, and handing that Messenger to another
process.

ServiceConnection

Interface for monitoring the state of an application
service.

void onServiceConnected(ComponentName name, IBinder service)

Called when a connection to the Service has been
established, with the IBinder of the communication
channel to the Service.

void onServiceDisconnected(ComponentName name)

Called when a connection to the Service has been
lost.

java.util.Timer and TimerTask

Timer

facility for threads to schedule tasks for future
execution in a background thread. Tasks may be

scheduled for one-time execution, or for repeated

execution at regular intervals.

schedule(TimerTask task, Date time)
scheduleAtFixedRate(TimerTask task, Date firstTime, long period)

TimerTask

A task that can be scheduled for one-time or repeated

execution by a Timer.
public abstract void run()

A full example

part 2:
service implementation

Marco Ronchetti
Universita degli Studi di Trento

MyService

public class MyService extends Service {

private Timer timer = new Timer();

private int counter = 0, incrementby =1;
final Messenger mMessenger = new Messenger(new Handler() {...}};

ArrayList<Messenger> mClients = new ArrayList<Messenger>();
static final int MSG_REGISTER_CLIENT =1;

static final int MSG_UNREGISTER_CLIENT = 2;

static final int MSG_SET_INT _VALUE = 3;

static final int MSG_SET_STRING_VALUE =4;

private static boolean isRunning = false;

public static boolean isRunning() {return isRunning; }

public void onCreate() {...}

public int onStartCommand (Intent intent, int flags, int startld) {...}
public IBinder onBind(Intent intent){...}

public void onDestroy() {...}

Create Messenger — MyService

final Messenger mMessenger = new Messenger(new Handler() {
// Handler of incoming messages from clients.
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_REGISTER_CLIENT:
mClients.add(msg.replyTo);
break;
case MSG_UNREGISTER_CLIENT:
mClients.remove(msg.replyTo);
break;
case MSG_SET _INT_VALUE:
incrementby = msg.argl;
break;
default:
super.handleMessage(msg);

}
}

onCreate - MyService

public void onCreate() {

super.onCreate();
Log.i("MyService", "Service Created.");
Toast.makeText(this,"Service Created", Toast. LENGTH _LONG).show();
timer.scheduleAtFixedRate(new TimerTask(){ public void run() {
Log.i("TimerTick", "Timer doing work." + counter);
try |
counter += incrementby;
sendMessageToUI(counter);
} catch (Throwable t) {Log.e("TimerTick", "Timer Tick Failed.", t); }
i}, 0, 100L);
isRunning = true;

sendMessageToUl - onCreate - MyService

private void sendMessageToUI(int intvaluetosend) {
for (int i=mClients.size()-1; i>=0; i--) {
try {
// Send data as an Integer
mClients.get(i).send(Message.obtain(null,
MSG _SET INT VALUE, intvaluetosend, 0));
//Send data as a String
Bundle b = new Bundle();
b.putString("strl", "ab" + intvaluetosend + "cd");
Message msg = Message.obtain(null, MSG_SET _STRING_VALUE);
msg.setData(b);
mClients.get(i).send(msg);
} catch (RemoteException e) {
// The client is dead. Remove it from the list;
//we are going through the list from back to front so this is safe
//to do inside the loop.
mClients.remove(i);

onStartCommand - onDestroy - My Service

public int onStartCommand (Intent intent, int flags, int startld) {
Log.i("MyService", "Received start id " + startld + ": "' + intent);
Toast.makeText(this,"Service started"+ startld ,
Toast. LENGTH_LONG).show();
return START _STICKY; // run until explicitly stopped.

}

public void onDestroy() {
super.onDestroy();
if (timer != null) {timer.cancel();}
counter=0;
Log.i("MyService", "Service Stopped.");
Toast.makeText(this,"Service Stopped ", Toast. LENGTH_LONG).show();
isRunning = false;

}

public IBinder onBind(Intent intent) {
return mMessenger.getBinder();

A full example

part 3:
activity implementation

Marco Ronchetti
Universita degli Studi di Trento

ServiceFullDemoActivity

public class ServiceFullDemoActivity extends Activity {
Button btnStart, btnStop, btnBind, btnUnbind, btnUpby1, btnUpby10;
TextView textStatus, textIntValue, textStrValue;
Messenger mService = null;

boolean mIsBound;

final Messenger mMessenger = new Messenger(new Handler() {...});

private ServiceConnection mConnection = new ServiceConnection() {...};

public void onCreate(Bundle savedInstanceState) {...}

protected void onDestroy() {...}

Create Messenger — Activity

final Messenger mMessenger = new Messenger(new Handler() {
@Override
public void handleMessage(Message msg) {

switch (msg.what) {

case MyService. MSG_SET _INT_VALUE:
textIntValue.setText("Int Message: " + msg.argl);
break;

case MyService MSG_SET_STRING_VALUE:
String strl = msg.getData().getString("str1");
textStrValue.setText("Str Message: " + strl);
break;

default:

super.handleMessage(msg);

Create ServiceConnection

private ServiceConnection mConnection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
mService = new Messenger(service);
textStatus.setText("Attached.");
try {
Message msg = Message.obtain(null, MyService. MSG_REGISTER_CLIENT);
msg.replyTo = mMessenger;
mService.send(msg);
} catch (RemoteException e) {
// In this case the service has crashed before we could even do anything with it

}
}

public void onServiceDisconnected(ComponentName className) {
// This is called when the connection with the service has been
// unexpectedly disconnected - process crashed.
mService = null;
textStatus.setText("Disconnected.");

bind - unbind

void doBindService() {

bindService(new Intent(this, MyService.class), mConnection, Context. BIND_AUTO_CREATE);
mlsBound = true;

textStatus.setText("Binding.");
}

void doUnbindService() {
if (mIsBound) {

// If we have received the service, and registered with it, then now is the time to unregister.
if (mService != null) {

try {
Message msg = Message.obtain(null, MyService MSG_UNREGISTER_CLIENT);
msg.replyTo = mMessenger;
mService.send(msg);

} catch (RemoteException e) {// nothing special to do if the service has crashed.

}
}

// Detach our existing connection.

unbindService(mConnection);
mlIsBound = false;

textStatus.setText("Unbinding.");

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

btnStart = (Button)find ViewByld(R.id.);
btnStop = (Button)findViewById(R.id.);
btnBind = (Button)findViewByld(R.id.);
btnUnbind = (Button)find ViewByld(R.id.);
textStatus = (TextView)find ViewByld(R.id.);

textIntValue = (TextView)find ViewByld(R.id.
textStrValue = (TextView)find ViewByld(R.id.
btnUpby1 = (Button)find ViewByld(R.id.btnUpby1);
btnUpby10 = (Button)find ViewByld(R.id.btnUpby10);

btnStart.setOnClickListener(btnStartListener);
btnStop.setOnClickListener(btnStopListener);
btnBind.setOnClickListener(btnBindListener);
btnUnbind.setOnClickListener(btnUnbindListener);
btnUpby1.setOnClickListener(btnUpby1Listener);
btnUpby10.setOnClickListener(btnUpby10Listener);

restoreMe(savedInstanceState);

'%v ExampleService

Start Service Stop Service

Bind to Service Unbind from Service

Status Goes Here
Integer Value Goes Here
String Value Goes Here

Increment by 1 Increment by 10

/ /1f the service is running when the activity starts, we want to automatically bind to it.

Listeners

private OnClickListener btnStartListener = new OnClickListener() {
public void onClick(View v){
startService(new Intent(ServiceFullDemoActivity.this, MyService.class));

}
Iy
private OnClickListener btnStopListener = new OnClickListener() {
public void onClick(View v){
doUnbindService();
stopService(new Intent(ServiceFullDemoActivity.this, MyService.class));

}
Iy
private OnClickListener btnBindListener = new OnClickListener() {
public void onClick(View v){
doBindService();

}
Iy
private OnClickListener btnUnbindListener = new OnClickListener() {
public void onClick(View v){
doUnbindService();

Listeners

private OnClickListener btnUpbylListener = new OnClickListener() {
public void onClick(View v){
sendMessageToService(1);
}
b
private OnClickListener btnUpby10Listener = new OnClickListener() {
public void onClick(View v){
sendMessageToService(10);
}
b
private void sendMessageToService(int intvaluetosend) {
if (mIsBound) {
if (mService != null) {
try {
Message msg = Message.obtain(null, MyService. MSG_SET_INT_VALUE, intvaluetosend, 0);
msg.replyTo = mMessenger;
mService.send(msg);
} catch (RemoteException e) {

onSavelnstanceState

@Override
protected void onSavelnstanceState(Bundle outState) {
super.onSavelnstanceState(outState);
outState.putString("textStatus", textStatus.getText().toString());
outState.putString("textIntValue", textIntValue.getText().toString());
outState.putString("textStrValue", textStrValue.getText().toString());

}

private void restoreMe(Bundle state) {

if (state!=null) {
textStatus.setText(state.getString("textStatus"));
textIntValue.setText(state.getString("textIntValue"));
textStrValue.setText(state.getString("textStrValue"));

Manifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.exampleservice"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"

android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>
<service android:name=".MyService"></service>
</application>
<uses-sdk android:minSdkVersion="13" />
</manifest>

Running service in processes

You can specity a process name with a colon in front

<service android:name=".MyService"
android:process=:myprocessname ></service>

Your service will then run as a different process - thus in a
different thread.

You can set this attribute so that each component runs in its
own process or so that some components share a process
while others do not.

You can also set it so that components of different
applications run in the same process — provided that the
applications share the same Linux user ID and are signed
AW with the same certificates.

y, i)

Exercizes

1) Please have a look at the code on StackOvertlow,
from where this code was extracted and adapted.

It uses also a Notification.

http://stackoverflow.com/questions/4300291/
example-communication-between-activity-and-
service-using-messaging

2) Try to have run multiple instances of the activity
accessing the service:

a) Activating intent associated to the notification

b) Writing yourself a second similar activity that uses
the service, and switching between the two
activities via the home

Content Providers

Marco Ronchetti
Universita degli Studi di Trento

Content Provider

The Content provider design allows applications to
share data through a standard set of programming
interfaces.

And it's extensible: You can create your own custom
content provider to share your data with other
packages that works just like the built-in providers.

Default content providers

Contacts

Stores all contacts information. etc

Call Log Stores

call logs, for example: missed calls, answered calls. etc.

Browser
Use by browser for history, favorites. etc.

Media Store
Media files for Gallery, from SD Card. etc.

Setting
Phone device settings. etc.

1. Starting from API Level 5, Contacts Provider is
deprecated and superceded by ContactsContract.

Querying a Content Provider

To query a content provider, you provide a query string in the form
of a URI, with an optional specifier for a particular row, using the
following syntax:

<standard_prefix>:/ /<authority>/<data_path>/<id>

For example, to retrieve all the bookmarks stored by your web
browsers (in Android), you would use the following content URI:

content:/ /browser/bookmarks

Similarly, to retrieve all the contacts stored by the Contacts
application, the URI would look like this:

content:/ /contacts/people

To retrieve a particular contact, you can specify the URI with a
specific ID:

P content:/ /contacts/people/3

package it.unitn.science.latemar;

import android.app.Activity;

import android.database.Cursor;
import android.net.Uri;

import android.os.Bundle;

import android.provider.CallLog.Calls;
import android.util. Log;

public class ContentProviderActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Uri allCalls = Uri.parse('content:/ /call_log/calls");
Cursor ¢ = managedQuery(allCalls, null, null, null, null);
if (c.moveToFirst()) {
dof
String callType ="";
switch (Integer.parselnt(c.getString(
c.getColumnIndex(Calls. TYPE))))

{
case 1: callType = "Incoming";
break;
case 2: callType = "Outgoing";
break;
case 3: callType = "Missed";
}

Log.v("Content Providers",
c.getString(c.getColumnIndex(Calls._ID)) + ", " +
c.getString(c.getColumnIndex(Calls. NUMBER)) + ", " +
callType) ;

} while (c.moveToNext());

}
m }
}

48

Error!

E/AndroidRuntime(541): java.lang.RuntimeException:
Unable to start activity ComponentInfo{it.unitn.science.latemar/

it.unitn.science.latemar.ContentProviderActivity}:

java.lang.SecurityException: Permission Denial: opening provider

com.android.providers.contacts.CallLogProvider from ProcessRecord{41475a28
541:it.unitn.science.latemar/10041} (pid=541, uid=10041)
requires

android.permission.READ_CONTACTS or
android.permission.WRITE_CONTACTS

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http;//schemas.android.com/apk/res/android"
package="it.unitn.science.latemar"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="13" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".ContentProviderActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission
android:name="android.permission.READ_CONTACTS">
</uses-permission>
</manifest>

