Android Sensor Programming

- Arindam Ghosh

Sensing and Sensors

* g capability that can capture measurements about the device and its
external environment

e Can detectsand respondsto some type of input from the physical
environment.

* The specific input could be light, heat, motion, moisture, pressure, etc.

e Convertthe measurementinto a signal that can be read.

Example Sensor Data

1|MPUG6500 Acceleration Sensor|[-1.6741456,9.370906,2.6886885] 1441670212915
1|MPU6500 Gyroscope Sensor|[-0.02263687,-0.016777916,-0.008788432] | 1441670213508
1|AK09911C Magnetic field Sensor|[16.86,-64.26,-62.7]|1441670213400

1|GPS|{"mProvider":"fused","mResults":[0.0,0.0],"mAccuracy":29.0,"mAltitude":83.0,” ,"mLatitude":40.748431",
mLongitude":73.985741 ... }|1441573552851

1| WiFi|{"BSSID":"00:21:6¢:87:02:d1","SSID":"eduroam","capabilities":"[WPA2-EAP-CCMP]","frequency": 2462,"level":-
82}|1392465248466

Android OS Fragmentation

5.1 (Lollipop) (2.6%)
5.0 (Lollipop) (15.9%)
4 .4 (Kit Kat) (39.3%)

4.2 (Jelly Bean) (15.9%)

1.1 (Jelly Bean) (13
403-4.04(ICS) (4.1%)
2.3.3-2.3.7 (Gingerbread) (4.6%)
2.2 (Froyo) (0.3%)

http://opensignal.com/reports/2015/08/android-fragmentation/

DEVICE FRAGMENTATION

L] ——— Ea.
li=l="i= " lzs=s
e T

[
]
“-I.l--l-l] T T HITE

=Im I-““““ll“mm.l..“-“ Sin=

HEIEEE Sl I e e e = = nialh =l

SNl (=l e S
- -“_H_l- - = =1 lm—llm
I—D—l—l—ll“ o o e e
mimim il S wElaSis Sl i
i = m.-ﬂnn.-. nm_-_ nSis==
-.- -lm-l-lﬂnln Em-ﬂ-““l
11 e e |||
T TR et =

Bl mE

-ll-l_H_ 1 L

—

T TR R B

T

]
[
-
A
[]
]
]

S~
(e
.S
)
©
-
C
Q
=
o]0]
©
o
c_l
O
(@]
o
©
C
©
S~
o0
o
S~
N
—
(@)
(@
S~
(%]
his}
o
o
o
()
o
S~
&
o
©
©
C
o0
(7p]
C
(D)
o
o
~
J
o
=
)
i

y |

- I _[E000

y S4

ZenFone 5 4369
DE603

alax
T-N7100
Galaxy Y

L]

TS

| | Ll Drer

— a

mil .m

S =

=y mile oo

SRR 1P ©

S Y

N 1] m_.-_ _
]

BRAND FRAGMENTATION

//opensignal.com/reports/2015/08/android

http

SAMSUNG

SENSOR FRAGMENTATION

Sensor Availability

Fingerprint scanner
Heartrate
RGB Ambient Light
Relative humidity
Env. temperature
Barometer
NFC

* Varies from device to device

Gyroscope
 May vary between Android versions Accelerometer
Bluetooth radio
WiFi radio
FM radio
Cell radio
Front camera
Rear camera
GPS
Magnetic field
Light flux
Battery temp.
Microphone

Touch

Sl sl

g
&

Newer Sensors Over Time

Game rotational vector

25

Sensor prevalence (%)

Significant motion sensor

/ Barometer

Step counter

20

15

Geomagnitic rotational vector
10
0-

I 1 1
2012 2013 2014 2015

/nglgg \
* Android Info
. * Accounts

Social * Process Statistics

* Call Logs « Battery Info

* Contacts « Hardware Info

* SMS Logs \ Mobile Network Info)

~

(i

Accelerometer Features

\

»

[}

Audio Media

\

Proximity Sensor

Temperature Sensor

* Accelerometer Sensor * Browser Bookmarks
« Activity « Browser Searches
« Gravity Sensor - > + Images
* Gyroscope Sensor « Applications
* Linear Acceleration Sensor * Running Applications
« Orientation Sensor « Videos
&Rotaﬁon Vector Sensor / \Screen On/Off /
> .
il N\ (Postioning
Environment « Location
Audio Features « Simple Location
Light Sensor * Bluetooth
Magnetic Field Sensor « Cell Towers
Pressure Sensor s Wifi Devices Il

Sensors

* Position sensors
GPS, orientation sensors and magnetometers.
* Motion sensors
accelerometers, gravity sensors, gyroscopes, etc.

* Environmental sensors
barometers, photometers, and thermometers. @ U

Sensor Framework

Access sensors and and acquire raw sensor data.

* Determine which sensors are available on a device.

* Determine an individual sensor's capabilities, such as its maximum
range, manufacturer, power requirements, and resolution.

e Acquire raw sensor data and define the minimum rate at which you
acquire sensor data.

* Register and unregister sensor event listeners that monitor sensor
changes.

Sensors

e Hardware-based or Software-based

*Hardware-based sensors - physical components
built into a handset or tablet device
e directly measuring specific environmental properties.

* acceleration, geomagnetic field strength, or angular change.
* Software-based sensors - mimic hardware-based
SEeNSors

* derive their data from one or more of the hardware-based sensors
and are sometimes called virtual sensors or synthetic sensors.

* The linear acceleration sensor and the gravity sensor.

Sensor Framework

Access sensors and and acquire raw sensor data.
Android Sensor Framework includes three classes and one interface.

* SensorManager

* Sensor |dentifying sensors and sensor capabilities
e SensorEvent * Monitorsensor events

e SensorEventListener

http://developer.android.com/guide/topics/sensors/sensors overview.html

public class SensorActivity extends Activity, implements SensorEventListener {
private final SensorManager mSensorManager;
private final Sensor mAccelerometer;

public SensorActivity() {

mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);

mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
}
protected void onResume() { 2

super.onResume() ;

mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL) ;
}

protected void onPause() {
super.onPause(); 5
mSensorManager.unregisterListener(this);

public void onAccuracyChanged(Sensor sensor, int accuracy) { 3

}

public void onSensorChanged(SensorEvent event) {

} 4.

SensorManager

e System Service that manages sensors

public SensorActivity() {
mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE); 1
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

}

* First the application needs to get a reference to the
SensorManager

 getSystemService(SENSOR_SERVICE),

* Access a specific sensor with
e SensorManager.getDefaultSensor(int type)

Sensor

public SensorActivity() {
mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
}

e Accelerometer
* Sensor.TYPE_ACCELEROMETER

* Magnetic Field
* Sensor.TYPE_MAGNETIC_FIELD

* Pressure
* Sensor.TYPE_PRESSURE

Get a List of All Sensors

27A | ~Mt oo
LA LIgNT Sel

GP2A Proximity sensol

BMP180 Pressure sensor
SensprManager sensorManager =
(SensorMan

ger) getActivity() .getsSystemService(
i E); MPL Gyroscope
S = sensorManager.getSensorList (Sensor.TYPE ALL);
MPL Accelerometer
MPL Magnetic Field
MPL Orientation
MPL Rotation Vector
MPL Linear Acceleration

MPL Gravity

Rotatinn Vector Sensor

SensorkventListener

* For an application to receive information from a
Sensor
* It needs to implement a SensorEventListener
* Before starting to receive sensorEvents

protected void onResume() { y)

super.onResumel() ;

mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
}

* Type of Sensor
* Delay

SensorkventListener

registerListener

boolean registerListener (SensorEventListener listener,
Sensor sensor,
int samplingPeriodUs)

listener SensorEventListener: A SensorEventListener object.
sensor Sensor: The Sensor to register to.

samplingPeriodUs int: The rate sensor events are delivered at. This is only a hint to the system. Events may be received faster or slower
than the specified rate. Usually events are received faster. The value must be one of SENSOR_DELAY_NORMAL,
SENSOR_DELAY_UI, SENSOR_DELAY_GAME, or SENSOR_DELAY_FASTEST or, the desired delay between events in
microseconds. Specifying the delay in microseconds only works from Android 2.3 (API level 9) onwards. For earlier
releases, you must use one of the SENSOR_DELAY_x constants.

SensorDelay

SENSOR_DELAY_FASTEST

int SENSOR_DELAY_FASTEST
get sensor data as fast as possible

Constant Value: 0 (0x00000000)

SENSOR_DELAY_GAME

int SENSOR_DELAY_GAME
rate suitable for games

Constant Value: 1 (0x00000001)

SENSOR_DELAY_UI

int SENSOR_DELAY_UI
rate suitable for the user interface

Constant Value: 2 (0x00000002)

SENSOR_DELAY_NORMAL
int SENSOR_DELAY_NORMAL

rate (default) suitable for screen orientation changes

Constant Value: 3 (0x00000003)

SensorkventListener

registerListener

boolean registerListener (SensorEventListener listener,
Sensor sensor,
int samplingPeriodUs,
Handler handler)

handler Handler: The Handler the sensor events will be delivered to.

SensorkventListener

registerListener

boolean registerListener (SensorEventListener listener,
Sensor sensor,
int samplingPeriodUs,
int maxReportLatencyUs,
Handler handler)

maxReportLatencyUs int: Maximum time in microseconds that events can be delayed before being reported to the application. A large value
allows reducing the power consumption associated with the sensor. If maxReportLatencyUs is set to zero, events are

delivered as soon as they are available, which is equivalent to calling registerListener(SensorEventListener,

Sensor, int).

SensorkventListener

* For an application to receive information from a Sensor

* |t needs to implement a SensorEventListener
* Invoked when accuracy of a sensor changes
 When the sensoracquiresa new reading

abstract void = onAccuracyChanged (Sensor sensor, int accuracy)

Called when the accuracy of the registered sensor has changed.

abstract void = onSensorChanged (SensorEvent event)

Called when sensor values have changed.

onAccuracyChanged

public void onAccuracyChanged(Sensor sensor, int accuracy) { 3
}

* Accuracy is represented by one of four status constants:
* SENSOR STATUS UNRELIABLE
e Constant Value: 0 (0x00000000)
* SENSOR STATUS ACCURACY LOW,
e Constant Value: 1 (0x00000001)
* SENSOR STATUS ACCURACY MEDIUM,
e Constant Value: 2 (0x00000002)
* SENSOR STATUS ACCURACY HIGH,
e Constant Value: 3 (0x00000003)

https://developer.android.com/reference/android/hardware/SensorManager.html

onAccuracyChanged

public void onAccuracyChanged(Sensor sensor, int accuracy) {
// Do something here if sensor accuracy changes.
// You must implement this callback in your code.
if (sensor == mValuen) {
switch (accuracy) {
case 9:
System.out.println("Unreliable");
con=0;
break;
case 1:
System.out.println("Low Accuracy");
con=0;
break;
case 2:
System.out.println("Medium Accuracy");
con=0;

break;
case 3:
System.out.println("High Accuracy");
con=1;
break;

onSensorChanged

public void onSensorChanged(SensorEvent se) {

float x = se.values[@];
float y = se.values[1];
float z = se.values[2];

mAccellLast = mAccelCurrent;

mAccelCurrent = (float) Math.sqrt((double) (x%x + yxy + z%z));
float delta = mAccelCurrent - mAccellast;

mAccel = mAccel * 0.9f + delta; // perform low-cut filter

onSensorChanged

public void onSensorChanged(SensoriEvent event) {

if (event.sensor.getType() == Sensor.TYPE MAGNETIC FIELD)
magnetic = event.values;

if (event.sensor.getType() == Sensor.TYPE ACCELEROMETER)
gravity = event.values;

if ((gravity == null) || (magnetic == null))

return;

SensorkventListener
* Once you are done Using the Sensor
protected void onPause() {

super.onPause();
mSensorManager.unregisterListener(this);

public class SensorActivity extends Activity, implements SensorEventListener {
private final SensorManager mSensorManager;
private final Sensor mAccelerometer;

public SensorActivity() {

mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);

mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
}
protected void onResume() { 2

super.onResume() ;

mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL) ;
}

protected void onPause() {
super.onPause(); 5
mSensorManager.unregisterListener(this);

public void onAccuracyChanged(Sensor sensor, int accuracy) { 3

}

public void onSensorChanged(SensorEvent event) {

} 4.

Sensor Coordinate System

* The sensor framework uses a standard 3-
axis coordinate system to express data
values.

e X axis is horizontal and points to the right
* Y axis is vertical and points up

 Z axis points toward the outside of the
screen face

e coordinates behind the screen have negative
values

P =

X

Sensor Coordinate System

Such a coordinate system is used by:

Acceleration sensor

Gravity sensor

Gyroscope

Linear acceleration sensor

Geomagnetic field sensor

Points to Remember

* Your application must not assume that a device's natural (default)
orientation is portrait.

 The sensor coordinate system s always based on the natural orientation of a device.
* The naturalorientation for manytablet devices is landscape.

 Verify sensors before you use them

* Verify thata sensor existson a device beforeyou attemptto acquiredatafrom it
The sensor's coordinate system never changes as the device moves

* You must test your sensor code on a physical device.

* You currently can't test sensor code on the emulator because the emulator cannot
emulate sensors.

* There are, however, sensor simulators that you can use to simulate sensor output.

Verity sensors before you use them

private SensorManager mSensorManager;

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
if (mSensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE) != null){
// Success! There's a pressure sensor.

}
else {
// Failure! No pressure sensor.

}

If you are publishingyourapplicationon Google Play you can

use the <uses-feature> element in your manifest file

to filter your applicationfrom devices that

do not have the appropriate sensor configuration for your application.

<uses~feature android:name="android.hardware.sensor.accelerometer"
android: required="true" />

Points to Remember

* Unregister sensor listeners
 when youare doneusingthe sensor or when the sensor activity pauses.

* If a sensorlistenerisregistered and its activityis paused, the sensor will continue to acquire
data and use batteryresources unless you unregister the sensor.

* Don't block the onSensorChanged() method

e Sensor datacanchange at a high rate - system may call the onSensorChanged(SensorEvent)
method quite often

* Do as little as possible within the onSensorChanged(SensorEvent) method so you don't block
it

* Choose sensor delays wisely
* Sensorscan provide data at very high rates.
* Sendingextradatathatyou don't need wastes system resources and uses battery power.

Orientation Sensors

* TYPE_ACCELEROMETER usesthe accelerometer and only the
accelerometer. It returns raw accelerometer events, with minimal or no
processing at all.

* TYPE_LINEAR_ACCELERATION (if present) uses the gyroscope and only the
gyroscope. Like above, it returns raw events (angular speed un rad/s) with
no processing at all (no offset / scale compensation).

 TYPE_ORIENTATION is deprecated. It returns the orientation as yaw/
pitch/rollin degrees.
* This sensoruses a combination of the accelerometer and the magnetometer.
* Marginally better results can be obtained using SensorManager's helpers.
* This sensoris heavily "processed".

Orientations

Y
y b

ks

Accelerometer Gyroscope

Orientation Sensors

TYPE_ACCELEROMETER

TYPE_GRAVITY

TYPE_GYROSCOPE

SensorEvent.values [0]
SensorEvent.values [1]
SensorEvent.values [2]
SensorEvent.values [0]
SensorEvent.values[1]
SensorEvent.values [2]
SensorEvent.values [0]
SensorEvent.values [1]

SensorEvent.values[2]

Acceleration force along the x axis (including gravity). m/s?
Acceleration force along the y axis (including gravity).
Acceleration force along the z axis (including gravity).

Force of gravity along the x axis. m/s?
Force of gravity along the y axis.

Force of gravity along the z axis.

Rate of rotation around the x axis. rad/s
Rate of rotation around the y axis.

Rate of rotation around the z axis.

Orientation Sensors.

* TYPE_LINEAR_ACCELERATION, TYPE_GRAVITY,
TYPE_ROTATION_VECTOR are "fused" sensors which return
respectively

e the linear acceleration,

gravity and

rotation vector (a quaternion).

On some devices they are implementedin h/w,

On some devices they use the accelerometer + the magnetometer

On some other devices they use the gyro.

TYPE_LINEAR_ACCELERATION SensorEvent.values [0] Acceleration force along the x axis (excluding gravity). m/s?
SensorEvent.values[1] Acceleration force along the y axis (excluding gravity).

SensorEvent.values [2] Acceleration force along the z axis (excluding gravity).

TYPE _ACCELEROMETER

* MEMS accelerometers are tiny masses on tiny springs.

* They can sense
e Speedingup or slowingdown in a straight line
* Shaking the device
e Earth’s gravity, which is 1 g downward

A B C

1 g of gravity 1 g of gravity freefall
+ acceleration
to the right

TYPE_ACCELEROMETER

At rest

e
O
-

O

)

o4

Acceleration (m/s’
O = N W e 0Oy

Time (s)

10

TYPE_LINEAR_ACCELERATION

At rest

e
O O

)

Acceleration (m/s”
O = N W s OO

B

Time (s)

10

TYPE_ACCELEROMETER

Rotation around y axis

)

Acceleration (m/s”

Time (s)

10

TYPE_GYROSCOPE

- /
\\ g |
’/*\ < \\\+ e, 0] . =
Z‘{_) 3 By I; ’ \
\ s
o
! \/'/

Measures rate of rotation.
You cannot directly measure angle using a gyroscope.
You can integrate the rate of rotation over time to get angle

Activity Level

T
s O

-
(=

Activity Recognition

Physical Activity Level Inference

— 2 2 2
m = /az + ay + aZ

N
T ~

NS o

| “ J H N L HLJ\L

Ll

0320 600 12.00 18:00 03/30 6:00 12:00 18:00 03/31 6:00 12:00 18:00 04/1 6:00 12:00 18:00 0472

Time

600 12:00 18:00 04/3

Walking

Accel

Gyro

d & RN o N &2 o o

20

15

10

wm

o

-10

-15

-
o

-

time in mins

time in mins

45

Bus

|

o

e

: W IM'W&M’&%‘

in mins

|
4

46

Driving

Accel

Gyro

10

5

time in mins

47

Train

Gyro

15 —
. | | | | | | | |
1 2 3 4 5 6 7 8 9 10
time in mins
L2 T T T T T T T T
. _
. _
. _
) _
0 ' 4 _: - q-__.%l A . —
.2 -
. _
. _
. | | | l | | | |
1 2 3 4 a 6 7 8 9 10
time in mins

48

Activity Recognition Study

Running

Android “DetectedActivity” API

int IN_ VEHICLE Thedeviceis in a vehicle, such as a car.

int ON_BICYCLE The device is on a bicycle.

int ON_FOOT The device is on a user who is walking or running.

int RUNNING The device is on a user who is running.

int STILL The device is still (not moving).

int TILTING The device angle relative to gravity changed significantly.

int UNKNOWN Unable to detect the current activity.

int WALKING The device is on a user who is walking.

https://developers.gooaqgle.com/android/reference/com/google/android/ams/location/DetectedActivity

TYPE_MAGNETIC _FIELD

* Hardware Sensor
* Mostly Hall effect Sensors
* Android reports magnetic fields in microtesla.

* Earth’s magnetic fi eld can vary from 30 microtesla to 60 microtesla

* Uses
* Compass

* The magnetic field sensor can be influenced by nearby metal, some people
have used the sensor to make an Android device intoa crude metal detector
* Due to an effect called hysteresis

TYPE_PROXIMITY

e Hardware Sensor

*|Lets you determine how far away an object is from
a device

* Some proximity sensors provide a boolean value
(near/far).
* Typically, the far value is a value > 5 cm, but this can vary
from sensor to sensor.
* Usually used to determine how far away a person's

head is from the face of a handset device
* To lock the screen when a user is on a call

TYPE_PROXIMITY

public class SensorActivity extends Activity implements SensorEventListener {
private SensorManager mSensorManager;
private Sensor mProximity;

@Override

public final void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.main);

// Get an instance of the sensor service, and use that to get an instance of
// a particular sensor.

mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
mProximity = mSensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);

TYPE_PROXIMITY

@Override

public final void onSensorChanged(SensorEvent event) {
float distance = event.values[@];
// Do something with this sensor data.

}

@Override

protected void onResume() {
// Register a listener for the sensor.
super.onResume() ;

mSensorManager.registerListener(this, mProximity, SensorManager.SENSOR_DELAY_NORMAL) ;
],

@Override

protected void onPause() {
// Be sure to unregister the sensor when the activity pauses.
super.onPause();

mSensorManager.unregisterListener(this);
}

TYPE STEP COUNTER

* Returns the number of steps taken by the user since the last reboot
while activated.

* Reset to zero only on a system reboot.

* The timestamp of the event is set to the time when the last step for
that event was taken.

* This sensor is implemented in hardware and is expected to be low
power.

* Application needs to stay registered for this sensor because step
counter does not count steps if it is not activated.

TYPE STEP DETECTOR

* Triggers an event each time a step is taken by the user.

* The only allowed value to returnis 1.0 and an event is
generated for each step.

* The timestamp indicates when the event (here the
step) occurred

* When the foot hits the ground - generating a high
variation in acceleration.

ENVIRONMENT SENSORS

* The Android platform provides four sensors that let you monitor
various environmental properties.

* Ambient Pressure
* Measuresthe ambient air pressurein hPa or mbar.

 Ambient Humidity
 Ambient humidity nearthe phone (expressed as % atmospherichumidity)

* llluminance
* Used to control screen brightness (measuredin lux)

* Ambienttemperature
* Ambient humidity nearthe phone (measured in degree centigrade)

* They are all hardware sensors.

TYPE _HEART _RATE

 Found in Android Wearables.

* The reported value is the heart rate in beats per minute.

* This sensor requires permission
android.permission.BODY_SENSORS

* It will not be returned by SensorManager.getSensorsList or

SensorManager.getDefaultSensor if the permission is
missing.

HEART RATE SENSOR

* Measured using a Photoplethysmography (PPG sensor).

* Measures the differential reflection of light by oxygenated and
deoxygenated blood

HEART RATE SENSOR

 Similar to the principle of android apps to measure heart rate using
the camera.

Your heart rate; 71

/ MEASURING \
4 9s LEFT

'y

ARTIFACTS IN HEART RATE

* Sensor Movement Artifact
* Nervous Fidgeting Artifact

Removal of Local Fidgeting

Changes in Wristband Acc + Physiological signal = YES
Changes in Smartphone Acc/Gyro = NO

Remove next 30 seconds

61

Artifact Removal — Activity Recognition Use
Case.

Removal Artifacts using Filtering

* Two common filtering techniques

* Low-pass filters
e Pass frequencies lower than cut off frequency
 Deemphasize transient force change (vibrations)
 Emphasize constant force components
e e.g., for a bubble level

* High-pass filters
e Pass frequencies higher than cut off frequency
* Emphasize transient force changes
 Deemphasize constant force components (gravity)
* e.g., for a game controller

Signal Preprocessing

Accelerometer

X
NARAA
— =
\ ﬁy‘ Grorm = /G,% + G2 + G?

Gyroscope wé”v
Z

Audio

Input Streams Preprocessing

Signal Preprocessing

Accelerometer

Gyroscope

Audio

Input Streams

Grorm = /G,% + G§ + G?

N sec

Boundary

Removal N sec

Preprocessing

|

T seconds

—

T/ 10 if N <300

N = 30 secs Otherwise

— 65

Signal Preprocessing

%h L Screen-on checking and removal
40 Hz w0l |
A = /AZ + A% + A .
Accelerometer f"fj\h o T For controlled scenario: |f screen-unlocked > 10 seconds
AZ
40 Hz o |
Grorm = /G,% + G, + G;
Gyroscope mé v
zZ
8 KHz
Audio
66

Input Streams Preprocessing

Signal Preprocessing

Accelerometer

Gyroscope mé

Audio

Input Streams

W

Aporm = fAi +A§, + 42

WA

Grorm = /G,% + G§ + G?

Boundary
Removal
And Filtering

Segment into 3 second window

Preprocessing

Segmentation

Human Average Stride rate is
between 80-120 steps a minute

Signal Preprocessing

Accelerometer

Gyroscope é v

Audio

Input Streams

— 2 2 2
norm — Ax +Ay +AZ

i

— 2 2 2
Gnorm = |Gx + Gy, + G5

:

Segment into 3 second window

Boundary
Removal
And Filtering

Mean

Standard deviation

Number of peaks

Inter peak distances

minimum

maximum

Zero Crossing rate

RMS Energy

MFCCs

Preprocessing

Segmentation

Feature Extraction

68

Signal Preprocessing

Accelerometer

Gyroscope d v

Audio

G = [Gi+ G+ G

Input Streams

i

— 2 2 2
norm — Ax +Ay +AZ

norm

Boundary
Removal
And Filtering

Segment into 3 second window

Mean

Standard deviation

Number of peaks

Inter peak distances

minimum

maximum

Zero Crossing rate

RMS Energy

MFCCs

Random
Forest
LOSO

ACC
GYRO
ACC+GYRO
ACC+ GYRO+AUDIO

Preprocessing Segmentation

Feature Extraction

69
Classification

Challenge

High sampling rate drains battery

Effects of lowering sampling rates

F-measure

0.7

0.6

0.5}

0.4

—&— ACC, GYRO & AUDIO

¥ ACC & GYRO
- & - ACC ONLY
-%— GYRO ONLY

| |

| | |

40

35 30

25 20 15
Sampling Rate (samples/second)

10

71

Publication Related to this section

Recognizing Human Activities from Smartphone Sensor Signals.
ACM Multimedia 2014,
Ghosh, Arindam , and Riccardi, Giuseppe

