
1

Fragments

2

Fragments
A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

 Fragments can be assembled to create an activity during
the application design phase, and added to, or removed
from an activity during application runtime to create a
dynamically changing user interface.

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

A fragment can be thought of as a functional “sub-activity”
with its own lifecycle similar to that of a full activity.

3

Using fragments

4

Fragments lifecycle
Method Description

onAttach() The fragment instance is associated with an activity instance.The activity is not
yet fully initialized

onCreate() Fragment is created

onCreateView() The fragment instance creates its view hierarchy. The inflated views become part
of the view hierarchy of its containing activity.

onActivityCreated()
Activity and fragment instance have been created as well as thier view hierarchy.
At this point, view can be accessed with the findViewById() method.
example.

onResume() Fragment becomes visible and active.

onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.

onStop() Fragment becomes not visible.

!

5

Defining a new fragment (from code)
To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example,
•  ListFragment,
•  DialogFragment,
•  PreferenceFragment
•  WebViewFragment.

6

Defining a new fragment (from code)
public class DetailFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,

 ViewGroup container, Bundle savedInstanceState) {
 View view=inflater.inflate(

 R.layout.fragment_rssitem_detail,
 container, false);

 return view;
 }
 public void setText(String item) {
 TextView view = (TextView)

 getView().findViewById(R.id.detailsText);
 view.setText(item);
 }
}

7

XML-based fragments
<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment_one"
android:name="com.example.myfragmentdemo.FragmentOne"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true" tools:layout="@layout/
fragment_one_layout" />

</RelativeLayout>

8

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout you typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager().beginTransaction();
ft.replace(R.id.your_placehodler, new
YourFragment());
ft.commit();

A new Fragment will replace an existing Fragment that was previously
added to the container.

9

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
 getFragmentManager().
 findFragmentById(R.id.detail_frag);

if (fragment==null) {

 // start new Activity
} else {

 fragment.update(...);
}

10

Communication: activity -> fragment
In order for an activity to communicate with a
fragment, the activity must identify the fragment
object via the ID assigned to it using the
findViewById() method.

Once this reference has been obtained, the activity can
simply call the public methods of the fragment object.

11

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A)  the fragment must define a listener interface, which is
then implemented within the activity class.

public class MyFragment extends Fragment {
 AListener activityCallback;
 public interface AListener {

 public void someMethod(int par1, String par2);
 }
 …

12

Communication: fragment-> activity
B.  the onAttach() method of the fragment class needs to be

overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verify that it implements the interface.

public void onAttach(Activity activity) {
 super.onAttach(activity);
 try { activityCallback = (AListener) activity;
 } catch (ClassCastException e) {
 throw new ClassCastException(

 activity.toString()
 + " must implement ToolbarListener");

} }

13

Communication: fragment-> activity
C.  The next step is to call the callback method of the

activity from within the fragment. For example, the
following code calls the callback method on the
activity when a button is clicked:

public void buttonClicked(View view) {
 activityCallback.someMethod(arg1, arg2);
}

14

Communication: fragment-> activity
All that remains is to modify the activity class so that
it implements theToolbarListener interface.
public class MyActivity extends
FragmentActivity implements
MyFragment.AListener {
 public void someMethod(String arg1, int arg2)

 {
 // Implement code for callback method

 }
.
.
}

15

Esempio
vedi
http://www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

16

Content Providers

Marco Ronchetti
Università degli Studi di Trento

17

Content Provider
A standard interface connecting a running process with data in another process

Manages access to a structured set of data:
•  encapsulate the data
•  provide mechanisms for defining data security.

To access data in a content provider, use the ContentResolver object in your
Context
The ContentResolver object communicates with the provider object, an instance of
a class that implements ContentProvider. The provider object receives data
requests from clients, performs the requested action, and returns the results.

ContentResolver ContentProvider

CLIENT SERVER

18

Content Provider
Android includes content providers that manage data such
as audio, video, images, and personal contact information..

You can create your own custom content provider to share
your data with other packages that works just like the
built-in providers.

You need to develop your own provider if
•  you intend to share your data with other applications.
•  you want to to provide custom search suggestions in

your own application.
•  you want to copy and paste complex data or files from

your application to other applications.

19

Default content providers
•  ContactsContract

•  Stores all contacts information. etc
•  Call Log Stores

•  call logs, for example: missed calls, answered calls.
etc.

•  Browser
•  Use by browser for history, favorites. etc.

•  Media Store
•  Media files for Gallery, from SD Card. etc.

•  Setting
•  Phone device settings. etc.

20

Querying a Content Provider
To query a content provider, you provide a query string in the form
of a URI, with an optional specifier for a particular row, using the
following syntax:

<standard_prefix>://<authority>/<data_path>/<id>

For example, to retrieve all the bookmarks stored by your web
browsers (in Android), you would use the following content URI:

content://browser/bookmarks

Similarly, to retrieve all the contacts stored by the Contacts
application, the URI would look like this:

content://contacts/people

To retrieve a particular contact, you can specify the URI with a
specific ID:

content://contacts/people/3

21

Accessing calls
if (c.moveToFirst()) {
 do{
 String callType = "";
 switch (Integer.parseInt(c.getString(

 c.getColumnIndex(Calls.TYPE))))
 {
 case 1: callType = "Incoming";

 break;
 case 2: callType = "Outgoing";
 break;
 case 3: callType = "Missed";

 }
 Log.v("Content Providers",
 c.getString(c.getColumnIndex(Calls._ID))

 + ", " +
 c.getString(c.getColumnIndex(Calls.NUMBER))
 + ", " +
 callType) ;

 } while (c.moveToNext());
 }
 }
}

package …
import …

package …
import …
public class ContentProviderActivity extends Activity {
 /** Called when the activity is first created. */
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Uri allCalls = Uri.parse("content://call_log/calls");
 Cursor c = managedQuery(allCalls, null, null, null, null);

22

Error!
E/AndroidRuntime(541): java.lang.RuntimeException:
Unable to start activity ComponentInfo{it.unitn.science.latemar/
it.unitn.science.latemar.ContentProviderActivity}:
 java.lang.SecurityException: Permission Denial: opening provider
com.android.providers.contacts.CallLogProvider from ProcessRecord{41475a28
541:it.unitn.science.latemar/10041} (pid=541, uid=10041)
requires
android.permission.READ_CONTACTS or
android.permission.WRITE_CONTACTS

23

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="it.unitn.science.latemar"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="13" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".ContentProviderActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission
 android:name="android.permission.READ_CONTACTS">
 </uses-permission>
</manifest>

24

Building your own
Content Provider

Marco Ronchetti
Università degli Studi di Trento

25

ContentProvider
The primary methods that need to be implemented are:

•  onCreate()

•  is called to initialize the provider
•  query(Uri, String[], String, String[], String)

•  returns data to the caller
•  insert(Uri, ContentValues)

•  inserts new data into the content provider
•  update(Uri, ContentValues, String, String[])

•  updates existing data in the content provider
•  delete(Uri, String, String[])

•  deletes data from the content provider
•  getType(Uri)

•  returns the MIME type of data in the content provider

26

Normally these are just wrapper functions around the raw SQL queries, e.g.:
delete(tableName, where, whereArgs);
is simply just a wrapper around the SQL query that looks something like:
"delete from " + tableName + " where " + where + " ? " + whereArgs”

public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case NOTES:
 count = db.delete(NOTES_TABLE_NAME, where, whereArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

27

Register your ContentProvider
<application>
…
<provider android:name=".contentprovider.MyTodoContentProvider"
android:authorities=”MyUniquePath.todos.contentprovider" >
</provider>
</application>

28

URIMatcher
 private static final int PEOPLE = 1;
 private static final int PEOPLE_ID = 2;
 private static final int PEOPLE_PHONES = 3;
 private static final int PEOPLE_PHONES_ID = 4;
 private static final int CALLS = 11;
 private static final int CALLS_ID = 12;
 private static final int CALLS_FILTER = 15;

private static final UriMatcher sURIMatcher = new UriMatcher(UriMatcher.NO_MATCH);

static
 {
 sURIMatcher.addURI("contacts", "people", PEOPLE);
 sURIMatcher.addURI("contacts", "people/#", PEOPLE_ID);
 sURIMatcher.addURI("contacts", "people/#/phones", PEOPLE_PHONES);
 sURIMatcher.addURI("contacts", "people/#/phones/#", PEOPLE_PHONES_ID);
 sURIMatcher.addURI("call_log", "calls", CALLS);
 sURIMatcher.addURI("call_log", "calls/filter/*", CALLS_FILTER);
 sURIMatcher.addURI("call_log", "calls/#", CALLS_ID);
 }
 sUriMatcher.addURI(AUTHORITY, PATH, CODE);

29

Example
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, NOTES_TABLE_NAME, NOTES);
}

Later, given a uri, in the code of your ContentProvider:

switch (sUriMatcher.match(uri)) {
 case NOTES:
 count = db.delete(NOTES_TABLE_NAME, where, whereArgs);
 break;
 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

See a full example here:
http://thinkandroid.wordpress.com/2010/01/13/writing-your-own-contentprovider/

30

Accessing a Content Provider
When you want to access data in a content provider,
you use the ContentResolver object in your
application's Context to communicate with the
provider as a client.

The ContentResolver object communicates with the
provider object, an instance of a class that implements
ContentProvider. The provider object receives data
requests from clients, performs the requested action,
and returns the results.

31

ContentResolver
You get a ContentResolver from your Context
ContentResolver cr=getContentResolver();

Then you typically use
•  cr.query()
•  cr.insert()
•  cr.update()
•  cr.delete()
•  cr.getType()

See http://developer.android.com/reference/android/content/ContentResolver.html

32

Change in Orientation

Marco Ronchetti
Università degli Studi di Trento

33

Change in orientation
Change in orientation
For devices that support multiple orientations, Android
detects a change in orientation:
 the display is "landscape” or "portrait”.

When Android detects a change in orientation, its default
behavior is to destroy and then re-start the foreground
Activity.

•  Is the screen re-drawn correctly? Any custom UI code

you have should handle changes in the orientation.
•  Does the application maintain its state? The Activity

should not lose anything that the user has already
entered into the UI.

34

Change in configuration
e.g. a change in the availability of a keyboard or a
change in system language.

A change in configuration also triggers the default
behavior of destroying and then restarting the
foreground Activity.

Besides testing that the application maintains the UI
and its transaction state, you should also test that the
application updates itself to respond correctly to the
new configuration.

35

Save and restore the application state
@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save UI state changes to the savedInstanceState.
 // This bundle will be passed to onCreate if the process is
 // killed and restarted.
 savedInstanceState.putCharSequence("text", button.getText());
 savedInstanceState.putInt("count", count);
 super.onSaveInstanceState(savedInstanceState);
}
@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 button = (Button) findViewById(R.id.button1);
 button.setText(savedInstanceState.getCharSequence("text"));
 count=savedInstanceState.getInt("count");
}

36

What can we save in a bundle?
•  Primitive data types – arrays of p.d.t.
•  String – StringArray - StringArrayList

•  CharSequence – CharSequenceArray – CharSequenceArrayList

•  Parcelable - ParcelableSequenceArray – ParcelableSequenceArrayList

•  Serializable

37

How to rotate the emulator:
Ctrl-F11
On Mac: ctrl-fn F12

See:
http://developer.android.com/guide/developing/
tools/emulator.html#KeyMapping

38

Basic Animation

Marco Ronchetti
Università degli Studi di Trento

39

An example
Modified from an example by Vogella

Download the source from:
http://latemar.science.unitn.it/segue_userFiles/2012Mobile/Animation.zip

40

3 ways to do animation
•  Property Animation (Android >= 3.0, API level 11)

•  lets you animate properties of any object, including ones
that are not rendered to the screen. The system is extensible
and lets you animate properties of custom types as well.

•  View Animation
•  An older system, can only be used for Views. It is relatively

easy to setup and offers enough capabilities to meet many
application's needs.

•  Drawable Animation
•  involves displaying Drawable resources one after another,

like a roll of film.
•  useful if you want to animate things that are easier to

represent with Drawable resources, such as a progression of
bitmaps

See http://developer.android.com/guide/topics/graphics/animation.html

41

Example 1 – loading animation from xml
ImageView aniView = (ImageView) findViewById(R.id.imageView1);
Animation animation1 = AnimationUtils.loadAnimation

 (this,R.anim.myanimation);
aniView.startAnimation(animation1);

<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:shareInterpolator="true">
 <rotate android:fromDegrees="0”
 android:toDegrees="360"
 android:duration="5000"
 android:pivotX="50%”
 android:pivotY="90%"
 android:startOffset="0">
 </rotate>
</set>

42

Example 2 –animating from code
ImageView aniView = (ImageView) findViewById(R.id.imageView1);
ObjectAnimator animation1 = ObjectAnimator.ofFloat(aniView,

 "rotation", dest);
animation1.setDuration(2000);
animation1.start();

// Example of animation lifecycle trapping
animation1.setAnimationListener(new AnimationListener(){
 @Override
 public void onAnimationEnd(Animation animation) {…}
 @Override
 public void onAnimationRepeat (Animation animation) {…}
 @Override
 public void onAnimationStart (Animation animation) {…}
});

43

ObjectAnimator
static ObjectAnimator ofFloat(Object target, String
propertyName, float... values)
•  Constructs and returns an ObjectAnimator that

animates between float values.

public static ObjectAnimator ofFloat(T target,
Property<T, Float> property, float... values)
•  Animate a given (float) property in object target

ofInt is similar

44

Fading demo
float dest = 1;
if (aniView.getAlpha() > 0) {
 dest = 0;
}
ObjectAnimator animation3 = ObjectAnimator.ofFloat(aniView,"alpha", dest);
animation3.setDuration(2000);
animation3.start();

45

TypeEvaluator
Interface that implements:
public abstract T evaluate (float fraction, T startValue, T
endValue)

•  This function should return a linear interpolation

between the start and end values, given the fraction
parameter.

•  The calculation is expected to be simple parametric
calculation: result = x0 + t * (x1 - x0), where x0 is
startValue, x1 is endValue, and t is fraction.

46

ObjectAnimator
static ObjectAnimator ofObject(Object target, String
propertyName, TypeEvaluator evaluator, Object...
values)
•  Constructs and returns an ObjectAnimator that

animates between Object values.
•  .
static <T, V> ObjectAnimator ofObject(T target,
Property<T, V> property, TypeEvaluator<V>
evaluator, V... values)
Constructs and returns an ObjectAnimator that
animates a given property between Object values.

47

AnimatorSet: combining animations
Since Android 3.0

void playSequentially(Animator... items)
void playTogether(Animator... items)
void start()
void end()

AnimatorSet.Builder play(Animator anim)
•  This method creates a Builder object, which is used

to set up playing constraints.

48

AnimatorSet.Builder
AnimatorSet.Builder after(Animator anim)
•  anim starts when player ends.
AnimatorSet.Builder after(long delay)
•  Start player after specified delay.
AnimatorSet.Builder before(Animator anim)
•  start player when anim ends.
AnimatorSet.Builder with(Animator anim)
•  Starts player and anim at the same time.

49

AnimatorSet: coreography
ObjectAnimator fadeOut = ObjectAnimator.ofFloat(aniView, "alpha”, 0f);
fadeOut.setDuration(2000);

ObjectAnimator mover = ObjectAnimator.ofFloat(aniView,

 "translationX", -500f, 0f);
mover.setDuration(2000);

ObjectAnimator fadeIn = ObjectAnimator.ofFloat(aniView, "alpha”,1f);
fadeIn.setDuration(2000);

AnimatorSet animatorSet = new AnimatorSet();
animatorSet.play(mover).with(fadeIn).after(fadeOut);
animatorSet.start();

50

Example
See the example in the zip file connected with this
lecture:

See how the game behaves when rotating the device
with and without onSaveInstanceState and
onRestoreInstanceState

51

What to test

Marco Ronchetti
Università degli Studi di Trento

52

What to test
Change in orientation

Battery life
Techniques for minimizing battery usage were
presented at the 2010 Google I/O conference in the
presentation Coding for Life -- Battery Life, That Is.
This presentation describes the impact on battery life
of various operations, and the ways you can design
your application to minimize these impacts. When
you code your application to reduce battery usage,
you also write the appropriate unit tests.

53

What to test

Dependence on external resources
If your application depends on network access, SMS, Bluetooth,
or GPS, then you should test what happens when the resource or
resources are not available.
For example, if your application uses the network,it can notify
the user if access is unavailable, or disable network-related
features, or do both. For GPS, it can switch to IP-based location
awareness. It can also wait for WiFi access before doing large data
transfers, since WiFi transfers maximize battery usage compared
to transfers over 3G or EDGE.
You can use the emulator to test network access and bandwidth.
To learn more, please see Network Speed Emulation. To test GPS,
you can use the emulator console and LocationManager. To learn
more about the emulator console, please see
Using the Emulator Console.

54

Support of multiple
versions

Marco Ronchetti
Università degli Studi di Trento

55

http://android-developers.blogspot.it/2010/07/how-
to-have-your-cupcake-and-eat-it-too.html

http://android-developers.blogspot.it/2010/06/
future-proofing-your-app.html

56

Best practices

Marco Ronchetti
Università degli Studi di Trento

57

Performance tips
http://developer.android.com/training/articles/perf-
tips.html

58

Design

Marco Ronchetti
Università degli Studi di Trento

59

Android design
http://developer.android.com/design/index.html

