Fragments

Fragments

A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

Fragments can be assembled to create an activity during
the application design phase, and added to, or removed

from an activity during application runtime to create a
dynamically changing user interface.

\ Ve

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

oA fragment can be thought of as a functional “sub-activity”
ith its own lifecycle similar to that of a full activity.

SMOoM

Fragments lifecycle
Method Description
The fragment instance is associated with an activity instance.The activity is not
onAttach() e
yet fully initialized
onCreate() Fragment is created
. The fragment instance creates its view hierarchy. The inflated views become part
onCreateView() X i
of the view hierarchy of its containing activity.
Activity and fragment instance have been created as well as thier view hierarchy.
onActivityCreated() | At this point, view can be accessed with the £indViewById () method.
example.
onResume() Fragment becomes visible and active.
onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.
onStop() Fragment becomes not visible.

L

Defining a new fragment (from code)

To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example,

ListFragment,

DialogFragment,

PreferenceFragment

- WebViewFragment.

Defining a new fragment (from code)

public class DetailFragment extends Fragment ({

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) ({

View view=inflater.inflate(

R.layout. fragment rssitem detail,
container, false);
return view;
}
public void setText(String item) ({
TextView view = (TextView)
getView() .findViewById(R.id.detailsText) ;

view.setText (item) ;

XML-based fragments

<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout width="match parent"

android:layout height="match parent"
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment one"
android:name="com.example.myfragmentdemo.FragmentOne"

android:layout width="match parent"

android:layout height="wrap content"”

android:layout alignParentLeft="true"

android:layout centerVertical="true" tools:layout="@layout/
fragment one layout" />

</Relativelayout>

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout C}lfou typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager () .beginTransaction() ;
ft.replace(R.id.your placehodler, new
YourFragment()) ;

ft.commit () ;

A new Fmﬁment will replace an existing Fragment that was previously
added to the container.

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
getFragmentManager () .
findFragmentById(R.id.detail frag);

if (fragment==null) {

// start new Activity
} else {

fragment.update(...);

}

Communication: activity -> fragment

In order for an activity to communicate with a
fragment, the activity must identity the fragment
object via the ID assigned to it using the

find ViewByld() method.

Once this reference has been obtained, the activity can
simply call the public methods of the fragment object.

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A) the fragment must define a listener interface, which is

then implemented within the activity class.
public class MyFragment extends Fragment {
Alistener activityCallback;
public interface AListener {
public void someMethod(int parl, String par2?);

Communication: fragment-> activity

B. the onAttach() method of the fragment class needs to be
overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verity that it implements the interface.

public void onAttach (Activity activity) {
super .onAttach (activity) ;
try { activityCallback = (AListener) activity;
} catch (ClassCastException e) {

throw new ClassCastException (
activity.toString()
+ " must implement ToolbarListener");

Communication: fragment-> activity

C. The next step is to call the callback method of the
activity from within the fragment. For example, the
following code calls the callback method on the
activity when a button is clicked:

public void buttonClicked (View view) ({
activityCallback.someMethod (argl, arg2) ;

}

Communication: fragment-> activity

All that remains is to modify the activity class so that
it implements theToolbarListener interface.

public class MyActivity extends
FragmentActivity implements
MyFragment.AListener ({

public void someMethod (String argl, int arg2?)
{
// Implement code for callback method

}

Esempio

vedi
http:/ /www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

Content Providers

Marco Ronchetti
Universita degli Studi di Trento

Content Provider

A standard interface connecting a running process with data in another process

Manages access to a structured set of data:

encapsulate the data
provide mechanisms for defining data security.

To access data in a content provider, use the ContentResolver object in your
Context

The ContentResolver object communicates with the provider object, an instance of
a class that implements ContentProvider. The provider object receives data
requests from clients, performs the requested action, and returns the results.

v

ContfentResolver 4 ContentProvider

CLIENT SERVER

Content Provider

Android includes content providers that manage data such
as audio, video, images, and personal contact information..

You can create your own custom content provider to share

your data with other packages that works just like the
built-in providers.

You need to develop your own provider if
you intend to share your data with other applications.

you want to to provide custom search suggestions in
your own application.

you want to copy and paste complex data or files from
your application to other applications.

Default content providers

ContactsContract
Stores all contacts information. etc
Call Log Stores

call logs, for example: missed calls, answered calls.
etc.

Browser
Use by browser for history, favorites. etc.

Media Store
Media files for Gallery, from SD Card. etc.

Setting
Phone device settings. etc.

Querying a Content Provider

To query a content provider, you provide a query string in the form
of a URI, with an optional specifier for a particular row, using the
following syntax:

<standard_prefix>:/ /<authority>/<data_path>/<id>

For example, to retrieve all the bookmarks stored by your web |
browsers (in Android), you would use the following content URI: .

content:/ /browser/bookmarks

Similarly, to retrieve all the contacts stored by the Contacts
application, the URI would look like this:

content:/ /contacts/people

To retrieve a particular contact, you can specify the URI with a
specific ID:

P content:/ /contacts/people/3

Accessing calls

package ...

import ...

public class ContentProviderActivity extends Activity {

/** Called when the activity is first created. */

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Uri allCalls = Uri.parse("content://call_log/calls");
Cursor ¢ = managedQuery(allCalls, null, null, null, null);

package ...
import ...

if (c.moveToFirst()) {
dof
String callType ="";
switch (Integer.parselnt(c.getString(
c.getColumnIndex(Calls. TYPE))))

{
case 1: callType = "Incoming";
break;
case 2: callType = "Outgoing'";
break;
case 3: callType = "Missed"; |
} -
Log.v("Content Providers",
c.getString(c.getColumnIndex(Calls._ID))
+" "+
c.getString(c.getColumnIndex(Calls. NUMBER))
+" "+ B
callType) ;

} while (c.moveToNext());

Error!

E/AndroidRuntime(541): java.lang.RuntimeException:
Unable to start activity ComponentInfo{it.unitn.science.latemar/

it.unitn.science.latemar.ContentProviderActivity}:

java.lang.SecurityException: Permission Denial: opening provider

com.android.providers.contacts.CallLogProvider from ProcessRecord{41475a28
541:it.unitn.science.latemar/10041} (pid=541, uid=10041)
requires

android.permission.READ_CONTACTS or
android.permission.WRITE_CONTACTS

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http;//schemas.android.com/apk/res/android"
package="it.unitn.science.latemar"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="13" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name" >
<activity
android:name=".ContentProviderActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action. MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission
android:name="android.permission.READ_CONTACTS">
</uses-permission>
</manifest>

Building your own
Content Provider

Marco Ronchetti
Universita degli Studi di Trento

ContentProvider

The primary methods that need to be implemented are:

onCreate()
is called to initialize the provider
query(Uri, String|], String, String[], String)
returns data to the caller
insert(Uri, ContentValues)
inserts new data into the content provider
update(Uri, ContentValues, String, String]|])
updates existing data in the content provider
delete(Uri, String, String][])
deletes data from the content provider
getType(Uri)
returns the MIME type of data in the content provider

Normally these are just wrapper functions around the raw SQL queries, e.g.:
delete(tableName, where, whereArgs);

is simply just a wrapper around the SQL query that looks something like:
"delete from " + tableName + " where " + where + " ? " + whereArgs”

public int delete(Uri uri, String where, String[] whereArgs) {
SQLiteDatabase db = dbHelper.getWritableDatabase();
int count;
switch (sUriMatcher.match(uri)) {
case NOTES:
count = db.delete(NOTES_TABLE_NAME, where, whereArgs);
break;
default:
throw new Illegal ArgumentException("Unknown URI " + uri);
}
getContext().getContentResolver().notifyChange(uri, null);
return count;

Register your ContentProvider

<application>

<provider android:name=".contentprovider.MyTodoContentProvider"
android:authorities="MyUniquePath.todos.contentprovider" >

</provider>
</application>

private static final int PEOPLE =1;

private static final int PEOPLE_ID = 2;

private static final int PEOPLE_PHONES = 3;
private static final int PEOPLE_PHONES_ID = 4;
private static final int CALLS =11;

private static final int CALLS_ID =12;

private static final int CALLS_FILTER = 15;

private static final UriMatcher sURIMatcher = new UriMatcher(UriMatcher.NO_MATCH);
static
{

sURIMatcher.addURI("contacts", "people", PEOPLE);
sURIMatcher.addURI("contacts", "people/#", PEOPLE_ID);
sURIMatcher.addURI("contacts", "people/#/phones", PEOPLE_PHONES);
sURIMatcher.addURI("contacts", "people/#/phones/#", PEOPLE_PHONES_ID);
sURIMatcher.addURI("call_log", "calls", CALLS);
sURIMatcher.addURI("call_log", "calls/filter/*", CALLS_FILTER);
sURIMatcher.addURI("call_log", "calls/#", CALLS_ID);

sUriMatcher.addURI(AUTHORITY, PATH, CODE);

L (©Mem

Example

static {
sUriMatcher = new UriMatcher(UriMatcher NO_MATCH);
sUriMatcher.addURI(AUTHORITY, NOTES_TABLE_NAME, NOTES);

}

Later, given a uri, in the code of your ContentProvider:

switch (sUriMatcher.match(uri)) {
case NOTES:
count = db.delete(NOTES_TABLE_NAME, where, whereArgs);
break;
default:
throw new lllegal ArgumentException("Unknown URI " + uri);

See a full example here:
.http: / /thinkandroid.wordpress.com/2010/01/13 /writing-your-own-contentprovider/

Accessing a Content Provider

When you want to access data in a content provider,
you use the ContentResolver object in your
application's Context to communicate with the
provider as a client.

The ContentResolver object communicates with the
provider object, an instance of a class that implements
ContentProvider. The provider object receives data
requests from clients, performs the requested action,
and returns the results.

ContentResolver

You get a ContentResolver from your Context
ContentResolver cr=getContentResolver();

Then you typically use
cr.query()
cr.insert()
cr.update()
cr.delete()

cr.getType()

i i See http:/ /developer.android.com/reference/android /content/ ContentResolver.html

Change in Orientation

Marco Ronchetti
Universita degli Studi di Trento

Change in orientation

Change in orientation

For devices that support multiple orientations, Android
detects a change in orientation:

the display is "landscape” or "portrait”.

When Android detects a change in orientation, its default
behavior is to destroy and then re-start the foreground
Activity.

Is the screen re-drawn correctly? Any custom UI code
you have should handle changes in the orientation.

Does the application maintain its state? The Activity
should not lose anything that the user has already
entered into the UL

Change in configuration

e.g. a change in the availability of a keyboard or a
change in system language.

A change in configuration also triggers the default
behavior of destroying and then restarting the
foreground Activity.

Besides testing that the application maintains the Ul
and its transaction state, you should also test that the
application updates itself to respond correctly to the
new configuration.

Save and restore the application state

@Override

public void onSavelnstanceState(Bundle savedInstanceState) {
// Save Ul state changes to the savedInstanceState.
// This bundle will be passed to onCreate if the process is
// killed and restarted.
savedInstanceState.putCharSequence("text", button.getText());
savedInstanceState.putInt("count", count);
super.onSavelnstanceState(savedInstanceState);

}

@Override

public void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);
button = (Button) findViewById(R.id.buttonl);

button.setText(savedInstanceState.getCharSequence("text"));
count=savedInstanceState.getInt("count");

What can we save in a bundle?

- Primitive data types - arrays of p.d.t.

N String — StringArray - StringArrayList
. CharSequence — CharSequenceArray - CharSequenceArrayList
- Parcelable- ParcelableSequenceArray - ParcelableSequenceArrayList

Serializable

How to rotate the emulator:

Ctrl-F11
On Mac: ctrl-fn F12

See;

http:/ /developer.android.com/guide/developing/
tools/emulator.html#KeyMapping

Basic Animation

Marco Ronchetti
Universita degli Studi di Trento

Modified from an

Download the source from:

“4H® 1155

. Animation

Rotate

Move Fade

Large Text

Group

/ |

3 ways to do animation
- Property Animation (Android >= 3.0, API level 11)

lets you animate properties of any object, including ones
that are not rendered to the screen. The system is extensible
and lets you animate properties of custom types as well.

- View Animation I

An older system, can only be used for Views. It is relatively
easy to setup and offers enough capabilities to meet many
application's needs.

- Drawable Animation

involves displaying Drawable resources one after another,
like a roll of film.

useful if you want to animate things that are easier to
represent with Drawable resources, such as a progression of
bitmaps

m See http:/ /developer.android.com/guide/topics/graphics /animation.html

Example 1 — loading animation from xml

ImageView aniView = (ImageView) findViewById(R.id.imageView1);

Animation animationl = AnimationUtils.load Animation
(this,R.anim.myanimation);

aniView.startAnimation(animationl1);

<set xmlns:android="http://schemas.android.com/apk/res/android" N
android:shareInterpolator="true">
<rotate android:fromDegrees="0" I
android:toDegrees="360" o
android:duration="5000" v §res
android:pivotX="50%" Y&anim
X myanimation.xm|
android:pivotY="90%" b (= drawable-hdpi
android:startOffset="0"> > i dravmbie-ldip!
b (= drawable-mdpi
</rotate> > (= layout
</set> » (= menu
m » (= values

1, AndroidManifest.xm|

41

.

Example 2 —animating from code

ImageView aniView = (ImageView) findViewBylId(R.id.imageView1);

ObjectAnimator animationl = ObjectAnimator.ofFloat(aniView,
"rotation", dest);

animationl.setDuration(2000);

animationl.start();

// Example of animation lifecycle trapping

animationl.setAnimationListener(new AnimationListener(){

@Override

public void onAnimationEnd(Animation animation) {...}
@Override

public void onAnimationRepeat (Animation animation) {...}
@Override

public void onAnimationStart (Animation animation) {...}

ObjectAnimator

static ObjectAnimator ofFloat(Object target, String
propertyName, float... values)

Constructs and returns an ObjectAnimator that
animates between float values.

public static ObjectAnimator ofFloat(T target,
Property<T, Float> property, float... values)

- Animate a given (float) property in object target

ofInt is similar

Fading demo

float dest =1;

if (aniView.getAlpha() > 0) {
dest = 0;

}

ObjectAnimator animation3 = ObjectAnimator.ofFloat(aniView,"alpha", dest);

animation3.setDuration(2000);

animation3.start();

TypeEvaluator

Interface that implements:

public abstract T evaluate (float fraction, T startValue, T
endValue)

This function should return a linear interpolation
between the start and end values, given the fraction
parameter.

The calculation is expected to be simple parametric
calculation: result = x0 + t * (x1 - x0), where x0 is
startValue, x1 is endValue, and t is fraction.

ObjectAnimator

static ObjectAnimator ofObject(Object target, String
propertyName, TypeEvaluator evaluator, Object...
values)

Constructs and returns an ObjectAnimator that
animates between Object values.

static <T, V> ObjectAnimator ofObject(T target,
Property<T, V> property, TypeEvaluator<V>
evaluator, V... values)

Constructs and returns an ObjectAnimator that
animates a given property between Object values.

AnimatorSet: combining animations
Since Android 3.0

void playSequentially(Animator... items)
void playTogether(Animator... items)
void start()

void end()

AnimatorSet.Builder play(Animator anim)

- This method creates a Builder object, which is used
to set up playing constraints.

AnimatorSet.Builder

AnimatorSet.Builder after(Animator anim)
anim starts when player ends.

AnimatorSet.Builder after(long delay)
- Start player after specified delay.

AnimatorSet.Builder before(Animator anim)
start player when anim ends.

AnimatorSet.Builder with(Animator anim)

- Starts player and anim at the same time.

AnimatorSet: coreography

ObjectAnimator fadeOut = ObjectAnimator.ofFloat(aniView, "alpha”, 0f);
fadeOut.setDuration(2000);

ObjectAnimator mover = ObjectAnimator.ofFloat(aniView,
"translationX", -500f, 0f);
mover.setDuration(2000);

ObjectAnimator fadeIn = ObjectAnimator.ofFloat(aniView, "alpha”,1f);
fadeln.setDuration(2000);

AnimatorSet animatorSet = new AnimatorSet();
animatorSet.play(mover).with(fadeln).after(fadeOut);
animatorSet.start();

See the example in the zip file connected with this
lecture:

See how the game behaves when rotating the device
with and without onSavelnstanceState and
onRestoreInstanceState

r

O

What to test

Marco Ronchetti
Universita degli Studi di Trento

What to test

Change in orientation

Battery life

Techniques for minimizing battery usage were
presented at the 2010 Google I/O conference in the
presentation Coding for Life -- Battery Life, That Is.
This presentation describes the impact on battery life
of various operations, and the ways you can design
your application to minimize these impacts. When
you code your application to reduce battery usage,
you also write the appropriate unit tests.

What to test

Dependence on external resources

If your application depends on network access, SMS, Bluetooth,
or GPS, then you should test what happens when the resource or
resources are not available.

For example, if your application uses the network,it can notify
the user if access is unavailable, or disable network-related
features, or do both. For GPS, it can switch to IP-based location
awareness. It can also wait for WiFi access before doing large data
transfers, since WiFi transfers maximize battery usage compared
to transfers over 3G or EDGE.

You can use the emulator to test network access and bandwidth.
To learn more, please see Network Speed Emulation. To test GPS,
you can use the emulator console and LocationManager. To learn

more about the emulator console, please see
P Using the Emulator Console.

Support of multiple
versions

Marco Ronchetti
Universita degli Studi di Trento

http:/ /android-developers.blogspot.it/2010/07/how-
to-have-your-cupcake-and-eat-it-too.html

http:/ /android-developers.blogspot.it/2010/06/
future-proofing-your-app.html

Best practices

Marco Ronchetti
Universita degli Studi di Trento

Performance tips

http:/ /developer.android.com/training/articles/perf-
tips.html

Design

Marco Ronchetti
Universita degli Studi di Trento

http:/ /developer.android.com/design/index.html

Up and running with
material design

Android uses a new design metaphor inspired by paper and ink
that provides a reassuring sense of tactility. Visit the material

design site for more resources.

> Introducing material design
> Downloads for designers

> Articles

SMOoM

