

Security model

Marco Ronchetti
Università degli Studi di Trento

2 2

Security model
Android OS is a multi-user Linux in which each
application is a different user.
By default, the system assigns each application a
unique Linux user ID (the ID is unknown to the
application). The system sets permissions for all the
files in an application so that only the user ID assigned
to that application can access them.
Each process has its own virtual machine (VM), so an
application's code runs in isolation from other
applications.
By default, every application runs in its own Linux
process.

3 3

Principle of least privilege

Principle of least privilege (or “need to know”)

Each application, by default, has access only to the
components that it requires to do its work and no
more.

A variation of “information hiding”, or “Parnas’
principle”.

4 4

Data sharing
It's possible to arrange for two applications to share
the same Linux user ID, in which case they are able to
access each other's files.
Applications with the same user ID can also arrange to
run in the same Linux process and share the same VM
(the applications must also be signed with the same
certificate).

An application can request permission to access
device data such as the user's contacts, SMS messages,
the mountable storage (SD card), camera, Bluetooth,
and more. All application permissions must be
granted by the user at install time.

5 5

Process lifetime
Android
•  starts the process when any of the application's

components need to be executed,
•  shuts down the process when

•  it's no longer needed
•  the system must recover memory for other

applications.

Getting started:
Installing IDE and SDK

Marco Ronchetti
Università degli Studi di Trento

7 7

Alternative: Android Studio

http://developer.android.com/develop/index.html

8 8

Tools behind the scenes
dx

•  allows to convert Java .class files into .dex (Dalvik
Executable) files.

aapt (Android Asset Packaging Tool)
•  packs Android applications into an .apk (Android

Package) file.
adb (Android debug bridge)

ADT (Android Development Tools for Eclipse)
•  A development tool provided by Google to perform

automatic conversion from .class to .dex files and to
create the apk during deployment. It also provides
debugging tools, and an Android device emulator.

9 9

ADV - Android Virtual Device
An emulator configuration that lets you model an actual device by
defining hardware and software options

An AVD consists of:
•  A hardware profile

•  Defines the hardware features of the virtual device (whether it has has a
camera, a physical QWERTY keyboard or a dialing pad, how much
memory it has etc.

•  A mapping to a system image:
•  You can define what version of the Android platform will run on the

virtual device

•  Other options: the emulator skin (screen dimensions, appearance, etc.),
emulated SD card

•  A dedicated storage area on your development machine:
•  the device's user data (installed applications, settings, and so on) and

emulated SD card are stored in this area.

10 10

ADV - Android Virtual Device

You create an AVD:

•  with the graphical AVD Manager in Eclipse

•  See
http://developer.android.com/guide/developing/devices/
managing-avds.html

•  from the command line ($ android create avd),
•  see

http://developer.android.com/guide/developing/devices/
managing-avds-cmdline.html

•  Using ADV Tool on Android studio

Getting started:
Hello Android

Marco Ronchetti
Università degli Studi di Trento

12 12

android.app.application
How shall we start?

First of all: there is no main…

But there is an ”application” class in the API.
(actually, android.app.application)

Probably we should subclass that, like we do with
java.applet.Applet or with
javax.servlet.http.HttpServlet?

13 13

NO!

Application is a base class ONLY for keeping a global
application state.

We need to subclass another thing: Activity

14 14

HelloAndroid
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

15 15

HelloAndroid
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setText("Hello, Android");
 setContentView(tv);
 }
}

16 16

Launching the emulator…

17 17

HelloAndroid: questions.
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

•  What is an Activity?
•  What is onCreate?
•  What is a Bundle?
•  What is R?

•  What is a TextView??

Dissecting the HelloWorld

Marco Ronchetti
Università degli Studi di Trento

19 19

Class Activity

An activity is a single, focused thing that the user can do.

Almost all activities interact with the user, so the Activity class takes care
of creating a window for you in which you can place your UI with
setContentView(int).

Doesn’t it reminds you of “JFrame” and “setContentPane()?

20 20

Class Activity

An activity is a single, focused thing that the user can do.

Almost all activities interact with the user, so the Activity class takes care
of creating a window for you in which you can place your UI with
setContentView(int).

Doesn’t it reminds you of “JFrame” and “setContentPane()?

Interface to global information
about an application environment.

21 21

While activities are often presented to
the user as full-screen windows, they
can also be used in other ways: as
floating windows (via a theme with
R.attr.windowIsFloating set) or
embedded inside of another activity
(using ActivityGroup).

Class Activity

22 22

Resources
You should always externalize resources (e.g. images
and strings) from your application code, so that you
can:
•  maintain them independently.
•  provide alternative resources, e.g.:

•  different languages
•  different screen sizes

Resources must be organized in your project's res/
directory, with various sub-directories that group
resources by type and configuration.

23 23

The R class
When your application is compiled, aapt generates the
R class, which contains resource IDs for all the
resources in your res/ directory.

For each type of resource, there is an R subclass (for
example, R.layout for all layout resources) and for
each resource of that type, there is a static integer (for
example, R.layout.main). This integer is the resource
ID that you can use to retrieve your resource.

More about resources in future lectures.

24 24

R.Java in gen/
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.example.helloandroid;
public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

25 25

Res/layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</LinearLayout>

26 26

onCreate(Bundle b)
Callback invoked when the activity is starting.

This is where most initialization should go.

If the activity is being re-initialized after previously
being shut down then this Bundle contains the data it
most recently supplied in
onSaveInstanceState(Bundle), otherwise it is null.

Note: a Bundle is a sort of container for serialized
data.

27 27

TextView
Displays text to the user and optionally allows them to
edit it. A TextView is a complete text editor, however
the basic class is configured to not allow editing; see
EditText for a subclass that configures the text view for
editing. This class represents the basic building block for user

interface components. A View occupies a rectangular
area on the screen and is responsible for drawing and

event handling. View is the base class for widgets, which
are used to create interactive UI components (buttons,

text fields, etc.).

Doesn’t it remind you the java.awt.Component?

28 28

The project

29 29

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".HelloAndroidActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

30 30

project.properties
This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!

This file must be checked in Version Control Systems.

To customize properties used by the Ant build system use,
"ant.properties", and override values to adapt the script to your
project structure.

Project target.
target=android-15

The fundamental
components

Marco Ronchetti
Università degli Studi di Trento

32 32

The fundamental components
•  Activity

•  an application component that provides a screen with which users can
interact in order to do something, such as dial the phone, take a photo, send
an email, or view a map.

•  Fragment (since 3.0)
•  a behavior or a portion of user interface in an Activity

•  View
•  equivalent to Swing Component

•  Service
•  an application component that can perform long-running operations in the

background and does not provide a user interface
•  Intent

•  a passive data structure holding an abstract description of an operation to be
performed. It activates an activity or a service. It can also be (as often in the
case of broadcasts) a description of something that has happened and is
being announced.

•  Broadcast receiver
•  component that enables an application to receive intents that are broadcast

by the system or by other applications.
•  Content Provider

•  component that manages access to a structured set of data.

33 33

Peeking into an application
Packaging: APK File (Android Package)
Collection of components

•  Components share a set of resources

•  Preferences, Database, File space

•  Components share a Linux process
•  By default, one process per APK

•  APKs are isolated
•  Communication via Intents or AIDL (Android

Interface Definition Language)

•  Every component has a managed lifecycle

Slide borrowed from Dominik Gruntz (and modified)

ONE APPLICATION, ONE PROCESS, MANY ACTIVITIES

34 34

Activity
Not exactly what you might imagine…

Wordnet definitions:
•  something that people do or cause to happen
•  a process occurring in living organisms
•  a process existing in or produced by nature

(rather than by the intent of human beings)

35 35

Activities

•  “single” UI screens
•  One visible at the time (Well. Almost…)
•  One active at the time
•  Stacked like a deck of cards

A rather misleading term… it’s not a “computer
activity”, like a process.
It’s rather an environment where a “user activity” is
performed

36 36

An application component that provides a screen with which users
can interact in order to do something, such as dial the phone, take a
photo, send an email, or view a map.

 Each activity is given a window in which to draw its user interface.
The window typically fills the screen, but may be smaller than the
screen and float on top of other windows, or be embedded in another
activity (activityGroup).

Activity

Activities of the dialer application

37 37

Multiple entry-point for an app

An application can have multiple
entry points

Typically, one activity in an application is specified as the "main"
activity, which is presented to the user when launching the
application for the first time.

BUT

38 38

Activity
Each activity can start another activity in order to perform
different actions.

Each time a new activity starts, the previous activity is
stopped.

The system preserves the activity in a LIFO stack (the
"activity stack" or "back stack").

The new activity it is pushed on top of the back stack and
takes user focus.

When the user is done with the current activity and presses
the BACK button, the current activity is popped from the
stack (and destroyed) and the previous activity resumes.

39 39

The activity stack
It’s similar to the function stack in ordinary programming,
with some difference

40 40

Activity lifecycle

States (colored),
and
Callbacks (gray)

41 41

Activity lifecycle

The FOREGROUND lifetime

42 42

Activity lifecycle

The VISIBLE lifetime

When stopped, your activity
should release costly
resources, such as network
or database connections.

When the activity resumes,
you can reacquire the
necessary resources and
resume actions that were
interrupted.

43 43

Activity lifecycle

The ENTIRE lifetime

44 44

The shocking news…
An activity can start
a second activity in
a DIFFERENT application!
(and hence in a different process…)

We need a name
for this “thing”:

We’ll call it

“a task”

45 45

Task
Not exactly what you might imagine…

Wordnet definitions:
•  activity directed toward making or doing

something
•  work that you are obliged to perform for

moral or legal reasons

46 46

Tasks

Task (what users view as application)

•  Collection of related activities
•  Capable of spanning multiple processes
•  Associated with its own UI history stack

Slide borrowed from Dominik Gruntz

47 47

Tasks
An App defines at least one task, may define more.

Activities may come from different applications
(favoring reuse).

Android maintains a seamless user experience by
keeping the activities in the same task.

Tasks may be moved in the background.

48 48

Tasks
The Home screen is the starting place for most tasks.

When the user touches an icon in the application launcher
(or a shortcut on the Home screen), that application's task
comes to the foreground.

If no task exists for the application (the application has not
been used recently), then a new task is created and the
"main" activity for that application opens as the root
activity in the stack.

If the application has been used recently, its task is resumed
(in general with its state preserved: more on this in the next
lecture).

49 49

Switching among apps
To switching among apps:
long press the home button and you’ll see a window
of the 6 most recently used apps.

Tap the app you want to switch to.

50 50

Task Management
Default behavior:
New activity is added to the same task stack.
NOTE: Activity can have multiple instances, in
different tasks or in the same task!

Google recommends:
“Let Android manage it for you. You do not need to
bother with multitasking management!”

51 51

Process priorities
Active process Critical priority

Visible process High Priority
Started service process

Background process Low Priority
Empty process

52 52

Task Managers ?
Several apps on the store offer a task manager functionality
(to kill inactive apps). Are they needed?

Lots of services and applications constantly run in the
background just like they do on Windows. However, and this is
important, they do not have to use up a ton of resources. A
service or app can be loaded, yet use almost no additional
memory, and 0% CPU until it actually has to do something.

In general, killing off stuff is a waste of time. Android
automatically asks apps to close when it needs more memory.
Killing off processes also means it'll slow your phone down, as
when you do need them again the system will need to reload
them.

53 53

Fragment
A Fragment represents a behavior or a portion of user
interface in an Activity.

You can combine multiple fragments in a single
activity to build a multi-pane UI and reuse a fragment
in multiple activities.
You can think of a fragment as a modular section of an
activity, which has its own lifecycle, receives its own
input events, and which you can add or remove while
the activity is running (sort of like a "sub activity" that
you can reuse in different activities).

54 54

View
the basic building block for user interface components,
similar to the Java AWT Component.

A View occupies a rectangular area on the screen and
is responsible for drawing and event handling. View is
the base class for widgets, which are used to create
interactive UI components (buttons, text fields, etc.)

55 55

Service
A Service is an application component that can
perform long-running operations in the background
and does not provide a user interface.

Another application component can start a service and
it will continue to run in the background even if the
user switches to another application.
Additionally, a component can bind to a service to
interact with it and even perform interprocess
communication (IPC). For example, a service might
handle network transactions, play music, perform file
I/O, or interact with a content provider, all from the
background.

56 56

Service

A service can essentially take two forms:

Started
 A service is "started" when an application component (such as an activity)
starts it by calling startService(). Once started, a service can run in the
background indefinitely, even if the component that started it is destroyed.
For example, it might download or upload a file over the network. When the
operation is done, the service should stop itself.

Bound
 A service is "bound" when an application component binds to it by calling
bindService(). A bound service offers a client-server interface that allows
components to interact with the service, send requests, get results, and even
do so across processes with interprocess communication (IPC).
A bound service runs only as long as another application component is
bound to it.
Multiple components can bind to the service at once, but when all of them
unbind, the service is destroyed.

dedicated to user interaction with your activities.

57 57

Service

You can declare the service as private, in the manifest file,
and block access from other applications.

Caution: A service runs in the main thread of its hosting
process—the service does not create its own thread and
does not run in a separate process (unless you specify
otherwise). This means that, if your service is going to do
any CPU intensive work or blocking operations (such as
MP3 playback or networking), you should create a new
thread within the service to do that work.
By using a separate thread, you will reduce the risk of
Application Not Responding (ANR) errors and the
application's main thread can remain dedicated to user
interaction with your activities.

58 58

Service lifecycle

59 59

Intents
Three of the core components of an application — activities, services,
and broadcast receivers — are activated through messages, called
intents.

 Intent messaging is a facility for late run-time binding between
components in the same or different applications. The intent itself, an
Intent object, is a passive data structure holding an abstract
description of an operation to be performed — or, often in the case of
broadcasts, a description of something that has happened and is
being announced.

In each case, the Android system finds the appropriate activity,
service, or set of broadcast receivers to respond to the intent,
instantiating them if necessary.
There is no overlap within these messaging systems:
•  Broadcast intents are delivered only to broadcast receivers, never

to activities or services.
•  An intent passed to startActivity() is delivered only to an activity,

never to a service or broadcast receiver, and so on.

60 60

Broadcast receiver
A broadcast receiver is a component that responds to
system-wide broadcast announcements.
Many broadcasts originate from the system—for
example, a broadcast announcing that the screen has
turned off, the battery is low, or a picture was
captured. Applications can also initiate broadcasts—
for example, to let other applications know that some
data has been downloaded to the device and is
available for them to use.
Although broadcast receivers don't display a user
interface, they may create a status bar notification to
alert the user when a broadcast event occurs.

61 61

Content Provider
Content providers manage access to a structured set of
data. They encapsulate the data, and provide
mechanisms for defining data security. Content
providers are the standard interface that connects data
in one process with code running in another process.

Android itself includes content providers that manage
data such as audio, video, images, and personal
contact information.

You can see some of them listed in the reference
documentation for the android.provider package.

Screen properties

Marco Ronchetti
Università degli Studi di Trento

Screen properties

Marco Ronchetti
Università degli Studi di Trento

64 64

Screen Sizes and Densities

http://developer.android.com/resources/dashboard/screens.html

Data of
February 1st
2012

65 65

Screen related terms and concepts
Resolution The total number of physical pixels on a screen. When
adding support for multiple screens, applications do not work
directly with resolution; applications should be concerned only
with screen size and density, as specified by the generalized size
and density groups.

Screen size Actual physical size, measured as the screen's
diagonal.

Screen density The quantity of pixels within a physical area of the
screen; usually referred to as dpi (dots per inch).

Orientation The orientation of the screen from the user's point of
view. This is either landscape or portrait, meaning that the
screen's aspect ratio is either wide or tall, respectively. Not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

66 66

Density-independent pixel
Density-independent pixel (dp) A virtual pixel unit that
you should use when defining UI layout, to express
layout dimensions or position in a density-
independent way. The density-independent pixel is
equivalent to one physical pixel on a 160 dpi screen,
which is the baseline density assumed by the system
for a "medium" density screen. At runtime, the system
transparently handles any scaling of the dp units, as
necessary, based on the actual density of the screen in
use. The conversion of dp units to screen pixels is
simple: px = dp * (dpi / 160). For example, on a 240
dpi screen, 1 dp equals 1.5 physical pixels. You should
always use dp units when defining your application's
UI, to ensure proper display of your UI on screens
with different densities.

67 67

xlarge screens are at least 960dp x 720dp
large screens are at least 640dp x 480dp
normal screens are at least 470dp x 320dp
small screens are at least 426dp x 320dp

68 68

Screen Sizes and Densities
Android divides the range of actual screen sizes and
densities into:

A set of four generalized sizes:
 small, normal, large, and xlarge

A set of four generalized densities:
 ldpi (low), mdpi (medium), hdpi (high), and xhdpi
(extra high)

Una lettura consigliata…

Marco Ronchetti
Università degli Studi di Trento

70 70

Android design
http://developer.android.com/design/index.html

