Laboratorio di

programmazione di sistemi
mobili e tablet

Prefazione

Marco Ronchetti
Universita degli Studi di Trento




Intro to the course

2 teachers (Marco Ronchetti - Giuseppe Riccardi)

2 teaching assistants (Carlo Menapace - Arindam
Ghosh)

Final project

web site: google for “marco ronchetti”, go to “My courses”

Videos are available




Per poter frequentare il corso con profitto, gli studenti
devono essere familiari con:

la programmazione in Java
Basi di dati l

Nozioni base di sistemi operativi

Nozioni base di reti, di ingegneria del software e
familiarita con Linux sono utili.

E' OBBLIGATORIO aver superato un esame di
Programmazione ad oggetti (es. Progammazione 2
°  per Informatica) per potersi iscrivere all'esame.

P -




Why is mobile programming different?

Screen: from small phones to large TV sets

OS version (multiple APK)

Scarce resources (memory, disk)

Unreliable and mutable connectivity (GSM, WiFi)
Data transfer: costly, slow, high latency

Battery

Priorities (what if a phone call comes in?)

User interaction (no kbd, gestures...)

Devices (accelerometer, GPS, camera, audio, mic)
Speech APIs

Inter-app communication

Security threats

Development model (cross compilation)
Distribution model (store)




Design philosophy

Applications should be:
— Fast

In spite of the constraints: <200 MB RAM, slow
processor

— Responsive
Apps must respond to user actions within 5 seconds
- Secure
Apps declare permissions in manifest
— Seamless
Usability is key, persist data, suspend services
The OS may kill processes in background as needed



History and context

Marco Ronchetti
Universita degli Studi di Trento




Moore’s law

The number of transistors that can be placed
inexpensively on an integrated circuit doubles
approximately every two years.

The period often quoted as "18 months" is due to
David House, an Intel executive, who predicted that
period for a doubling in chip performance (being a
combination of the effect of more transistors and them
being faster).

Quoted from wikipedia



Hard disk capacity

1
2010.1

1 | 1 |
1990.1 1995.1 2000.1 2005.1

|
1985.1

1
1980.1

:

-

g

-

Moore’s law

8

-

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

Year

2,600,000,000 -
1,000,000,000

100,000,000 -

o °

e s

S =
1UN0O JO}SISUBLL

100,000

2,300~ e fca ez

. . i}
cebeccdaaad
.

Date of introduction

(Wu) amIugIsap

Batteries

8

vIoe
€102l
E10%6
€10e/9
Ele
210e6
2109
cnee
1el
11026
109
1oge
0102l
01026
0109
0roe

date

60026
600%/9

800%/9
200%/€
L0022l
L00T6
L0059

NAND switching fime




Adam
Osborn

An Osborne Executive (early 80s) an an iPhone.

« 13,050 g/ 135g = 100 times heavier [ 1]

« 4MHz / 412 Mhz = 100 times slower

« $2500 / $200-300 = 10 times more expensive

o (562cm x 23cm x 33cm)/(115mm x 61mm x 11.6mm)
. = 485 times as large (volume)

5 Images from wikimedia




Growth of mobile device diffusion

2,000

4 S
g w0
T % 1,500 By [T9—ve
wm £ m = |
855 2 2 —a&— Internot
3 = o =
g £ 1.000 © E |—¢—Broadband
3 B
2 £

500 2

=




Smartphones
IBM Simon: concept product (1992), sold 1993

mobile phone .

calendar,
address book
world clock

calculator,
note pad

e-mail client
send and receive faxes

games.

touchscreen



Dev Guide

Reference Resources Videc

Technologies Resources Programs Support

@& Developer

iOS Dev Center

Log in to get the most out of the iOS Dev Center.

Log in with the Apple ID and password you used to register as an Apple Developer, or register for free today.

Development Resources

Documentation and Videos

Featured Content

W What's New in iOS 5

Developer Announcements i0S Developer Library
* Articles Release Notes

Introducing Android Design: The place to
learn about principles, building blocks, and
patterns for creating world-class Android user
interfaces. Whether you're a Ul professional or
a developer playing that role, these docs show
you how to make good design decisions, big
and small.

Android Design »

Android Developers on Google+

We now have a Google+ page for +Android
Developers. We'll use it to host Hangouts for
developers, talk about the latest releases,
development and design tips, and much more.

We're on m Add to circles
-

Google TV

W Start Developing iPad Apps

* Getting Started * Sample Code
* Guides « Technical Notes Wl i0S Application Programming Guide
* Reference * Technical Q&As

W/ i0S Development Guide
Wl i0S Human Interface Guidelines

W Your First iOS Application
Development Videos

« i0S Development « WWDC 2011 Wl Learning Objective-C: A Primer

Downloads

Xcode 4
This complet¢
performance

)
C

"3

Games o Q
Veardy COUNS review

w31
e »

ESrii

SCORECENTER

Calendar

“Grakbing a bae ot
Pwcde 1okt Cat




Operating System Share of Smartphone Sales

100%
80%
60%
&
; 40%
20%
0% .
2006 2008 2009 2010 Jan - Oct 2011
@ Android 0% 2% 9% 2% S3%
owos 0% 19% 24% 21% 29%
o QIM I 5% 40% 440 25% 10%
B Windows Mobile 37% 42% 27% 15% 7% 3%
| Windows Phone 7 0% 0% 0% 0% 1% 2%
B Symbian OS5 9% 3% 1% % % 1%
WPalm / webOS 17% 9% _ 10% | 5% 3% 1%

h~ Source: mumm‘mw hodeemm:anm Trock

What the market says (2006-2011)

2013

. 82%
12%

1,8%
3,6%
0.2%




What the market says (2012-2015)

Worldwide Smartphone OS Market Share Embed
(Share in Unit Shipments)

90%
00% vﬁw/
o '/\//
60%
50%
40%
30%
10%

AP P S S A B B A S A S A 4
Source: IDC, Aug 2015 e Android —i0S —Windows Phone e BlackBerry OS e Othe rs

http://www.idc.com/prodserv/smartphone-os-market-share.isp

Period Android i0os Windows Phone BlackBerry OS Others

2015Q2 82.8% 13.9% 2.6% 0.3% 0.4%

2014Q2 84.8% 11.6% 2.5% 0.5% 0.7%

2013Q2 79.8% 12.9% 3.4% 2.8% 1.2%

2012Q2

69.3% 4.9%

Source: IDC, Aug 2015




Android or iOS ?

106:

Develop in Objective-C

Develop (only) on Macs (with emulator)
iPhone Open Development
- Jailbreak your iPhone or Touch

Develop on any computer
Apps will not work with App Store
Device may not work with upgrades

Need device! (iPhone or Touch)
Android:
Develop in Java
Develop on any platform (with emulator)

[ ]
15



Introduction to Android

Laboratorio di programmazione di sistemi mobili e
tablet

Marco Ronchetti, Universita di Trento




What Android is not

- AJava ME implementation

- Part of the Linux Phone Standard Forum
- “only” an application layer
- A mobile phone




What Android is

Android is:
an open-source software stack for mobile devices,
and a corresponding open-source project led by Google.

From: http://source.android.com/

“We created Android in response to our own experiences
launching mobile apps. We wanted to make sure that there
was no central point of failure, so that no industry player
can restrict or control the innovations of any other.”

“That's why we created Android, and made its source code
open.” (under Apache Software Licence, 2.0)

' The Android system tries to avoid incorporating GPL
£95, components




Why Android is not LGPL

LGPL requires either:
shipping of source to the application;

a written offer for source;

linking the LGPL-ed library dynamically and allowing
users to manually upgrade or replace the library.

Since Android software is typically shipped in the form of a
static system image, complying with these requirements
ends up restricting OEMs' designs. (For instance, it's
difficult for a user to replace a library on read-only flash
storage.)

For more details: http:/ /source.android.com/source/licenses.html



Development and governance

At any given moment, there is a current latest release of
the Android platform

Device builders and Contributors work with the current
latest release, fixing bugs, launching new devices,
experimenting with new features, and so on.

In parallel, Google works internally on the next version
of the Android platform and framework, working
according to the product's needs and goals. We develop
the next version of Android by working with a device
partner on a flagship device whose specifications are
chosen to push Android in the direction we believe it

should go.

When the "n+1"th version is ready, it will be published to
the public source tree, and become the new latest release.




Android and Linux

Android relies on Linux version 2.6 for core system
services such as security, memory management,
process management, network stack, and driver
model.

The kernel also acts as an abstraction layer between
the hardware and the rest of the software stack.




History

- Oct 2003 Android, Inc. founded in Palo Alto
- 2005 Google buys Android, Inc..

- 2007 Open Handset Alliance is announced. Android
is officially open-sourced.

- 2008 Android SDK 1.0 is released. The G1 phone,
manufactured by HTC, is sold by T-Mobile USA.

- 2009 sees a proliferation of Android-based devices
(20+ devices run Android).

- 2010 Android is 2nd only to RIM as best-selling
smart phone platform. 60+ devices run Android




Three components

The Android Compatibility Program defines the
technical details of Android platform and provides
tools used by OEMs to ensure that developers” apps
run on a variety of devices. l

The Android SDK provides built-in tools that
Developers use to clearly state the device features
their apps require.

The Android Market shows apps only to those devices
. that can properly run them.




24

P -

¥

The main building blocks

Device Hardware: Android runs on a wide range of hardware
configurations including smart phones, tablets, and set-top-
boxes. Android is processor-agnostic, but it does take advantage
of some hardware-specific security capabilities (e.g. on ARM).

Android Operating System: The core operating system is built
on top of the Linux kernel. All device resources are accessed
through the operating system.

Android Application Runtime: Android applications are most
often written in Java and run in the Dalvik V.M.

However, many applications, including core Android services
and applications are native applications or include native
libraries.

Both Dalvik and native applications run within the same security
environment, in the Application Sandbox.

Applications get a dedicated part of the filesystem in which they
can write private data, including databases and raw files.




Java vs. Dalvik

Dalvik is the managed runtime used
by applications and some system
services on Android. Dalvik was
originally created specifically for the
Android project.

Java Source
Code

Java
Compiler

Java Source
Code

Java
Compiler

Specification of the bytecode
format, .dex (dalvik executable) and
Dalvik VM Instruction Formats are
available at

http://source.android.com/tech/
dalvik/index.htm|




Dalvik

Every Android application runs in its own process,
with its own instance of the Dalvik virtual machine.

Dalvik has been written so that a device can run l
multiple VMs efficiently. The Dalvik VM executes files

in the Dalvik Executable (.dex) format which is

optimized for minimal memory footprint.

The Dalvik VM relies on the Linux kernel for
underlying functionality such as threading and low-
., level memory management.




Android is non standard Java

Standard Java distributions:

1. Java Standard Edition: used for development on basic
desktop-type applications.

2. Java Enterprise Edition (aka J2EE or JavaEE): used for
development of enterprise applications.

3. Java Micro Edition (aka J2ME or JavaME): Java for
mobile applications.

J

Android’s Java set of libraries is closest to Java Standard
Edition. The major difference is that Java libraries for user
interface (AWT and Swing) have been taken out and

,; replaced with Android-specific user interface libraries.
Android also adds quite a few new features to standard

'r'] ava while supporting most of Java’s standard features.




What Android supports

User Interface
10 widgets (buttons, textboxes, lists)
Images
2D /3D drawing
Database
Integrated browser
Media support (audio, video, images; camera)
Application framework lifecycle
Connectivity (bluetooth, wi-fi, EDGE, 3G)
Sensors (GPS/Geo-location, accelerometer, compass)
GSM Telephony (call - sms)
Google Maps
Multiple processes
Managed by Android Dalvik VM

Background Services
Interprocess communications (e.g. Intents)

Rich development environment including a device emulator, debugging
tools, memory and performance profiling, Eclipse plug in




Contacts

APPLICATION FRAMEWORK

Activity Manager m:g::rv

Package Manager Tﬂ:ﬁ?ggy

LIBRARIES

Media
Surface Manager Frnewory

OpenGL | ES FreeType

SGL SSL

Content
Providers

Resource
Manager

SQLite

WebKit

libe

LINUX KERNEL

ll))i:iglg Camera Driver

Keypad Driver WiFi Driver

Flash Memory
Driver

Audio
Drivers

Browser

Location

Notification
Manager

Manager
ANDROID RUNTIME

Core Libraries

IMEILE

Binder (IPC)

Driver

Power
Management




The Android stack

manages access to the display Browser
subsystem and seamlessly composites
2D and 3D graphic layers from multiple work
applications e

M'lmger Providers

Telephony Resource Locauon

Medlo support: MPEG4 H.264, MP3
AAC, AMR, JPG, PNG, GIF
[

/
Surface Manager Media P

Notification
Manager

/!DID RUNTIME

Shraries

e bl’rmop and vector font

Ope nGL | ES Fre eType P re n d e rl n g

SGL SSL

LINUX KERNEL

Display
Driver

Flash Memory

Camera Driver
Driver

Audio

Keypad Driver WiFi Driver T

ilachine

Binder (IPC)
Driver




The Android stack

Contacts Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

e G fullfedtured SQL Marage
database J20ID RUNTIME

Package Manager

. . . E
3D graphics libraries |
/-.-u.&LI F / SQLitc }
ramework

Core Libraries

- . .
a fast web rendering engine
PO Sl weskic =" used by Safari, Chrome, and

SGL st v other browsers

2D graphics libraries

Display
Driver

OpenSSL: the secure
socket layer )

Flash Memory Binder (IPC)

Camera Driver .
Driver Driver

| Keypad Driver WiFi Driver Audio Power

Drivers Management
=




Android NDK

The Android NDK is a toolset that lets you embed
components that make use of native code in your
Android applications.

Android applications run in the Dalvik virtual
machine. The NDK allows you to implement parts of
your applications using native-code languages such as
C and C++. This can provide benefits to certain classes
of applications, in the form of reuse of existing code
and in some cases increased speed.




When to develop in NDK

“Using native code does not result in an automatic
performance increase, but always increases
application complexity.”

“In general, you should only use native code if it is
essential to your application, not just because you
prefer to program in C/C++.”




Android applications

Pre-Installed Applications:

phone, email, calendar, web browser, and contacts.
These function both as user applications and to
provide key device capabilities that can be accessed by
other applications. Pre-installed applications may be
part of the open source Android platform, or they may
be developed by an OEM for a specific device.

User-Installed Applications:

Android provides an open development environment
supporting any third-party application. The Android
Market offers users hundreds of thousands of

34

Py applications.




Cloud-based services

Android Market: a collection of services that allow users to
discover, install, and purchase applications from their
Android device or the web.

The Market also provides community review, application
license verification, and other security services.

Android Update Service: delivers new capabilities and
security updates to Android devices, including updates
through the web or over the air (OTA).

Application Services: Frameworks that allow Android
applications to use cloud capabilities such as

(backing up) application data and settings
cloud-to-device messaging (C2DM) for push messaging.



[N | NN1
INOV.ZUTO  Andrid6.0 23 M API Changes

I l atfo r m ol o) z LOLLIPOP_MR1 Platform Highlights
OCT. .20 ] 4 Android 5.0 21 LOLLIPOP

ve rS i 0 n S Android 4.4W 20 KITKAT_WATCH KitKat for Wearables Only
Set..2013

Android 4.4 19 KITKAT Platform Highlights
LU g . 20 ] 3 Android 4.3 18 JELLY_BEAN_MR2 Platform Highlights '
Android 4.2,4.2.2 17 JELLY_BEAN_MR1 Platform Highlights

Android 4.1,4.1.1 16 JELLY_BEAN Platform Highlights
N oOV. 20 ] ] Android 4.0.3,4.0.4 15 ICE_CREAM_SANDWICH_MR1 Platform Highlights
Android 4.0,4.0.1,4.0.2 14 ICE_CREAM_SANDWICH

Android 3.2 13 HONEYCOMB_MR2
Fe b 20 ] ] Android 3.1.x 12 HONEYCOMB_MR1 Platform Highlights
Android 3.0.x 11 HONEYCOMB Platform Highlights

Android 2.3.4 10 GINGERBREAD_MR1 Platform Highlights
Android 2.3.3

DiC 20] O Android 2.3.2 9 CINGERBREAD

Android 2.3.1
Android 2.3

MO g 20 ] O Androia 2.2 - FROYO Platform Highlights

Android 2.1.x 7 ECLAIR_MR1 Platform Highlights

Android 2.0.1 6 ECLAIR_©_1
Ott. 2009 Android 2.0 5 ECLAIR
A p r 2009 Android 1.6 4 DONUT Platform Highlights
Android 1.5 3 CUPCAKE Platform Highlights

Android 1.1 2 BASE_1_1

Sep'l'. 2008 Android 1.0 1 BASE
http://developer.android.com/guide/appendix/api-levels.ntml




Functionalities by version

1.5 Integrazione con servizi Google
1.6 Sintesi vocale, ricerca vocale, gestures
2.0 Miglior supporto videocamera, multitouch

2.2 Migliori prestazioni. Open GL ES2.0, Javascript e Flash.
Tethering. Installazione apps su SD

2.3 Video chat in GoogleTalk. UI migliorata, Download manager

3.0 Ottimizzata (i)er tablet. Aggiunta la barra di sistema e Action
Bar. Possibilita di criptare tutti i dati personali.

3.1 Supporto per le periferiche USB

4.0 UI completamente riprogettata. Prestazioni migliorate.
Dettatura real time. Face Unlock. Fotocamera migliorata.
"Contatti" con integrazione con i social network

5.0 Cambiamento grafica e animazione, high performance
%raghics, mi%iore efficienza (ART), 64 bit, migliori notifiche,
ndroid TV, battery stats, tilt & heart rate sensors, migliore

audio e camera

6.0 Sulpporto telefono Android wear, multiscreen, nuovo security
mode




4 8 12:32

A 32 minutes to Dolores
Park

cisco

via Crossover Dr

~ Coming of Age

< Foster the People *

androidauto

Android Auto for the Vehicle You Alread



Hands on?
cutog st * Building Your First App

Building Your First App A

Welcome to Android application development!

Creating an Android Project Get started >

This class teaches you how to build your first Android app. You'll
Running Your Application

learn how to create an Android project and run a debuggable Dependencies

Building a Simple User Interface version of the app. You'll also learn some fundamentals of ) .
> Android Studio

Starting Another Activity Android app design, including how to build a simple user
interface and handle user input.

Supporting Different Devices v

Set Up Your Environment

Managing the Activity Lifecycl v

Before you start this class, be sure you have your development environment set up. You need to:
Building a Dynamic Ul with v
Fragments 1. Download Android Studio.

Saving Data o 2. Download the latest SDK tools and platforms using the SDK Manager.

Note: Although most of this training class expects that you're using Android Studio, some procedures include

Interacting with Other Apps v . o
alternative instructions for using the SDK tools from the command line instead.

Working with System v

Permissions This class uses a tutorial format to create a small Android app that teaches you some fundamental concepts

about Android development, so it's important that you follow each step.

Building Apps with v
Content Sharing Get started >

http://developer.android.com/training/basics/firstapp/index.ntml




Si, ma...

[1] MainActivity.java - FirstApplication - [~/AndroidStudioPr

DEHO ¢« XH0 QR &> 8 (Hap- P 0L 2 SLES ?

e ] FIrstApleutIon> napp> | src> | maln> Djava) Ea It) Ea unltn> Ea latemar> Ea ﬂrsmppllcatlon> © MalnActIvIty)

& Android v |

0 = | & I

v Ciapp
v [C1manifests
& AndroidManifest.xml
v [Cljava

' & MainActivity

Z: Structure

v [iEres
[ drawable
v [Z1layout
& activity_main.xml
& content_main.xml
» [Imenu
» [Z1mipmap
v [Zlvalues
& colors.xml
» [Fldimens.xml (2)
& strings.xml
» [E1styles.xml (2)
» (3 Gradle Scripts

Captures

v [Zlitunitn.latemar.firstapplication

» [Zlit.unitn.latemar.firstapplication (android Test)

(€ MainActivity java x
package it.unitn.latemar.firstapplication 8. Click the Finish button to create the project. ;

af

of

af

af

™
< content_main.xml x

+~import ...

public class MainActivity extends AppComp

@0verride
protected void onCreate(Bundle savedI

}

super.onCreate(savedInstanceState
setContentView(R. layout.activity_
Toolbar toolbar = (Toolbar) findV
setSupportActionBar(toolbar);

FloatingActionButton fab = (Float
fab.setOnClickListener((view) - {
Snackbar.make(view, "Repl
.setAction("Actio

13H

@0verride
public boolean onCreateOptionsMenu(Me

}

// Inflate the menu; this adds it
getMenuInflater().inflate(R.menu.
return true;

@0verride
public boolean onOptionsItemSelected(

// Handle action bar item clicks
// automatically handle clicks on
// as you specify a parent activi
int id = item.getItemId();

_____E—

& activity_main.xml x [ 1

Your Android project is now a basic "Hello World" app that i
contains some default files. Take a moment to review the most 1
important of these:

app/src/main/res/layout/activity_my.xml

This XML layout file is for the activity you added when you created the
Following the New Project workflow, Android Studio presents this file v
of the screen Ul. The file contains some default interface elements froi
including the app bar and a floating action button. It also includes a se|
content.

app/src/main/res/layout/content_my.xml
This XML layout file resides in activity_my.xml , and contains some
that displays the message, "Hello world!".

app/src/main/java/com.mycompany.myfirstapp/MyActivity.java

A tab for this file appears in Android Studio when the New Project work
file you see the class definition for the activity you created. When you
class starts the activity and loads the layout file that says "Hello World

app/src/main/AndroidManifest.xml

The manifest file describes the fundamental characteristics of the app
components. You'll revisit this file as you follow these lessons and add




Target devices (Android Studio)

/_,( Target Android Devices

select the form factors your app will run on

different platforms may require separate SDKs

(¥ Phone and Tablet
Minimum SDK | API 15: Android 4.0.3 (IceCreamSandwich)

ar
—

Lower API levels target more devices, but have fewer features available.

By targeting APl 15 and later, your app will run on approximately 97,3% of the devices
that are active on the Google Play Store.

Help me choose

[ ] Wear

Minimum SDK | API 21: Android 5.0 (Lollipop)
LTV

Minimum SDK | API 21: Android 5.0 (Lollipop)

ar
—/

ar
—

[ Android Auto
[] Glass

ar
-

Minimum SDK [ Glass Development Kit Preview

| Cancel | | Previous | | Next | | Finish




Android version distribution Feb 2012

http://developer.android.com/resources/dashboard/platform-versions.html

The following pie chart and table is based on the number of Android devices that have accessed Android Market within a 14-day period ending on the data collection date noted below.

Android 2.3.3

Android 3.0

Android 3.1
__———— _ a\ehepyl

— Android 4.0
Android 4.0.3
Android 1.5
Android 1.6

Android 2.1

Android 2.3J

Android 2.2

Data collected during a 14-day period ending on February 1, 2012

Platform Codename APl Level Distribution
Android 1.5 Cupcake 3 0.6%
Android 1.6 Donut 4 1.0%
Android 2.1 Eclair 7 7.6%
Android 2.2 Froyo 8 27.8%
Android 2.3 - Gingerbread 9 0.5%
Android 2.3.2

Android 2.3.3 - 10 58.1%
Android 2.3.7

Android 3.0 Honeycomb 11 0.1%
Android 3.1 12 1.4%
Android 3.2 13 1.9%
Android 4.0 - Ice Cream Sandwich =~ 14 0.3%
Android 4.0.2

Android 4.0.3

15

0.7%




Android version distribution - Feb 2016

http://developer.android.com/resources/dashboard/platform-versions.html

2.2 8 0.1%

Froyo

Lollipop

23.3- Gingerbread 10 2.7%

2.3.7 ::A;r;ohmalnow
\“.\ Gingerbread
4.0.3- Ice Cream 15 2.5% Ice Cream Sandwich

404 Sandwich

41.x Jelly Bean 16 8.8% Jolly Bean
4.2.x 17 11.7%

4.3 18 3.4%

4.4 KitKat 19 35.5%

5.0 Lollipop 21 17.0%

5.1 22 17.1%

6.0 Marshmallow 23

Data collected during a 7-day period ending on February 1, 2016.
.‘ Any versions with less than 0.1% distribution are not shown.




Which version?

ANDROID PLATFORM API LEVEL CUMULATIVE
VERSION DISTRIBUTION

2.3 10 97.3%
94,8%

86,0%

Ice Cream Sandwich

Jelly Bean

Jelly Be
- 74.3%

Jelly Bean 70.9%

Lollipop

Lollipop

Marshmallow

The minimum SDK version determines the lowest level of Android that your
app will run on.

You typically want to target as many users as possible, so you would ideally
want to support everyone -- with a minimum SDK version of 1. However,
that has some disadvantages, such as lack of features, and very few people
use devices that old anymore.

Your choice of minimum SDK level should be a tradeoff between the
distribution of users you wish to target and the features that your
application will need.

Click each Android Version/API level for more information.



Android Java packages

Marco Ronchetti
Universita degli Studi di Trento




Basic components

android.app
o implements the Application model for Android

android.content

o implements the concept of Content providers
android content.pm

o Package manager: permissions, installed {packages,
services, provider, applications, components}

android.content.res

o Access to resources

android.provider
o Contacts, MediaStore, Browser, Setting



GUI basics

android.view

o0 Menu, View, ViewGroup + listeners
android.view.animation
android.view.inputmethod

o Input methods framework
android.widget
o UI controls derived from View (Button, Checkbox...)

android.gesture
O create, recognize, load and save gestures




Graphics

android.graphics

o low level graphics tools such as canvases, color filters, points, and rectangles
that let you handle drawing to the screen directly.

o Bitmap, Canvas, Camera (3D transformation, not the camera!) , Color, Matrix,
Movie, Paint, Path, Rasterizer, Shader, SweepGradient, Typeface

android.graphics.drawable

o variety of visual elements that are intended for display only, such as bitmaps
and gradients

android.graphics.drawable.shapes

android.opengl

o opengl-related utility classes, not the opengl!
javax.microedition.khronos.opengles
javax.microedition.khronos.egl
javax.microedition.khronos.nio

android.renderscript

o low-level, high performance means of carrying out mathematical calculations
and 3D graphics rendering



Text rendering

android.text

o classes used to render or track text and text spans on
the screen

android.text.method
o Classes that monitor or modify keypad input.
android.text.style
o Text styling mechanisms
android.service.textservice
o Provides classes that allow you to create spell checkers
android.view.textservice
o Use spelling checkers



Database, Web and location

android.database
o classes to explore data returned through a content provider.

android.datebase.sqlite

o the SQLite database management classes that an application
would use to manage its own private database. Applications
use these classes to manage private databases.

android.webkit
o tools for browsing the web.

android.location

o Address, Geocoder, Location, LocationManager,
LocationProvider

50

P com.google.android.maps




Network and telephony

android.net

o Socket-level network API - help with network access, beyond the normal
java.net.* APIs.

android.net.wifi
android.bluetooth

android.nfc

o Near Field Communication (NFC) is a set of short-range wireless technologies,
typically requiring a distance of 4cm or less to initiate a connection. NFC allows
you to share small payloads of data between an NFC tag and an Android-
powered device, or between two Android-powered devices.

android.telephony

© monitoring the basic phone information, plus utilities for manipulating phone
number strings, SMS

o CellLocation, PhoneNumberUtils, TelephonyManager
android.telephony.gsm

o Obtain Cell location of GSM
android.telephony.cdma

o Obtain Cell location of CDMA - CDMA2000 is a family of 3G mobile technology
standards



Media and speech

android.media

0 manage various media interfaces in audio and video

o MediaPlayer, MediaRecorder, Ringtone, AudioManager, FaceDetector.
android.media.effect

o apply a variety of visual effects to images and videos
android.hardware

o support for hardware features, such as the camera and other sensors
android.drm

o Digital right management
android.mtp

o interact directly with connected cameras and other devices, using the
PTP (Picture Transfer Protocol)

android.speech
o base class for recognition service implementations

android.speech.tts

o Text to Speech



General utilities

android.utils

o date/time manipulation, base64 encoders and decoders, string and number
conversion methods, and XML utilities.

android.sax
o XML parsing

android.test
o A framework for writing Android test cases and suites

android.preference

o manage application preferences and implement the preferences UL Using these
ensures that all the preferences within each application are maintained in the
same manner and the user experience is consistent with that of the system and
other applications

android.os

o basic operating system services, message passing, and inter-process
communication

o Binder (ipc), FileObserver (changes in files) Handler e Looper (for dealing with
message threads), BatteryManager, PowerManager



Still useful java packages

java.lang (e subpackages)

java.math

java.net + javax.net

java.lo

java.nio

java.sqltjavax.sql

0 (android.database preferable if possible)

java.util




Other still useful packages

javax.crypto
javax.security

javax.xml

org.w3c.dom
org.xml.sax

org.apache.http (e subpackages)




Introducton to
Applications

Marco Ronchetti
Universita degli Studi di Trento




An Android application typically consists of one or
more related, loosely bound activities for the user to
interact with.

Android has an application launcher available at the i
Home screen, typically in a sliding drawer which
displays applications as icons, which the user can pick
to start an application.

Android ships with a rich set of applications that may
include email, calendar, browser, maps, text

. messaging, contacts, camera, dialer, music player,

settings and others.
P8 5




npE *® -

APIDemos Application Browser Calculator
Vi

N

Camera

&

You can replace it

com.android.email

Dev Tools Downloads Email

2 ®m o

Gestures Messaging  Music
Builder

¢ & #

Settings  Spare Parts

(1)

Recorder

See e.qg. http://xjaphx.wordpress.com/2011/06/12/create-application-launcher-as-a-list/

r



Application package

An application is a single APK (application package)
file. An APK file roughly has three main components.

- Dalvik executable: all your Java source code
compiled down to Dalvik executable. This is the
code that runs your application.

Resources: everything that is not code (images,
audio/video clips, XML files describing layouts,
language packs, and so on.

- Native libraries: e.g. C/C++ libraries.



Sighing applications

Android applications must be signed before they can
be installed on a device

To distribute your application commercially, you'll
want to sign it with your own key.




Distributing applications

Unlike the iPhone, on Android, there can be many
different Android stores or markets. Each one can
have its own set of policies with respect to what is
allowed, how the revenue is split, and so on.

The biggest market currently is Android Market run
by Google

Applications can also be distributed via the web.

When you download an APK file from a website by
., using the Browser, the application represented by the
. APK tile automatically gets installed on your phone.

lr“l




Permissions at Application Install -- Google Maps

Do you want to install this
application?

v Services that cost you money

directly call phone numbers

Your location
coarse (network-based) location,

(GPS) location

f

ne

Network communication

full Internet access

Your accounts
Google Maps, manage the accounts list,
authentication credentials of an

Storage

modify/delete USB storage contents

Install ] l Cancel

Permissions of an Installed Application -- gMail

Permissions

This application can access the following on your
phone:

+ Your personal information

v Network communication

full Internet access

r accounts
ogle mail, ma e the acco
the authentication credentials of an

ount

You

Storage

modify/delete USB storage contents
System tools

prevent phone from slee

subscribed feeds, write sy

Show all

Impostazioni->Altro->Gestione Applicazioni -> ... =




Security

Android has a security framework.

http:/ /source.android.com/devices/tech/security/
index.html

The Android File System can be encrypted.

Encryption on Android uses the dm-crypt layer in the
Linux kernel.




Security model

Android OS is a multi-user Linux in which each
application is a different user.

By default, the system assigns each application a
unique Linux user ID (the ID is unknown to the
application). The system sets permissions for all the
files in an application so that only the user ID assigned
to that application can access them.

[ LN/

Each process has its own virtual machine (VM), so an
application's code runs in isolation from other
applications.

., By default, every application runs in its own Linux

M process.
]

.




Principle of least privilege

Principle of least privilege (or “need to know”)

Each application, by default, has access only to the
components that it requires to do its work and no
more.

A variation of “information hiding”, or “Parnas’
principle”.




Data sharing

It's possible to arrange for two applications to share
the same Linux user ID, in which case they are able to
access each other's files.

Applications with the same user ID can also arrange to
run in the same Linux process and share the same VM
(the applications must also be signed with the same

certificate). B

An application can request permission to access
device data such as the user's contacts, SMS messages,
the mountable storage (SD card), camera, Bluetooth,
and more. All application permissions must be

'ﬁlgramed by the user at install time.

66



Process lifetime

Android

starts the process when any of the application's
components need to be executed,

shuts down the process when
it's no longer needed

the system must recover memory for other
applications.




