
1 

How to access your database 
from the development 
environment 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



2 

Find your DB 

1) Look into data/data/YOURPACKAGE/databases/YOURDATABASE.db 

2) Pull the file on your PC 
3) Use sqlite on your PC (in your_sdk_dir/tools) 



3 

Access your DB 

#!sh 
adb shell "chmod 777 /data/data/com.mypackage/databases/store.db" 
adb pull /data/data/com.mypackage/databases/store.db  
 

Use the following script, and 

$ adb –s emulator-5554 shell 
$ cd /data/data/com.yourpackage/databases 
$ sqlite3 your-db-file.db 
> .help 

Run remote shell 

OR 

adb -s <serialNumber> <command>  to access a device 



4 

adb 
adb is in your android-sdk/platform-tools directory  
 
It allows you to: 
•  Run shell commands on an emulator or device 
•  Copy files to/from an emulator or device 
•  Manage the state of an emulator or device 
•  Manage port forwarding on an emulator or device 

It is a client-server program that includes three components:  
•  A client, which runs on your development machine. 
•  A daemon, which runs as a background process on each 

emulator or device instance.  
  
•  A server, which runs as a background process on your 

development machine and manages communication between 
the client and the daemon.  

 
 See http://developer.android.com/tools/help/adb.html 
 



5 

A graphical sqlite browser 
http://sqlitebrowser.org/ 
•  Create and compact database files 
•  Create, define, modify and delete tables 
•  Create, define and delete indexes 
•  Browse, edit, add and delete records 
•  Search records 
•  Import and export records as text 
•  Import and export tables from/to CSV files 
•  Import and export databases from/to SQL dump files 
•  Issue SQL queries and inspect the results 
•  Examine a log of all SQL commands issued by the application 



6 

Testing and deploying on 
your device 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



7 

Configure device 
1) Turn on "USB Debugging" on your device.  

On the device, go in 
�  Android <4: Settings > Applications > Development  
�  Android>=4: Settings > Developer options 
and enable USB debugging  

2) Load driver on PC (win-linux, on Mac not needed) 
3) Check in shell: adb devices  
4) In Eclipse, you’ll have the choice 
 
Make sure the version of OS is  
correct both in project properties 
And in manifest! 
 

See http://developer.android.com/guide/developing/device.html 



8 

Alternative, simple way to deploy 
e.g. to give your app to your friends 
 
Get Dropbox both on PC and Android device 
Copy your apk from bin/res into dropbox (on PC) 
Open dropbox on Android device, and open your apk 
 
By sharing your dropbox with others you can easily 
pass your app. 

www.dropbox.com 



9 

DAO Implementation  
File System 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



10 

ORM - DAO 

DB 

Data 
Object 

DAO 

FS 

ERA UML ORM 

WORLD 

MODEL 

ARCHITECTURE 

Actual storage 



11 

The Java-IO philosophy 
1) Get a (raw) source 
File f; … ; InputStream s = new FileInputStream(f); 
Socket s; … ; InputStream s=s.getInputStream(); 
StringBuffer b; … ; InputStream s = new StringBufferInputStream(f); 
 
2) Add functionality 
Reader r=new InputStringReader(s); //bridge class 
DataInputString dis=new DataInputString(s); //primitive data  
ObjectInputString ois=new ObjectInputString(s); //serialized objects 
 
3) Compose multiple functionalities 
InputStream es=new FilteredInputStream( 

  new BufferedInputStream( 
  new PushBackIputStream(s))); 

 
 



12 

Choose the type of  source! 
You can choose among four types of basic sources: 
 
 
 
Both file and directory information is available via the 
File class, or the classes (like Path) in the nio package. 
 

BYTE CHARACTER

SOURCE InputStream OutputStream Reader Writer



13 

I/O Table 
  Byte Based Character Based

  Input Output Input Output

Basic InputStream OutputStream
Reader Writer

InputStreamReader OutputStreamWriter

Arrays ByteArrayInputStream ByteArrayOutputStream CharArrayReader CharArrayWriter

Files
FileInputStream FileOutputStream

FileReader FileWriter
RandomAccessFile RandomAccessFile

Pipes PipedInputStream PipedOutputStream PipedReader PipedWriter

Buffering BufferedInputStream BufferedOutputStream BufferedReader BufferedWriter

Filtering FilterInputStream FilterOutputStream FilterReader FilterWriter

Parsing
PushbackInputStream PushbackReader

 
StreamTokenizer LineNumberReader

Strings StringReader StringWriter

Data DataInputStream DataOutputStream   

Data - 
Formatted PrintStream PrintWriter

Objects ObjectInputStream ObjectOutputStream  

Utilities SequenceInputStream      



14 

Android internal file I/O 
String FILENAME = "hello_file"; 
String string = "hello world!"; 
 
FileOutputStream fos = openFileOutput(FILENAME, 

 Context.MODE_PRIVATE); // called in a Context 
  
fos.write(string.getBytes()); 
fos.close(); 



15 

Using temporary files 
File file = new File(getCacheDir(), "temp.txt"); 
 try { 
    file.createNewFile(); 
    FileWriter fw = new FileWriter(file); 
    BufferedWriter bw = new BufferedWriter(fw); 
    bw.write("Hello World\n"); 
    bw.close(); 
} catch (IOException e) { 
          Toast.makeText(this,  

 "Error creating a file!” 
 ,Toast.LENGTH_SHORT).show(); 

} 
 
When the device is low on internal storage space, Android may delete these cache 
files to recover space.  
You should not rely on the system to clean up these files for you.  
Clean the cache files yourself 
 stay within a reasonable limit of space consumed, such as 1MB. 
 



16 

Other useful methods 
getFilesDir() 
    Get the absolute path where internal files are saved. 
getDir() 
    Creates (or opens an existing) directory within your 
internal storage space. 
deleteFile() 
    Deletes a file saved on the internal storage. 
fileList() 
    Returns an array of files currently saved by your 
application.  



17 

The DAO interface 

package it.unitn.science.latemar; 
 
import java.util.List; 
 
public interface PersonDAO { 

 public void open(); 
 public void close(); 

 
 public Person insertPerson(Person person) ; 
 public void deletePerson(Person person) ; 
 public List<Person> getAllPerson() ; 

} 
 



18 

The DAO implementation - FS 
public class PersonDAO_FS_impl implements PersonDAO { 

 DataOutputStream fos; 
 DataInputStream fis; 
 Context context=MyApplication.getAppContext(); 
 final String FILENAME=“contacts”; 

 
@Override 

 public void open() { 
     try { 
           fos=new DataOutputStream( 
  context.openFileOutput(FILENAME, Context.MODE_APPEND) 
           ); 
     } catch (FileNotFoundException e) {e.printStackTrace();} 

 
 } 

@Override 
 public void close() { 
     try { 
            fos.close(); 
      } catch (IOException e) {e.printStackTrace();} 
 } 
  

package it.unitn.science.latemar; 
import … 

This should 
never happen 



19 

The DAO impl. – data access 2 
@Override   
    public Person insertPerson(Person person) { 
           try { 

 fos.writeUTF(person.getName()); 
 fos.writeUTF(person.getSurname()); 

           } catch (IOException e) { e.printStackTrace(); } 
           return person; 
     } 
 
@Override   
     public void deletePerson(Person person) { 
           Log.d("trace","deletePerson DAO_FS – UNIMPLEMENTED!"); 
      } 

write as 
Unicode 



20 

The DAO impl. – data access 3 
@Override 
    public List<Person> getAllPersons() { 
          List<Person> list=new ArrayList<Person>(); 
          try { fis=new DataInputStream( context.openFileInput(FILENAME) );    
           } catch (FileNotFoundException e) { 

 e.printStackTrace();    return list; 
           } 
           while (true) { 

 try { 
           String name=fis.readUTF(); 
           String surname=fis.readUTF(); 
           Person p=new Person(name, surname); 
           list.add(p); 
  } catch (EOFException e) {  break; 
  } catch (IOException e) { e.printStackTrace(); break; }             

         } 
         try { fis.close(); } catch (IOException e) { e.printStackTrace(); }     
         return list; 
     } 



21 

Watch out! 

Restart… 

Why so? 



22 

Serializing any-size objects to a random access file 

http://www.maridonkers.info/serializing-any-size-
objects-to-a-random-access-file-2/ 
 

Index-file Data-file 

See iava.io 
Class RandomAccessFile 
 



23 

 
External Files 

 
 
Marco Ronchetti 
Università degli Studi di Trento 



24 

External storage 
Every Android-compatible device supports a shared 
"external storage" that you can use to save files.  
 
It can be: 
•  a removable storage media (such as an SD card)  
•  an internal (non-removable) storage.  
 
Files saved to the external storage  
•  are world-readable 
•  can be modified by the user when the USB card 

storage in moved on a computer! 



25 

Possible states of  external media 
String Environment.getExternalStorageState(); 
 
MEDIA_MOUNTED 
•  media is present and mounted at its mount point with read/write access. 
MEDIA_MOUNTED_READ_ONLY  
•  media is present and mounted at its mount point with read only access. 
MEDIA_NOFS  
•  media is present but is blank or is using an unsupported filesystem 
MEDIA_CHECKING   
•  media is present and being disk-checked 
MEDIA_UNMOUNTED  
•  media is present but not mounted 
MEDIA_SHARED  
•   media is in SD card slot, unmounted, and shared as a mass storage device. 
MEDIA_UNMOUNTABLE   
•  media is present but cannot be mounted. 
 
MEDIA_REMOVED  
•  media is not present. 
 
MEDIA_BAD_REMOVAL   
•  media was removed before it was unmounted. 

boolean Environment.isExternalStorageEmulated() 
boolean Environment.isExternalStorageRemovable() 



26 

Standard directories (constants): 
DIRECTORY_DOWNLOADS   
•  files that have been downloaded by the user. 
DIRECTORY_MOVIES  
•  movies that are available to the user. 
DIRECTORY_PICTURES  
•  pictures that are available to the user. 
DIRECTORY_DCIM   
•  The traditional location for pictures and videos when mounting the device as a 

camera. 
 
Places for audio files: 
•  DIRECTORY_MUSIC  

•  music for the user. 
•  DIRECTORY_ALARMS   

•  alarms sounds  that the user can select (not as regular music). 
•  DIRECTORY_NOTIFICATIONS  

•  notifications sounds that the user can select (not as regular music). 
•  DIRECTORY_PODCASTS  

•  podcasts that the user can select (not as regular music). 
•  DIRECTORY_RINGTONES  

•  ringtones that the user can select (not as regular music). 
 



27 

Other Environment static methods 
static File getRootDirectory() 
•  Gets the Android root directory (typically returns /system). 

static File getDataDirectory() 
•  Gets the Android data directory (typically returns /data). 

static File getDownloadCacheDirectory() 
•  Gets the Android Download/Cache content directory. Here go temporary files that 

are specific to your application If the user uninstalls your application, this 
directory and all its contents will be deleted. You should manage these cache files 
and remove those that aren't needed in order to preserve file space. 

static File getExternalStorageDirectory() 
•  Gets the Android external storage directory. Here go files that are specific to your 

application If the user uninstalls your application, this directory and all its contents 
will be deleted. 

static File getExternalStoragePublicDirectory(String type) 
•  Get a top-level public external storage directory for placing files of a particular 

type. This is where the user will typically place and manage their own files. Here 
go files that are not specific to your application and that should not be deleted 
when your application is uninstalled 



28 

Rooting a device 
 
 
Marco Ronchetti 
Università degli Studi di Trento 



29 

Rooting 
The process of allowing users of Android devices to get 
root access. Varies widely by device, as it usually exploits a 
security weakness in the firmware shipped from the 
factory.  
 
Goal: 
•  to overcome limitations imposed by that carriers and 

hardware manufacturers  
•  to alter or replace system applications and settings 
•  to run specialized apps that require administrator-level 

permissions 
•  to perform other operations that are otherwise 

inaccessible to a normal Android user.  

The process of rooting 
On the iphone: jailbreaking 
 
 



30 

e.g.: CyanogenMod 
a replacement firmware. Offers several features, like: 
 
•  an OpenVPN client, 
•  a reboot menu,  
•  CPU overclocking and performance enhancements, 

app permissions management 

Over 1.5 M installations 
 



31 

Is it legal? 
On July 26, 2010, the U.S. Copyright office announced 
a new exemption making it officially legal to root a 
device and run unauthorized third-party applications, 
as well as the ability to unlock any cell phone for use 
on multiple carriers. 



32 

Industry reaction 
•  concern about improper functioning of devices 

running unofficial software and related support 
costs.  

•  offers features for which carriers would otherwise 
charge a premium  

Technical obstacles have been introduced in many 
devices (e.g. locked bootloaders). 
 
In 2011 an increasing number of devices shipped with 
unlocked or unlockable bootloaders. 
 



33 

The HTC case 
“HTC is committed to listening to users and 
delivering customer satisfaction. We have heard your 
voice and starting now, we will allow our bootloader 
to be unlocked for 2011 models going forward. 
 
It is our responsibility to caution you that not all 
claims resulting or caused by or from the unlocking of 
the bootloader may be covered under warranty.  
 
We strongly suggest that you do not unlock the 
bootloader unless you are confident that you 
understand the risks involved.” 
 

See e.g. http://htcdev.com/bootloader/ 



34 

Fragments 



35 

Fragments 
A fragment is a self-contained, modular section of an 
application’s user interface and corresponding behavior 
that can be embedded within an activity. 
 
 Fragments can be assembled to create an activity during 
the application design phase, and added to, or removed 
from an activity during application runtime to create a 
dynamically changing user interface.  
 
Fragments may only be used as part of an activity and 
cannot be instantiated as standalone application elements. 
  
A fragment can be thought of as a functional “sub-activity” 
with its own lifecycle similar to that of a full activity.  



36 

Using fragments 



37 

Fragments lifecycle 
Method Description 

onAttach() The fragment instance is associated with an activity instance.The activity is not 
yet fully initialized  

onCreate() Fragment is created 

onCreateView() The fragment instance creates its view hierarchy. The inflated views become part 
of the view hierarchy of its containing activity.  

onActivityCreated() 
Activity and fragment instance have been created as well as thier view hierarchy. 
At this point, view can be accessed with the findViewById() method. 
example.  

onResume() Fragment becomes visible and active.  

onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is 
animating on top of the activity which contains the fragment.  

onStop() Fragment becomes not visible.  

!



38 

Defining a new fragment (from code) 
To define a new fragment you either extend the 
android.app.Fragment class or one of its subclasses, for 
example, ListFragment, DialogFragment, 
PreferenceFragment or WebViewFragment.  



39 

Defining a new fragment (from code) 
public class DetailFragment extends Fragment { 
 @Override 
 public View onCreateView(LayoutInflater inflater,  

 ViewGroup container, Bundle savedInstanceState) { 
    View view=inflater.inflate( 

 R.layout.fragment_rssitem_detail, 
 container, false);  

   return view;  
 }  
 public void setText(String item) {  
    TextView view = (TextView)     

  getView().findViewById(R.id.detailsText); 
    view.setText(item);  
 }  
}  



40 

XML-based fragments 
<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout_width="match_parent" 
android:layout_height="match_parent" 
tools:context=".FragmentDemoActivity" >  

<fragment android:id="@+id/fragment_one" 
android:name="com.example.myfragmentdemo.FragmentOne"  
android:layout_width="match_parent" 
android:layout_height="wrap_content" 
android:layout_alignParentLeft="true" 
android:layout_centerVertical="true" tools:layout="@layout/
fragment_one_layout" />  

</RelativeLayout> 



41 

Adding-removing fragments at 
runtime 

The FragmentManager class and the FragmentTransaction class allow 
you to add, remove and replace fragments in the layout of your 
activity.  
 
Fragments can be dynamically modified via transactions. To 
dynamically add fragments to an existing layout you typically define a 
container in the XML layout file in which you add a Fragment.  
 
FragmentTransaction ft = 
getFragmentManager().beginTransaction(); 
ft.replace(R.id.your_placehodler, new 
YourFragment());  
ft.commit();  
 
A new Fragment will replace an existing Fragment that was previously 
added to the container.  
 



42 

Finding if  a fragment is already part 
of  your Activity 

DetailFragment fragment = (DetailFragment) 
 getFragmentManager(). 
 findFragmentById(R.id.detail_frag);  

 
if (fragment==null) {  

  // start new Activity  
} else {  

  fragment.update(...);  
}  



43 

Communication: activity -> fragment 
In order for an activity to communicate with a 
fragment, the activity must identify the fragment 
object via the ID assigned to it using the 
findViewById() method. Once this reference has been 
obtained, the activity can simply call the public 
methods of the fragment object.  
 



44 

Communication: fragment-> activity 

Communicating in the other direction (from fragment to 
activity) is a little more complicated.  

A)  the fragment must define a listener interface, which is 
then implemented within the activity class.  

public class MyFragment extends Fragment {  
  AListener activityCallback;  
  public interface AListener {  

  public void someMethod(int par1, String par2);  
  } 
  … 
 



45 

Communication: fragment-> activity 
B.  the onAttach() method of the fragment class needs to be 

overridden and implemented. The method is passed a 
reference to the activity in which the fragment is 
contained. The method must store a local reference to 
this activity and verify that it implements the interface.  

 
public void onAttach(Activity activity) {  
  super.onAttach(activity);  
  try { activityCallback = (AListener) activity;  
  } catch (ClassCastException e) {  
  throw new ClassCastException(  

  activity.toString() 
  + " must implement ToolbarListener");  

} } 

 



46 

Communication: fragment-> activity 
C.  The next step is to call the callback method of the 

activity from within the fragment. When and how 
this happens is entirely dependent on the 
circumstances under which the activity needs to be 
contacted by the fragment. For the sake of an 
example, the following code calls the callback 
method on the activity when a button is clicked:  

public void buttonClicked(View view) { 
   activityCallback.someMethod(arg1, arg2); 
} 



47 

Communication: fragment-> activity 
All that remains is to modify the activity class so that 
it implements the ToolbarListener interface. 
public class MyActivity extends 
FragmentActivity implements 
MyFragment.AListener { 
 public void someMethod(String arg1, int arg2) 

 { 
      // Implement code for callback method 

 } 
. 
. 
} 



48 

Esempio 
vedi 
http://www.vogella.com/tutorials/
AndroidFragments/article.html 
 
sez. 10 


