Basic Ul elements:

Defining Activity Ul in the
code

Marco Ronchetti
Universita degli Studi di Trento

& 9:05

Ul Programatically

Hello, This is a view created programmatically!

public class UIThroughCode extends Activity {
LinearLayout 1Layout;
TextView tView;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ILayout = new LinearLayout(this);
ILayout.setOrientation(LinearLayout.VERTICAL);
ILayout.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,
LayoutParams.MATCH_PARENT));
tView = new TextView(this);
tView.setText("Hello, This is a view created programmatically! ”)");
tView.setLayoutParams(new LayoutParams(LayoutParams.MATCH_PARENT,
LayoutParams.WRAP_CONTENT));
ILayout.addView(tView);
setContentView(lLayout);

From http://saigeethamn.blogspot.it

L ©Mem

Preferences

Marco Ronchetti
Universita degli Studi di Trento

SharedPreferences

SharedPreferences allows to save and retrieve
persistent key-value pairs of primitive data types. This
data will persist across user sessions (even if your
application is killed).

]

. . A methoa
getSharedPreferences(String name, int mode) | of Contex

- Uses multiple preferences files identified by name, which you specity !
with the first parameter. >
A method

getPreferences|() of Activity

- Use this if you need only one preferences file for your Activity. This
simply calls the underlying getSharedPreferences(String, int) method by
passing in this activity's class name as the preferences name

SharedPreferences methods

boolean contains(String key)
Checks whether the preferences contains a preference.

l Value returned

T getT(String key, T defValue) If key does not exist

Retrieve a T value from the preferences where T={int,
float, boolean, long, String, Set<String>}.

SharedPreferences.Editor edit()

All changes you make in an editor are batched, and
not copied back to the original SharedPreferences until
you call commit() or apply()

P
j

.

SharedPreferences.Editor methods

Void apply(), boolean commit()
Commit your preferences changes back

Editor putT(String key)

Stores a T value in the preferences where T={int, float,
boolean, long, String, Set<String>}.

Editor remove(String key)

Mark in the editor that a preference value should be
removed

Editor clear ()

Mark in the editor that all preference values should be
.removed

User Preferences

Shared preferences are not strictly for saving "user
preferences," such as what ringtone a user has chosen.

For creating user preferences for your application, you
should use PreferenceActivity, which provides an
Activity framework for you to create user preferences,
which will be automatically persisted (using shared
preferences).

It is based on Fragments

Notification

Marco Ronchetti
Universita degli Studi di Trento

! Status Bar Notification
Send Notification

Cancel

B New Alert, Click Me!

! Status Bar Notification

Send Notification

Cancel Notification

o
' Status Bar Notification

Send Notification

Cancel Notification

March 20, 2012

Notification Details... 11:41AM
Browse Android Official Site by clicking me

Android

@)

B www.android.com

Discover Android
Browse Devices
Get Apps
Develop Apps

Q

Introducing Google Play

Introducing Android 4.0, Ice
Cream Sandwich

Android 4.0 brings an entirely new look and feel.
The lock screen, widgets, notifications, multi-
tasking and everything in between has been

SimpleNotification

public class SimpleNotification extends Activity {
private NotificationManager nm;
private int SIMPLE_NOTIFICATION_ID;
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

nm = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

final Notification notifyDetails = new Notification(
R.drawable.android,"New Alert, Click Me!",
System.currentTimeMillis());

Button cancel = (Button)findViewByld(R.id.cancelButton);

cancel.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

nm.cancel(SIMPLE_NOTIFICATION_ID);

il

Adapted from http://saigeethamn.blogspot.it

SimpleNotification — part 2

Button start = (Button)findViewById(R.id.notifyButton);
start.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
Context context = getApplicationContext();
CharSequence contentTitle = "Notification Details...";

CharSequence contentText = "Browse Android Site by clicking me";

Intent notifyIntent = new Intent
(android.content.Intent. ACTION_VIEW,

Uri.parse("http//www.android.com"));

PendingIntent intent =

Pendinglntent.getActivity(SimpleNotification.this, 0, notifyIntent,
android.content.Intent.FLAG_ACTIVITY NEW_TASK);

notifyDetails.setLatestEventInfo(context, contentTitle,
contentText, intent);
nm.notify(SIMPLE_NOTIFICATION_ID, notifyDetails);

}

Sensors

Marco Ronchetti
Universita degli Studi di Trento

Sensor categories

Motion sensors

measure acceleration forces and rotational forces
along three axes. This category includes
accelerometers, gravity sensors, gyroscopes.

Environmental sensors

measure various environmental parameters, such as
ambient air temperature and pressure, illumination,
‘ and humidity. This category includes barometers,

- photometers, and thermometers.

Position sensors

measure the physical position of a device. This
category includes orientation sensors and
magnetometers.

P -
"

Basic code for managing sensors

public class SensorActivity extends Activity, implements SensorEventListener {
private final SensorManager sm;
private final Sensor sAcc;
public SensorActivity() {
sm= (SensorManager)getSystemService(SENSOR_SERVICE);
sAcc= sm.getDefaultSensor(Sensor.TYPE_ ACCELEROMETER);
}
protected void onPause() {
super.onPause();
sm.unregisterListener(this);
}
protected void onResume() {
super.onResume();
sm.registerListener(this, sAcc, SensorManager.SENSOR_DELAY_NORMAL);
}
public void onAccuracyChanged(Sensor sensor, int accuracy) { }
public void onSensorChanged(SensorEvent event) { }

SensorManager

SensorManager sm=Context.getSystemService(SENSOR_SERVICE);

List<Sensor> getSensorList(int type)

get the list of available sensors of a certain type. Sensor
Sensor getDefaultSensor(int type)

Use this method to get the default sensor for a given type

void registerListener(SensorEventListener listener, Sensor sensor, int rate)
Registers a SensorEventListener for the given sensor.

void unregisterListener(SensorEventListener listener, Sensor sensor)

Unregisters a listener for the sensors with which it is registered.
void unregisterListener(SensorEventListener listener)
Unregisters a listener for all sensors.

Some methods for transforming data (Vector to matrix representation etc.)

Sensor types

int constants of the Sensor class describing sensor
types:

TYPE_ACCELEROMETER
TYPE_ALL A constant describing all sensor types.
TYPE_AMBIENT_TEMPERATURE
TYPE_GRAVITY
TYPE_GYROSCOPE

TYPE_LIGHT
TYPE_LINEAR_ACCELERATION
TYPE_MAGNETIC_FIELD
TYPE_PRESSURE
TYPE_PROXIMITY
TYPE_RELATIVE_HUMIDITY

TYPE_ROTATION_VECTOR

Accelerometer

“Sensor's values are in meters/second”2 units. A sensor
measures the acceleration applied to the device. For this
reason, when the device 1s sitting on a table (and obviously
not accelerating), the accelerometer reads a magnitude of g
= 9.81 m/s"2. Similarly, when the device 1s in free-fall and
therefore dangerously accelerating towards to ground at
9.81 m/s"2, its accelerometer reads a magnitude of 0 m/
s72.” (Android Developers - sensors)

Orientation sensor

“A compass is a navigational instrument for determining
direction relative to the Earth's magnetic poles. It
consists of a magnetized pointer (usually marked on the
North end) free to align itself with Earth's magnetic
field.” (Compass EN Wiki)

In Android's terminology it is called Orientation
Sensor.

Gyroscope

“A gyroscope is an instrument consisting of a rapidly spinning
wheel so mounted as to use the tendency of such a wheel to
maintain a fixed position in space, and to resist any force which
tries to change it. The way it will move if a twisting force 1s
applied depends on the extent and orientation of the force and the
way the gyroscope is mounted. A free vertically spinning
gyroscope remains vertical as the carrying vehicle tilts, so
providing an artificial horizon. A horizontal gyroscope will
maintain a certain bearing, and therefore indicate a vessel's
heading as it turns. Modern gyroscopes (including those built-in
) in smartphones) no longer have a spinning wheel.” (Gyroscope
Cambridge Encyclopedia)

=
“All values are in radians/second and measure the rate of I
i

rotation around the X, Y and Z axis. The coordinate system is the
same as is used for the acceleration sensor.” (Androi
Developers - sensors) Rotation is positive in the counter-
clockwise direction.

Sensor class

float getMaximumRange()
maximum range of the sensor in the sensor's unit.
int getMinDelay/()

minimum delay allowed between two events in
microsecond or zero if this sensor only returns a value
when the data it's measuring changes

String getName()
float getPower()
the power in mA used by this sensor while in use
float getResolution()
resolution of the sensor in the sensor's unit.
int getType()
String getVendor()
' Iint getVersion()

L /5

SensorManager sm= (SensorManager)getSystemService(SENSOR_SERVICE);
List<Sensor> sensorList = sm.getSensorList(Sensor.TYPE_ALL);
StringBuilder sensorString = new StringBuilder("Sensors:\n");

for(int i=0; i<sensorList.size(); i++) {

sensorString.append(sensorList.get(i).getName()).append(", \n");

}

HTC EVO 4G

BMAT150 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor

CM3602 Proximity sensor

CM3602 Light sensor

Samsung Nexus-S$

KR3DM 3-axis Accelerometer
AK8973 3-axis Magnetic field sensor
AK8973 Orientation sensor

GP2A Light sensor

GP2A Proximity sensor

K3G Gyroscope sensor

Gravity Sensor

Linear Acceleration Sensor
Rotation Vector Sensor

Interface SensorEventListener

abstract void onAccuracyChanged(Sensor sensor, int
accuracy)

Called when the accuracy of a sensor has changed.
abstract void onSensorChanged(SensorEvent event)
Called when sensor values have changed.

Code examples

- http:/ /www.vogella.com/articles/ AndroidSensor/
article.html accelerometer and compass examples

- http://developer.android.com/guide/topics/
sensors/sensors_overview.html and following

pages

Sensors limitation - 1

From Jim Steele

Using available sensors in the Android platform: current
limitations and expected 1mprovements

Comparing the sensors on these two phones demonstrates the
sensor fragmentation now found in Android:

1) Non-standard sensor availability: The Nexus-S has a
rosco e (from ST Micro), but the EVO does not. In fact, most
ndr01 dev1ces do not have a gyroscope. There is no standard
availability of sensors across devices.

2) Non-standard sensor capability: The BMA150 is a Bosch
Sensortec 10-bit accelerometer, and the KR3DM is a ST Micro 12-
bit accelerometer (using a spec1a1 part number). In fact, there is
no standard capability requirement for sensors across devices to
m ensure consistentresolution, noise floor, or update rate.

i

Sensors limitation - 2

3) Sensors not fully specified: The AK8973 is an AKM magnetometer, which
is only 8-bits. Analyzing this data stream shows it is low-pass filtered. This
fact is not published on the phone or even the sensor datasheet. Many
sensors have characteristics not specified such as bias changes, non-uniform
gain, and skew (coupling between measurement axes). Algorithms that use
sensors without knowing these extra characteristics may produce incorrect
information.

4) Broken virtual sensors: The AKM sensor driver abstracts out an
orientation virtual sensor which is derived from the combination of two
sensors: the accelerometer and magnetometer. However, support for this
virtual sensor was dropped early on, so the TYPE_ORIENTATION

sensor is deprecated and the method SensorManager.getOrientation()
should be used instead. Furthermore, the new virtual sensors introduced in
Android 2.3 (Gingerbread) are not supported on all devices.

The sensor differences between just these two phones is substantial. So when
a developer is faced with writing apps utilizing sensors across as many
devices as possible, it is a daunting task.

Furthermore, the Android platform is not optimized for real-time sensor
data acquisition.

What can you do with
accelerometer and gyroscope?

http:/ /www.starlino.com/imu_guide.html

A Guide To using IMU (Accelerometer and Gyroscope

Devices) in Embedded Applications.

“This guide is intended to everyone interested in inertial MEMS (Micro-Electro-
Mechanical Systems) sensors, in particular Accelerometers and Gyroscopes as
well as combination IMU devices (Inertial Measurement Unit).”

- what does an accelerometer measure

- what does a gyroscope (aka gyro) measure

- how to convert analog-to-digital (ADC) readings that you get from these sensor
to physical units (those would be g for accelerometer, deg/s for gyroscope)

- how to combine accelerometer and gyroscope readings in order to obtain

accurate information about the inclination of your device relative to the ground
plane

http:/ /www.starlino.com/dcm_tutorial.html

m DCM Tutorial — An Introduction to Orientation

rl Kinematics
6

o

2

Emulator limits

The emulator does not emulate sensors, so what can
you do without a physical device?

BUT...

There is an app that emulates many sensors, and that
you can use as data provider!

SensorSimulator

Openlntents SensorSimulator lets you simulate sensor
events from accelerometer, compass, orientation,
temperature, light, proximity, pressure, linear acceleration,
gravity, gyroscope and rotation vector sensors.

Moreover, you can simulate your battery level and your
gps position too, using a telnet connection.

It transmits the simulated sensor data to an Android
emulator.

Also, it can record sensor data from an real Android device

See https://github.com/openintents/sensorsimulator

Broadcast receivers

Marco Ronchetti
Universita degli Studi di Trento

Bradcast receiver

a component that responds to system-wide broadcast
announcements.

Many broadcasts originate from the system —for example, a
broadcast announcing that the screen has turned off, the
battery is low, or a picture was captured.

Applications can initiate broadcasts —e.g. to let other
applications know that some data has been downloaded to |
the device and is available for them to use. 2

Broadcast receivers don't display a user interface, but they
can crate a status bar notification.

More commonly, a broadcast receiver is just a "gateway" to
P other components and is intended to do a very minimal
P amount of work e.g. it might initiate a service.

public class MyBroadcastReceiver extends BroadcastReceiver {

public void onReceive(Context context, Intent intent) {
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

} package="...I” android:versionCode="1" android:versionName="1.0">
} <application android:icon="@drawable/icon" android:label="@string/app_name">

<receiver android:name=".MyBroadcastReceiver">
<intent-filter>
<action android:name="android.intent.action. TIME_SET"/>
</intent-filter>
</receiver>
</application>
<uses-sdk android:minSdkVersion="13" />
</manifest>

>adb shell

date +%s

1332793443

date -s +%s 1332793443

time 1332793443 -> 1332793443.0
settimeofday failed Invalid argument

z Adapted from saigeethamn.blogspot.it

public class MyBroadcastReceiver extends BroadcastReceiver {
private NotificationManager nm;
private int SIMPLE_NOTFICATION_ID;

@QOverride
public void onReceive(Context context, Intent intent) {
nm = (NotificationManager) context.getSystemService
(Context. NOTIFICATION_SERVICE);
Notification n= new Notification(R.drawable.android,"Time Reset!",
System.currentTimeMillis());
PendingIntent myIntent = PendingIntent.getActivity(context, 0,
new Intent(Intent. ACTION_VIEW, People. CONTENT_URI), 0);
n.setLatestEventInfo(context, "Time has been Reset",
"Click on me to view Contacts", myIntent);
n | = Notification.FLAG_AUTO_CANCEL;
n | = Notification.DEFAULT_SOUND;
nm.notify(SIMPLE_NOTFICATION_ID, n);
Log.i(getClass().getSimpleName(),"Sucessfully Changed Time");

}
}

r

Adapted from saigeethamn.blogspot.it

SMOoM

Sending broadcast events

(in Context)

sendBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, allowing an optional required
permission to be enforced.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are

run.

No results are propagated from receivers and receivers
can not abort the broadcast.

Sending ordered broadcast events

(in Context)

sendOrderedBroadcast (Intent intent, String
receiverPermission)

Broadcast the given intent to all interested
BroadcastReceivers, delivering them one at a time to
allow more preferred receivers to consume the
broadcast before it is delivered to less preferred
recelvers.

This call is asynchronous; it returns immediately, and
you will continue executing while the receivers are

Sending ordered broadcast events

(in Context)
sendOrderedBroadcast (...)

Version of sendBroadcast(Intent) that allows you to i
receive data back from the broadcast.

You supply your own BroadcastReceiver when calling:
its onReceive(Context, Intent) method will be called
with the result values collected from the other
receivers.

The broadcast will be serialized in the same way as
calling sendOrderedBroadcast(Intent, String).

LocalBroadcastManager

Helper to register for and send broadcasts of Intents to
local objects within your process.

Advantages of Local vs Global B.M.:

the data you are broadcasting will not leave your
app

(you don't need to worry about leaking private
data).

it is not possible for other applications to send these
broadcasts to your app

(you don't need to worry about having security
holes)

it is more efficient than sending a global broadcast
through the system.

Fragments

Fragments

A fragment is a self-contained, modular section of an
application’s user interface and corresponding behavior
that can be embedded within an activity.

Fragments can be assembled to create an activity during
the application design phase, and added to, or removed

from an activity during application runtime to create a
dynamically changing user interface.

\ Ve

Fragments may only be used as part of an activity and
cannot be instantiated as standalone application elements.

oA fragment can be thought of as a functional “sub-activity”
ith its own lifecycle similar to that of a full activity.

SMOoM

Fragments lifecycle
Method Description
The fragment instance is associated with an activity instance.The activity is not
onAttach() e
yet fully initialized
onCreate() Fragment is created
. The fragment instance creates its view hierarchy. The inflated views become part
onCreateView() X i
of the view hierarchy of its containing activity.
Activity and fragment instance have been created as well as thier view hierarchy.
onActivityCreated() | At this point, view can be accessed with the £indViewById () method.
example.
onResume() Fragment becomes visible and active.
onPause() Fragment is visibile but becomes not active anymore, e.g., if another activity is
animating on top of the activity which contains the fragment.
onStop() Fragment becomes not visible.

1‘.
y, i)

Defining a new fragment (from code)

To define a new fragment you either extend the
android.app.Fragment class or one of its subclasses, for
example, ListFragment, DialogFragment,
PreferenceFragment or WebViewFragment.

Defining a new fragment (from code)

public class DetailFragment extends Fragment ({

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) ({

View view=inflater.inflate(

R.layout. fragment rssitem detail,
container, false);
return view;
}
public void setText(String item) ({
TextView view = (TextView)
getView() .findViewById(R.id.detailsText) ;

view.setText (item) ;

XML-based fragments

<RelativeLayout xmlns:android="http://schemas.android.com/
apk/res/android" xmlns:tools="http://schemas.android.com/
tools" android:layout width="match parent"

android:layout height="match parent"
tools:context=".FragmentDemoActivity" >

<fragment android:id="@+id/fragment one"
android:name="com.example.myfragmentdemo.FragmentOne"

android:layout width="match parent"

android:layout height="wrap content"”

android:layout alignParentLeft="true"

android:layout centerVertical="true" tools:layout="@layout/
fragment one layout" />

</Relativelayout>

Adding-removing fragments at
runtime

The FragmentManager class and the FragmentTransaction class allow
you to add, remove and replace fragments in the layout of your
activity.

Fragments can be dynamically modified via transactions. To
dynamically add fragments to an existing layout C}lfou typically define a
container in the XML layout file in which you add a Fragment.

FragmentTransaction ft =
getFragmentManager () .beginTransaction() ;
ft.replace(R.id.your placehodler, new
YourFragment()) ;

ft.commit () ;

A new Fmﬁment will replace an existing Fragment that was previously
added to the container.

Finding if a fragment is already part
of your Activity

DetailFragment fragment = (DetailFragment)
getFragmentManager () .
findFragmentById(R.id.detail frag);

if (fragment==null) {

// start new Activity
} else {

fragment.update(...);

}

Communication: activity -> fragment

In order for an activity to communicate with a
fragment, the activity must identity the fragment
object via the ID assigned to it using the

find ViewByld() method. Once this reference has been
obtained, the activity can simply call the public
methods of the fragment object.

Communication: fragment-> activity

Communicating in the other direction (from fragment to
activity) is a little more complicated.

A) the fragment must define a listener interface, which is

then implemented within the activity class.
public class MyFragment extends Fragment ({

Alistener activityCallback;
public interface AListener {
public void someMethod(int parl, String par2);

Communication: fragment-> activity

B. the onAttach() method of the fragment class needs to be
overridden and implemented. The method is passed a
reference to the activity in which the fragment is
contained. The method must store a local reference to
this activity and verity that it implements the interface.

public void onAttach (Activity activity) {
super .onAttach (activity) ;
try { activityCallback = (AListener) activity;
} catch (ClassCastException e) {

throw new ClassCastException (
activity.toString()
+ " must implement ToolbarListener");

Communication: fragment-> activity

C. The next step is to call the callback method of the
activity from within the fragment. When and how
this happens is entirely dependent on the
circumstances under which the activity needs to be
contacted by the fragment. For the sake of an i
example, the following code calls the callback
method on the activity when a button is clicked:

public void buttonClicked (View view) ({

activityCallback.someMethod (argl, arg2) ;

Communication: fragment-> activity

All that remains is to modify the activity class so that
it implements the ToolbarListener interface.

public class MyActivity extends
FragmentActivity implements
MyFragment.AListener ({

public void someMethod (String argl, int arg2?)
{
// Implement code for callback method

}

Esempio

vedi
http:/ /www.vogella.com/tutorials/
AndroidFragments/article.html

sez. 10

