Programmazione 2 - Marco Ronchetti

Fac.Scienze - Universita di Trento

Commenti sulle esercitazioni

Programmazione 2 - Marco Ronchetti

Fac.Scienze - Universita di Trento

Dall'esercitazione di ieri pomeriggio € emerso
che molti studenti non hanno ancora capito il
concetto di ereditarieta e polimorfismo.

Programmazione 2 - Marco Ronchetti

Fac.Scienze - Universita di Trento

... € ancora meno come funzioni una
Collections, tanto che mi hanno proposto tutti
- fatta eccezione di un paio di studenti - degli

array ... presentandomi poi tutte le
"limitazioni" di un array!

Fac.Scienze - Universita di Trento

Programmazione 2 - Marco Ronchetti

Vorrei continuare a proporre esercitazioni da
iniziare a casa, anche se solo in 3 ci avevano
provato.

In questa fase € necessario che facciano esercizi
altrimenti non capiranno mai come
funzionano le cose

e se non toccano con mano, non capiranno mai
il vantaggio del polimorfismo (tanto per dirne
una)

Programmazione 2 - Marco Ronchetti

Fondamenti di Java

Fac.Scienze - Universita di Trento

hashCode

Programmazione 2 - Marco Ronchetti

equals e hashCode

ita di Trento

Fac.Scienze - Univers

Programmers should take note that

any class that overrides the Object.equals

method must also override the
Object.hashCode method

in order to satisty the general contract for the
Object.hashCode method.

In particular, cl.equals(c2) implies that
cl.hashCode()==c2.hashCode()

(the vice versa need not be true)

Programmazione 2 - Marco Ronchetti

equals e hashCode

ita di Trento

Fac.Scienze - Univers

cl.equals(c2) => cl.hashCode()==c2.hashCode()

cl.hashCode()==c2.hashCode() #> cl.equals(c2)

uguaglianza implica hashCode uguali

diversita di hashCode implica non uguaglianza

Programmazione 2 - Marco Ronchetti

equals e hashCode

ita di Trento

Fac.Scienze - Univers

if (c1.hashCode()!=c2.hashCode())
cl e c2 diversi

if (c1.hashCode()==c2.hashCode())

per sapere se cl e uguale a c2
devo usare la equals

E' un meccanismo di "fail quick”

Programmazione 2 - Marco Ronchetti

esempio di hashCode()

ita di Trento

Fac.Scienze - Univers

"ABBA" => 65+66+66+65 = 262

"ABBB" => 65+66+66+66 = 263

ma

"ABAB" => 65+66+65+66 = 262

Fac.Scienze - Universita di Trento

10

Programmazione 2 - Marco Ronchetti

ATTENZIONE!

As much as is reasonably practical, the
hashCode method defined by
class Object does return distinct integers for
distinct objects.

(This is typically implemented by converting
the internal address of the object into an
integer, but this implementation technique is
not required by the Java programming
language.)

11

Programmazione 2 - Marco Ronchetti

Nel dubbio...

Fac.Scienze - Universita di Trento

public int hashCode() {
int hash = 0;
return hash;

}

Inefficiente, ma corretto!

Per approfondimenti:
http:/ /eclipsesource.com/blogs/2012/09/04/the-3-things-you-

should-know-about-hashcode/

12 Programmazione 2 - Marco Ronchetti

A che serve hashCode?

Fac.Scienze - Universita di Trento

Dato un oggetto O1 e possibile

Tabelle associative calcolarne la chiave C1

chiavel codal —» 01— 06—
chiave2 coda2 — -
chiave3 coda3 — 02— O5— O3—

13

Programmazione 2 - Marco Ronchetti

Esercizio

Fac.Scienze - Universita di Trento

Definire la classe "Automobile" con wvariabili di
istanza Marca (es. VW), Tipo (Es, Golf), Colore (es.
Bianco), Cilindrata (es. 1600), Targa, Proprietario.

Identificare diversi scenari di uso che abbiano
differenti scenari di "equals":

—@s. uno scenario in cui una Tipo e una Golf siano
considerate "uguali", ed uno in cui due Golf di colore
diverso sono considerate '"uguali"

-implementare la equals per i diversi scenari.

14

Programmazione 2 - Marco Ronchetti

Esercizio

Fac.Scienze - Universita di Trento

Definire una hashCode corretta. Aggiungere tre diverse
istanze di automobili "uguali" a un set, e controllare
la dimensione del set ottenuto. Vi torna il valore
ottenuto per la dimensione del set?

Definire una hashCode non corretta. Aggiungere tre
diverse istanze di automobili "uguali" a un set, e
controllare la dimensione del set ottenuto. Vi torna il
valore ottenuto per la dimensione del set? Potete
spiegare quel che osservate?

15

Programmazione 2 - Marco Ronchetti

Fondamenti di Java

Fac.Scienze - Universita di Trento

Collection: object ordering

Fac.Scienze - Universita di Trento

16

Programmazione 2 - Marco Ronchetti

Object ordering

Ci sono due modi per ordinare oggetti:

The Comparable interface provides automatic
natural order on classes that implement it.

The Comparator interface gives the
programmer complete control over object
ordering. These are not core collection

interfaces, but underlying infrastructure.

17 Programmazione 2 - Marco Ronchetti

Object ordering with Comparable

A List 1 may be sorted as follows:
Collections.sort(l);

If the list consists of String elements, it will be sorted into
lexicographic (alphabetical) order.

If it consists of Date elements, it will be sorted into
chronological order.

How does Java know how to do this?

String and Date both implement the Comparable interface. The
Comﬁarable interfaces provides a natural ordering for a class,
allows objects of that class to be sorted automatically.

Fac.Scienze - Universita di Trento

whic

18 Programmazione 2 - Marco Ronchetti

Comparable Interface

int compareTo(Object o)

Compares this object with the specified object for order.
Returns a negative integer, zero, or a positive integer as
this object 1s less than, equal to, or greater than the
specified object.

Fac.Scienze - Universita di Trento

Definisce 1’”ordinamento naturale™ per la classe
implementante.

19

Programmazione 2 - Marco Ronchetti

Comparable

Fac.Scienze - Universita di Trento

public class Car implements Comparable{

public int maximumSpeed=0;
public String name;

Car (int v,String name) {maximumSpeed=v;
this.name=name; }

public int compareTo (Object o) {
if (! (o instanceof Car)) {

System.out.println ("Tentativo di
comparare mele e pere!");

System.exit (1) ;
}

if (maximumSpeed<((Car)o) .maximumSpeed)
return -1;

else return (1),

20 Programmazione 2 - Marco Ronchetti

Comparable

Fac.Scienze - Universita di Trento

class TestCar{

List macchine=null;

public static void main(String[] args) {
new TestCar () ;

}

TestCar () {
macchine=new LinkedList () ;
Car a=new Car (100, "cinquecento") ;
macchine.add(a) ;
Car b=new Car (250, "porsche carrera");
macchine.add (b) ;
Car c=new Car (180, '"renault Megane") ;
macchine.add(c) ;
printMacchine () ;
Collections.sort (macchine) ;
printMacchine () ;

21

Programmazione 2 - Marco Ronchetti

Comparable

Fac.Scienze - Universita di Trento

void printMacchine () {
Iterator i=macchine.iterator();
while (i.hasNext()) {
System.out.println(((Car)i.next()) .name);

22

Programmazione 2 - Marco Ronchetti

Comparable Interface

Fac.Scienze - Universita di Trento

Class Point implements Comparable {
int x; int y;

int compareTo(Object p) {
... check if Point...
// ordino sulle y
retval=y-((Point)p).y;
// a partita di y ordino sulle x
if (retval==0) retval=x-((Point)p).x;
return retval;

i p1 op2

\4

p1 <p2

23

Programmazione 2 - Marco Ronchetti

Comparator Interface

Fac.Scienze - Universita di Trento

int compare(T o1, T 02)
Compares its two arguments for order.

class NamedPointComparatorByXY
implements Comparator {
int compare (NamedPoint p1, NamedPoint p2) {
// ordino sulle y
retval=p1.y-p2.y;
/[a partita di y ordino sulle x
if (retval==0) retval=p1.x-p2.x;
return retval;

24

Programmazione 2 - Marco Ronchetti

Comparator Interface

Fac.Scienze - Universita di Trento

class NamedPointComparatorByName
iImplements Comparator {
int compare (NamedPoint p1, NamedPoint p2) {
//lusa l'ordine lessicografico delle stringhe
return (p1.getName().compareTo(p2.getName()));
}
}

... In un metodo di un altra classe:

// sia ¢ una Collection di NamedPoints

Comparator cmp1= new NamedPointComparatorByName();
Comparator cmp2= new NamedPointComparatorByXY();
List x = new ArrayList(c);

Collections.sort(x,cmp1)

25 Programmazione 2 - Marco Ronchetti

import java.util.*;

| class EmpComparator implements Comparator {

| public int compare(Object 01, Object 02) {
EmployeeRecord r1 = (EmployeeRecord) o1;
EmployeeRecord r2 = (EmployeeRecord) 02;
return r2.hireDate().compareTo(r1.hireDate());

}}
class EmpSort {

EmpSort() {
Collection employees = ... ; // Employee Database
List emp = new ArrayList(employees);
Collections.sort(emp, new EmpComparator());
System.out.printin(emp);

}
public static void main(String args|]) {new EmpSort();}

26

Programmazione 2 - Marco Ronchetti

Sezione: Costruttori

Fac.Scienze - Universita di Trento

Costruttori

27

Programmazione 2 - Marco Ronchetti

Definizione dei costruttori

Fac.Scienze - Universita di Trento

Se per una classe A non scrivo nessun
costruttore, il sistema automaticamente crea il
costruttore A();

Se invece definisco almeno un costruttore non
void, ad es. A(int s), il sistema non crea il
costruttore A();

Programmazione 2 - Marco Ronchetti

Definizione dei costruttori

Fac.Scienze - Universita di Trento

Se B e figlia di A, il costruttore di B come prima
cosa invoca A(), a meno che la prima istruzione
non sia una supetr.

AQ) { A(int k) {

- I } I

B(int k) { B(int k) {(k)
.. super(k)...

} !

Fac.Scienze - Universita di Trento

29

Programmazione 2 - Marco Ronchetti

Invocazione dei costruttori

public class A {
public A() {
System.out.println("Creo A");
}

}
public class B extends A {

public B() {
System.out.println("Creo B");

}
public B(int k) {

System.out.println("Creo B int”);

}
}

Output:
Creo A
Creo B int

B b=new B(1l) ;

‘* }

public static void main (String []

a)

Fac.Scienze - Universita di Trento

30

Programmazione 2 - Marco Ronchetti

Invocazione dei costruttori

public class A {
public A(int k) {
System.out.println("Creo A");
}

}
public class B extends A {

public B() {
System.out.println("Creo B") ;

}
public B(int k) {

System.out.println("Creo B int”);

}
}

Output:
ERRORE!

Perche ?

B b=new B(1l) ;

‘* }

public static void main (String []

a)

{

