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Dall'esercitazione di ieri pomeriggio € emerso
che molti studenti non hanno ancora capito il
concetto di ereditarieta e polimorfismo.
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... € ancora meno come funzioni una
Collections, tanto che mi hanno proposto tutti
- fatta eccezione di un paio di studenti - degli

array ... presentandomi poi tutte le
"limitazioni" di un array!
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Vorrei continuare a proporre esercitazioni da
iniziare a casa, anche se solo in 3 ci avevano
provato.

In questa fase € necessario che facciano esercizi
altrimenti non capiranno mai come
funzionano le cose

e se non toccano con mano, non capiranno mai
il vantaggio del polimorfismo (tanto per dirne
una)
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Fondamenti di Java
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hashCode
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equals e hashCode
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Programmers should take note that

any class that overrides the Object.equals

method must also override the
Object.hashCode method

in order to satisty the general contract for the
Object.hashCode method.

In particular, cl.equals(c2) implies that
cl.hashCode()==c2.hashCode()

(the vice versa need not be true)
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equals e hashCode
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cl.equals(c2) => cl.hashCode()==c2.hashCode()

cl.hashCode()==c2.hashCode() #> cl.equals(c2)

uguaglianza implica hashCode uguali

diversita di hashCode implica non uguaglianza
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equals e hashCode
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if ( c1.hashCode()!=c2.hashCode() )
cl e c2 diversi

if (c1.hashCode()==c2.hashCode() )

per sapere se cl e uguale a c2
devo usare la equals

E' un meccanismo di "fail quick”
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esempio di hashCode()
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"ABBA" => 65+66+66+65 = 262

"ABBB" => 65+66+66+66 = 263

ma

"ABAB" => 65+66+65+66 = 262
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ATTENZIONE!

As much as is reasonably practical, the
hashCode method defined by
class Object does return distinct integers for
distinct objects.

(This is typically implemented by converting
the internal address of the object into an
integer, but this implementation technique is
not required by the Java programming
language.)
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Nel dubbio...
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public int hashCode() {
int hash = 0;
return hash;

}

Inefficiente, ma corretto!

Per approfondimenti:
http:/ /eclipsesource.com/blogs/2012/09/04/the-3-things-you-

should-know-about-hashcode/




12 Programmazione 2 - Marco Ronchetti

A che serve hashCode?
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Dato un oggetto O1 e possibile

Tabelle associative calcolarne la chiave C1

chiavel codal —» 01— 06—
chiave2 coda2 — -
chiave3 coda3 — 02— O5— O3—
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Esercizio
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Definire la classe "Automobile" con wvariabili di
istanza Marca (es. VW), Tipo (Es, Golf), Colore (es.
Bianco), Cilindrata (es. 1600), Targa, Proprietario.

Identificare diversi scenari di uso che abbiano
differenti scenari di "equals":

—@s. uno scenario in cui una Tipo e una Golf siano
considerate "uguali", ed uno in cui due Golf di colore
diverso sono considerate '"uguali"

-implementare la equals per i diversi scenari.
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Esercizio
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Definire una hashCode corretta. Aggiungere tre diverse
istanze di automobili "uguali" a un set, e controllare
la dimensione del set ottenuto. Vi torna il valore
ottenuto per la dimensione del set?

Definire una hashCode non corretta. Aggiungere tre
diverse istanze di automobili "uguali" a un set, e
controllare la dimensione del set ottenuto. Vi torna il
valore ottenuto per la dimensione del set? Potete
spiegare quel che osservate?
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Fondamenti di Java
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Collection: object ordering
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Object ordering

Ci sono due modi per ordinare oggetti:

The Comparable interface provides automatic
natural order on classes that implement it.

The Comparator interface gives the
programmer complete control over object
ordering. These are not core collection

interfaces, but underlying infrastructure.
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Object ordering with Comparable

A List 1 may be sorted as follows:
Collections.sort(l);

If the list consists of String elements, it will be sorted into
lexicographic (alphabetical) order.

If it consists of Date elements, it will be sorted into
chronological order.

How does Java know how to do this?

String and Date both implement the Comparable interface. The
Comﬁarable interfaces provides a natural ordering for a class,
allows objects of that class to be sorted automatically.
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whic
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Comparable Interface

int compareTo(Object o)

Compares this object with the specified object for order.
Returns a negative integer, zero, or a positive integer as
this object 1s less than, equal to, or greater than the
specified object.
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Definisce 1’”ordinamento naturale™ per la classe
implementante.
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Comparable
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public class Car implements Comparable{

public int maximumSpeed=0;
public String name;

Car (int v,String name) {maximumSpeed=v;
this.name=name; }

public int compareTo (Object o) {
if (! (o instanceof Car)) {

System.out.println ("Tentativo di
comparare mele e pere!");

System.exit (1) ;
}

if (maximumSpeed<( (Car)o) .maximumSpeed)
return -1;

else return (1),
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Comparable
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class TestCar{

List macchine=null;

public static void main(String[] args) {
new TestCar () ;

}

TestCar () {
macchine=new LinkedList () ;
Car a=new Car (100, "cinquecento") ;
macchine.add(a) ;
Car b=new Car (250, "porsche carrera");
macchine.add (b) ;
Car c=new Car (180, '"renault Megane") ;
macchine.add(c) ;
printMacchine () ;
Collections.sort (macchine) ;
printMacchine () ;
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Comparable
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void printMacchine () {
Iterator i=macchine.iterator();
while (i.hasNext()) {
System.out.println(((Car)i.next()) .name);
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Comparable Interface
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Class Point implements Comparable {
int x; int y;

int compareTo(Object p) {
... check if Point...
// ordino sulle y
retval=y-((Point)p).y;
// a partita di y ordino sulle x
if (retval==0) retval=x-((Point)p).x;
return retval;

i p1 op2

\4

p1 <p2
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Comparator Interface
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int compare(T o1, T 02)
Compares its two arguments for order.

class NamedPointComparatorByXY
implements Comparator {
int compare (NamedPoint p1, NamedPoint p2) {
// ordino sulle y
retval=p1.y-p2.y;
/[ a partita di y ordino sulle x
if (retval==0) retval=p1.x-p2.x;
return retval;
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Comparator Interface
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class NamedPointComparatorByName
iImplements Comparator {
int compare (NamedPoint p1, NamedPoint p2) {
//lusa l'ordine lessicografico delle stringhe
return (p1.getName().compareTo(p2.getName()));
}
}

... In un metodo di un altra classe:

// sia ¢ una Collection di NamedPoints

Comparator cmp1= new NamedPointComparatorByName();
Comparator cmp2= new NamedPointComparatorByXY();
List x = new ArrayList(c);

Collections.sort(x,cmp1)
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import java.util.*;

| class EmpComparator implements Comparator {

| public int compare(Object 01, Object 02) {
EmployeeRecord r1 = (EmployeeRecord) o1;
EmployeeRecord r2 = (EmployeeRecord) 02;
return r2.hireDate().compareTo(r1.hireDate());

}}
class EmpSort {

EmpSort() {
Collection employees = ... ; // Employee Database
List emp = new ArrayList(employees);
Collections.sort(emp, new EmpComparator());
System.out.printin(emp);

}
public static void main(String args| ]) {new EmpSort();}
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Sezione: Costruttori
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Costruttori




27

Programmazione 2 - Marco Ronchetti

Definizione dei costruttori
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Se per una classe A non scrivo nessun
costruttore, il sistema automaticamente crea il
costruttore A();

Se invece definisco almeno un costruttore non
void, ad es. A(int s), il sistema non crea il
costruttore A();
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Definizione dei costruttori
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Se B e figlia di A, il costruttore di B come prima
cosa invoca A(), a meno che la prima istruzione
non sia una supetr.

AQ) { A(int k) {

- I } I

B(int k) { B(int k) {(k)
.. super(k)...

} !
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Invocazione dei costruttori

public class A {
public A() {
System.out.println("Creo A");
}

}
public class B extends A {

public B() {
System.out.println("Creo B");

}
public B(int k) {

System.out.println("Creo B int”);

}
}

Output:
Creo A
Creo B int

B b=new B(1l) ;

‘* }

public static void main (String []

a)
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Invocazione dei costruttori

public class A {
public A(int k) {
System.out.println("Creo A");
}

}
public class B extends A {

public B() {
System.out.println("Creo B") ;

}
public B(int k) {

System.out.println("Creo B int”);

}
}

Output:
ERRORE!

Perche ?

B b=new B(1l) ;

‘* }

public static void main (String []

a)

{




