
1
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Commenti sulle esercitazioni

2
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Dall'esercitazione di ieri pomeriggio è emerso
che molti studenti non hanno ancora capito il

concetto di ereditarietà e polimorfismo.

3
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

... e ancora meno come funzioni una
Collections, tanto che mi hanno proposto tutti
- fatta eccezione di un paio di studenti - degli

array ... presentandomi poi tutte le
"limitazioni" di un array!

4
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Vorrei continuare a proporre esercitazioni da
iniziare a casa, anche se solo in 3 ci avevano

provato.
In questa fase è necessario che facciano esercizi

altrimenti non capiranno mai come
funzionano le cose

e se non toccano con mano, non capiranno mai
il vantaggio del polimorfismo (tanto per dirne

una)

5
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Fondamenti di Java

hashCode

6
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

equals e hashCode
Programmers should take note that

any class that overrides the Object.equals
method must also override the

Object.hashCode method
in order to satisfy the general contract for the

Object.hashCode method.
In particular, c1.equals(c2) implies that

c1.hashCode()==c2.hashCode()
(the vice versa need not be true)

7
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

equals e hashCode

c1.equals(c2) => c1.hashCode()==c2.hashCode()

c1.hashCode()==c2.hashCode() => c1.equals(c2)

uguaglianza implica hashCode uguali

diversità di hashCode implica non uguaglianza

7

/

8
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

equals e hashCode

if (c1.hashCode()!=c2.hashCode())
 c1 e c2 diversi

if (c1.hashCode()==c2.hashCode())
 per sapere se c1 è uguale a c2

 devo usare la equals

8

E' un meccanismo di "fail quick"

9
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

esempio di hashCode()
"ABBA" => 65+66+66+65 = 262

"ABBB" => 65+66+66+66 = 263

ma

"ABAB" => 65+66+65+66 = 262

9

10
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

ATTENZIONE!
As much as is reasonably practical, the

hashCode method defined by
class Object does return distinct integers for

distinct objects.
(This is typically implemented by converting

the internal address of the object into an
integer, but this implementation technique is

not required by the Java programming
language.)

10

11
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Nel dubbio…

public int hashCode() {

 int hash = 0;
 return hash;

}

Inefficiente, ma corretto!

Per approfondimenti:
http://eclipsesource.com/blogs/2012/09/04/the-3-things-you-
should-know-about-hashcode/

12
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

A che serve hashCode?

chiave1 coda1

chiave2 coda2

chiave3 coda3

... ...

O1 O6

O2

O4

O3 O5

Tabelle associative
Dato un oggetto O1 è possibile
calcolarne la chiave C1

13
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Esercizio

Definire la classe "Automobile" con variabili di
istanza Marca (es. VW), Tipo (Es, Golf), Colore (es.
Bianco), Cilindrata (es. 1600), Targa, Proprietario.

Identificare diversi scenari di uso che abbiano

differenti scenari di "equals":

- es. uno scenario in cui una Tipo e una Golf siano
considerate "uguali", ed uno in cui due Golf di colore

diverso sono considerate "uguali"

- implementare la equals per i diversi scenari.

14
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Esercizio

Definire una hashCode corretta. Aggiungere tre diverse
istanze di automobili "uguali" a un set, e controllare

la dimensione del set ottenuto. Vi torna il valore
ottenuto per la dimensione del set?

Definire una hashCode non corretta. Aggiungere tre
diverse istanze di automobili "uguali" a un set, e

controllare la dimensione del set ottenuto. Vi torna il
valore ottenuto per la dimensione del set? Potete

spiegare quel che osservate?

15
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Fondamenti di Java

Collection: object ordering

16
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Object ordering
Ci sono due modi per ordinare oggetti:

The Comparable interface provides automatic
natural order on classes that implement it.

The Comparator interface gives the
programmer complete control over object
ordering. These are not core collection
interfaces, but underlying infrastructure.

17
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Object ordering with Comparable
A List l may be sorted as follows:
Collections.sort(l);

If the list consists of String elements, it will be sorted into
lexicographic (alphabetical) order.
If it consists of Date elements, it will be sorted into
chronological order.

How does Java know how to do this?
String and Date both implement the Comparable interface. The
Comparable interfaces provides a natural ordering for a class,
which allows objects of that class to be sorted automatically.

18
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Comparable Interface
int compareTo(Object o)

Compares this object with the specified object for order.
Returns a negative integer, zero, or a positive integer as
this object is less than, equal to, or greater than the
specified object.

Definisce l’”ordinamento naturale” per la classe
implementante.

19
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

public class Car implements Comparable{

 public int maximumSpeed=0;
 public String name;
 Car(int v,String name) {maximumSpeed=v;
this.name=name;}
 public int compareTo(Object o){
 if (!(o instanceof Car)) {
 System.out.println("Tentativo di
comparare mele e pere!");
 System.exit(1);
 }
 if (maximumSpeed<((Car)o).maximumSpeed)
return -1;
 else return (1);
 }

}

Comparable

20
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

class TestCar{
 List macchine=null;
 public static void main(String[] args) {
 new TestCar();
 }
 TestCar(){
 macchine=new LinkedList();
 Car a=new Car(100,"cinquecento");
 macchine.add(a);
 Car b=new Car(250,"porsche carrera");
 macchine.add(b);
 Car c=new Car(180,"renault Megane");
 macchine.add(c);
 printMacchine();
 Collections.sort(macchine);
 printMacchine();

 }

Comparable

21
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

void printMacchine(){
 Iterator i=macchine.iterator();
 while (i.hasNext()) {
 System.out.println(((Car)i.next()).name);
 }
 }
}

Comparable

22
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Comparable Interface
Class Point implements Comparable {
 int x; int y;

 int compareTo(Object p) {
 … check if Point…
 // ordino sulle y
 retval=y-((Point)p).y;
 // a partità di y ordino sulle x
 if (retval==0) retval=x-((Point)p).x;
 return retval;
}

p1

p2

p1 <p2

p1 p2

p1 <p2

23
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Comparator Interface
int compare(T o1, T o2)
 Compares its two arguments for order.

class NamedPointComparatorByXY
 implements Comparator {
 int compare (NamedPoint p1, NamedPoint p2) {
 // ordino sulle y
 retval=p1.y-p2.y;
 // a partità di y ordino sulle x
 if (retval==0) retval=p1.x-p2.x;
 return retval;
}

24
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Comparator Interface
class NamedPointComparatorByName
 implements Comparator {
 int compare (NamedPoint p1, NamedPoint p2) {
 //usa l’ordine lessicografico delle stringhe
 return (p1.getName().compareTo(p2.getName()));
 }
}
... In un metodo di un altra classe:
 // sia c una Collection di NamedPoints
 Comparator cmp1= new NamedPointComparatorByName();
 Comparator cmp2= new NamedPointComparatorByXY();
 List x = new ArrayList(c);
 Collections.sort(x,cmp1)

25
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Lettura di int import java.util.*;
class EmpComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 EmployeeRecord r1 = (EmployeeRecord) o1;
 EmployeeRecord r2 = (EmployeeRecord) o2;
 return r2.hireDate().compareTo(r1.hireDate());
} }
class EmpSort {
 EmpSort() {
 Collection employees = ... ; // Employee Database
 List emp = new ArrayList(employees);
 Collections.sort(emp, new EmpComparator());
 System.out.println(emp);
 }
 public static void main(String args[]) {new EmpSort();}
}

26
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Sezione: Costruttori

Costruttori

27
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Definizione dei costruttori

Se per una classe A non scrivo nessun
costruttore, il sistema automaticamente crea il

costruttore A();

Se invece definisco almeno un costruttore non
void, ad es. A(int s), il sistema non crea il

costruttore A();

28
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Definizione dei costruttori

Se B è figlia di A, il costruttore di B come prima
cosa invoca A(), a meno che la prima istruzione

non sia una super.

B(int k) {
 super(k)...
}

A(int k) {
 ...
}

A() {
 ...
}

B(int k) {
 ...
}

29
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Invocazione dei costruttori
public class A {
 public A() {

 System.out.println("Creo A");
 }
}

public class B extends A {
 public B() {

 System.out.println("Creo B");
 }

 public B(int k) {
 System.out.println("Creo B_int”);

 }
}

Output:
Creo A
Creo B_int

 public static void main(String [] a) {
 B b=new B(1);
 }

30
Fa

c.
Sc

ie
nz

e
–

U
ni

ve
rs

ità
 d

i T
re

nt
o

Programmazione 2 - Marco Ronchetti

Invocazione dei costruttori
public class A {

 public A(int k) {
 System.out.println("Creo A");

 }
}

public class B extends A {
 public B() {

 System.out.println("Creo B");
 }

 public B(int k) {
 System.out.println("Creo B_int”);

 }
}

Output:
ERRORE !

Perchè ?

 public static void main(String [] a) {
 B b=new B(1);
 }

