TCP Networking in Java

Some reminders

Protocol

* Synonymous of Etiquette

a code of behavior that delineates
expectations for social behavior according to
contemporary conventional norms within a
society, social class, or group.

Communications protocol, a set of rules
and regulations that determine how data is
transmitted in telecommunications and
computer networking

HTTP

The Hypertext Transfer Protocol

distributed, collaborative, hypermedia
information systems.

HTTP functions as a request-response protocol
In the client-server computing model.
Actors:

— Internet Engineering Task Force (IETF)
— World Wide Web Consortium (W3C)

RFC

RFC 2616 (June 1999) defined HTTP/1.1

In June 2014, RFC 2616 was retired and HTTP/1.1 was
redefined by
« RFC 7230 - HTTP/1.1: Message Syntax and Routing

RFC 7231 - HTTP/1.1: Semantics and Content

RFC 7232 - HTTP/1.1: Conditional Requests

RFC 7233 - HTTP/1.1: Range Requests

RFC 7234 - HTTP/1.1: Caching

RFC 7235 - HTTP/1.1: Authentication

HTTP/2 is currently in draft form (evolution of SPDY).

HTTP Requests
An HTTP request consists of
a request method, (“subprotocol” specification)

a request URL, (location)
header fields, (metadata)
a body. (data)

HTTP 1.1 defines the following request methods:

» GET: Retrieves the resource identified by the request URL

« HEAD: Returns the headers identified by the request URL

« POST: Sends data of unlimited length to the Web server

« PUT: Stores a resource under the request URL

« DELETE: Removes the resource identified by the request URL
* OPTIONS: Returns the HTTP methods the server supports

* TRACE: Returns the header fields sent with the TRACE request
« CONNECT request connection to a transparent TCP/IP tunnel,
« PATCH apply partial modifications to a resource.

HTTP 1.0 includes only the GET, HEAD, and POST methods.

HTTP Responses
An HTTP response contains a result code, header fields, and a body.

The HTTP protocol expects the result code and all header fields to be
returned before any body content.

Some commonly used status codes include:

* 100: Continue
« 200: OK

* 404: the requested resource is not available

» 401: the request requires HTTP authentication

» 500: an error occurred inside the HTTP server that prevented it from
fulfilling the request

« 503: the HTTP server is temporarily overloaded and unable to handle the

request

For detailed information on this protocol, see the Internet RFCs: HTTP/1.0
(RFC 1945), HTTP/1.1 (RFC 2616). (http://www.rfc-editor.org/rfc.ntml)

See also http://en.wikipedia.org/wiki/Http

https is a URI scheme which is syntactically identical to the http:
scheme normally used for accessing resources using HTTP. Using an
https: URL indicates that HTTP is to be used, but with a different default
port (443) and an additional encryption/authentication layer between
HTTP and TCP.

This system was developed by Netscape Communications Corporation
to provide authentication and encrypted communication and is widely
used on the World Wide Web for security-sensitive communication,
such as payment transactions.

Secure hypertext transfer protocol’ (S-HTTP) is an alternative
mechanism to the https URI scheme for encrypting web
communications carried over HTTP. S-HTTP is defined in RFC
2660.

Web browsers typically use HTTP to communicate with web servers,
sending and receiving information without encrypting it. For sensitive
transactions, such as Internet e-commerce or online access to financial
accounts, the browser and server must encrypt this information.

The https: URI scheme and S-HTTP were both defined in the mid 1990s
to address this need. Netscape and Microsoft supported HTTPS rather
than S-HTTP, leading to HTTPS becoming the de facto standard
mechanism for securing web communications. S-HTTP is an alternative

mechanism that is not widely used.

Clients and Servers

*The client is the actor that requests to talk.
* The server is the actor that accepts to talk.

The client can create a socket to start a conversation to a
server app anytime.

The server must be repared in aadvance to accept an
incoming conversation.

Sockets
The java.net.Socket class represents a side of
connection (regardless if client o or server).

The server uses the java.net.ServerSocket class to
wait for incoming conversations. It creates a
ServerSocket object and waits, blocked on a
accept() call until a connection comes. Then it
creates a Socket object to be used to communicate
with the client.

Sockets
A server can maintain many conversations
simoultaneously.
There is only one ServerSocket, but one Socket
for every client.

. i ServerSocket § Server Application

~

incoming connectipn
~

'S
'

Client Application | 5 N B
Socket I ,

Client Application '
Socket

Server port

The client needs two pieces of info to establish a
connection: a hostname (to get the server’s address) and a
port number (to identify a process on the server
machine).

A server app listens on a predefined port while waiting
for a connection.

Port numbers are coded in the RFC (Es. Telnet 23, FTP 21,
ecc.), but they can be freely chosen for custom services.

Client port
The client’s port number is generally assigned by
the OS, and in general you do not care about it.

When the server responds it opens a new socket
whose number is assigned by the OS. It then
continues listening on the original port, and
serves the particular cliens on the new socket.

Sockets

The first choice is which protocol to use:
connection-oriented (TCP)
or
connectionless (UDP).

The Java Socket class uses TCP

java.net.Socket

This class implements a socket for interprocess
communication over the network.

The constructor methods create the socket and connect it
to the specified host on the specified port.

java.net.Socket - main methods

The constructor methods create the socket and connect it
to specified host and port.

Once the socket is created, getInputStream() e
getOutputStream() return InputStream e OutputStream
objects (usable as I/O channels).

getlnetAddress() e getPort() return address and port to
which the socket is connected.

getLocallPort() returns the local port used by the socket .

close() closes la socket.

java.net.ServerSocket

During creation you specity on which port to
listen

The accept() starts listening and blocks until
there is an incoming call.

At that point, accept() accepts the connection,
creates and returns a Socket that the server can
use to talk to the client.

jJava.net.ServerSocket — main methods

getlnetAddress() returns the local address
getLocallPort() returns the local port .

close() closes the socket.

Sockets
Clients

try {

Socket sock = new Socket("www.pippo.it", 80);
//Socket sock = new Socket("128.252.120.1", 80);

} catch (UnknownHostException e) {

System.out.println("Can't find host.");

} catch (IOException e) {

}

System.out.println ("Error connecting to host.");

Connection-oriented protocol

Server

*Create a ServerSocket object.

* After accepting the connection, create a Socket che
object.

* Create InputStream and OutputStream to read / write
bytes from/to the connection.

*Optionally create a new thread for every connection, so
that the serer can listen for new requests while serving
arrived clients.

Reading & Writing raw bytes — Client side

try {
Socket server = new Socket("foo.bar.com", 1234);

InputStream in = server.getInputStream() ;
OutputStream out = server.getOutputStream() ;
// Write a byte
out.write (42) ;
// Read a byte
Byte back = in.read() ;
server.close() ;
} catch (IOException e) { }

Reading & Writing raw bytes — Server side

try {
ServerSocket listener = new ServerSocket(1234) ;

while ('finished) {
Socket aClient = listener.accept()
// wait for connection
InputStream in = aClient.getInputStream() ;
OutputStream out = aClient.getOutputStream() ;
// Read a byte
Byte importantByte = in.read()
// Write a byte
out.write (43) ;
aClient.close() ;

}

listener.close() ;

} catch (IOException e) { }

Reading & Writing newline delimited strings —
Client

Incapsulating InputStream and OutputStream it is
possible to access streams in an easier way.

try {
Socket server = new Socket("foo.bar.com", 1234);

InputStream in = server.getInputStream() ;
DataInputStream din = new DatalInputStream(in);

OutputStream out = server.getOutputStream() ;
PrintStream pout = new PrintStream(out);

// Say "Hello" (send newline delimited string)
pout.println("Hello!") ;
// Read a newline delimited string
String response = din.readLine() ;
server.close() ;

} catch (IOException e) { }

Reading & Writing newline delimited strings —

Server

try {

ServerSocket listener = new ServerSocket(1234) ;
while ('finished) {

}

Socket aClient = listener.accept()

// wait for connection

InputStream in = aClient.getInputStream() ;
DataInputStream din = new DataInputStream(in) ;
OutputStream out = aClient.getOutputStream() ;
PrintStream pout = new PrintStream(out);

// Read a string

String request = din.readLine() ;

// Say "Goodbye"

pout.println ("Goodbye!") ;

aClient.close() ;

listener.close() ;
} catch (IOException e) { }

A concurrent HT TP mini-server -
Introduction

TinyHttpd listens on a specified port and services simple
HTTP "get file" requests. They look something like this:

GET /path/filename [optional stuff]

Your Web browser sends one or more as lines for each
document it retrieves. Upon reading the request, the server
tries to open the specified file and send its contents. If that
document contains references to images or other items to be
displayed inline, the browser continues with additional GET
requests. For best performance (especially in a time-slicing
environment), TinyHttpd services each request in its own
thread. Therefore, TinyHttpd can service several requests
concurrently.

A concurrent HT TP mini-server

package tinyhttpd;

import java.net.¥*;
import java.io.¥*;

public class TinyHttpd {
public static void main(String argv[])
throws IOException ({
int port = 8000;
if (argv.length>0) port=Integer.parselnt (argv[0])
ServerSocket ss = new ServerSocket (port);
System.out.println("Server is ready")
while (true)

new TinyHttpdConnection (ss.accept())

A concurrent HT TP mini-server

class TinyHttpdConnection extends Thread ({
Socket sock;

TinyHttpdConnection (Socket s) {
sock = s;
setPriority (NORM PRIORITY - 1);
start () ;

public void run() {

System.out.println (" ")

OutputStream out = null;

try {
out = sock.getOutputStream() ;
BufferedReader d =

new BufferedReader (new InputStreamReader (
sock.getInputStream())) ;

String req = d.readLine() ;;
System.out.println ("Request: " + req);
StringTokenizer st = new StringTokenizer (req) ;

A concurrent HTTP mini-server - Note

. By lowering its priority to NORM_PRIORITY-1 (just
below the default priority), we ensure that the
threads servicing established connections won't
block TinyHttpd's main thread from accepting new
requests.

(On a time-slicing system, this is less important.)

Un mini-server concorrente HT TP

if ((st.countTokens () >= 2) && st.nextToken() .equals("GET")) {
if ((req = st.nextToken()) .startsWith("/")) ({
req = req.substring(1l) ;
}
if (reqg.endsWith("/") || reqg.equals("")) {
req = req + "index.html";

}

try {
FileInputStream fis = new FileInputStream(req) ;

byte[] data = new byte[fis.available()];
fis.read(data) ;

out.write (data) ;

} catch (FileNotFoundException e) {
new PrintStream(out) .println("404 Not Found");

System.out.println("404 Not Found: " + req);
}

} else {
new PrintStream(out) .println("400 Bad Request") ;
System.out.println("400 Bad Request: " + req);

sock.close() ;

Un mini-server concorrente HT TP

} catch (IOException e) {
System.out.println("Generic I/O error " + e);
} finally ({
try {
out.close() ;
} catch (IOException ex) {
System.out.println("I/O error on close" + ex);

}

Project Properties - TinyHttpd

Categories:

Q
Q
v @

Sources
Libraries

Build

@ Compiling
© Packaging
@ Deployment
@ Documenting
Run
Application

© Web Start
License Headers
Formatting
Hints

Configuration: L <default config>

¢J [New... J Delete

Runtime Platform: [Project Platform

+| | Manage Platforms...

Main Class: Itinyhttpd.TinyHttpd

| [Browse...

Arguments: I

Working Direct@cts/carlfx/Tianttpd/ src/tinyhttpd | Q Browse...

VM Options: |

| [Customize

(e.g. ~Xms10m)

Run with Java Web Start

(To run and debug the application with Java Web Start, first enable Java Web Start)

[

Help J [Cancel J [

OK

| v [TinyHttpd

» (] build
» [dist
» (] nbproject
v [src
» O

[secret
» £ build.xml
‘@] manifest.mf

A concurrent HT TP mini-server - usage

Compile TinyHttpd and place it in your class path. Go to a
directory with some interesting documents and start the
ddemon, specifying an unused port number as an argument.
For example:

% jJava TinyHttpd 1234

You should now be able to use your Web browser to retrieve
files from your host. You'll have to specity the nonstandard
port number in the URL. For example, if your hostname is
foo.bar.com, and you started the server as above, you could
reference a file as in:

http://foo.bar.com:1234/welcome.html

A concurrent HT TP mini-server - Problems

TinyHttpd still has room for improvement. First, it
consumes a lot of memory by allocating a huge array
to read the entire contents of the file all at once. A
more realistic implementation would use a buffer
and send large amounts of data in several passes.

TinyHttpd also fails to deal with simple things like

directories. It wouldn't be hard to add a few lines of

code to read a directory and generate linked HTML
listings like most Web servers do.

A concurrent HT TP mini-server - Problems

TinyHttpd suffers from the limitations imposed by
the fickleness of filesystem access.

It's important to remember that file pathnames are
still architecture dependent--as is the concept of a
filesystem to begin with. TinyHttpd should work,
as is, on UNIX and DOS-like systems, but may
require some customizations to account for
differences on other platforms. It's possible to write
more elaborate code that uses the environmental
information provided by Java to tailor itself to the
local system.

A concurrent

ITTP mini-server - Problems

The biggest problem with TinyHttpd is that there are
no restrictions on the files it can access. With a little
trickery, the daemon will happily send any file in
your filesystem to the client.

[t would be nice if we could restrict TinyHttpd to
files that are in the current directory, or a

subdirectory.

