
Hands on XSL

XSL-basic elements

Transforming XML

XSL file 1 XSLT
Processor

WML file XSL file 2

HTML file

XML file

Contenuto

Forma Documento

<?xml version="1.0"?>
<?xml-stylesheet href="hello.xsl" type="text/xsl"?>

<!-- Here is a sample XML file -->
<page>
 <title>Test Page</title>
 <content>
 <paragraph>What you see is what you get!</paragraph>
 </content>
</page>

HANDS ON! - Esempio1 XML

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="page">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>
 </head>
 <body bgcolor="#ffffff">
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

HANDS ON! - Esempio1 XSL a

 <xsl:template match="paragraph">
 <p align="center">
 <i>
 <xsl:apply-templates/>
 </i>
 </p>
 </xsl:template>
</xsl:stylesheet>

HANDS ON! - Esempio1 XSL b

Let us use the Apache XSLT processor: Xalan.

1) Get Xalan from xml.apache.org/xalan/index.html

2)Set CLASSPATH=%CLASSPATH%;…/xalan.jar; …/

xerces.jar

3) java org.apache.xalan.xslt.Process
–IN testPage.xml –XSL testPage.xsl –O out.html

HANDS ON! - Esempio1 Xalan

<html>
 <head>
 <title>
 Test Page
 </title>
 </head>
 <body bgcolor="#ffffff">
 <p align="center">
 <i>
 What you see is what you get!
 </i>
 </p>
 </body>
</html>

HANDS ON! - Esempio1 Output
HTML

•  The process starts by traversing the document tree,
attempting to find a single matching rule for each visited
node.

•  Once the rule is found, the body of the rule is istantiated

•  Further processing is specified with the <xsl:apply-
templates>. The nodes to process are specified in the
match attribute. If the attribute is omitted, it continues with
the next element that has a matching template.

The process

<template match=“/|*”>
 <apply-templates/>
</template>

<template match=“text()”>
 <value-of select=“.”/>
</template>

Implicit rules

<?xml version="1.0"?>
<?xml-stylesheet href="IgnoraParte4.xsl" type="text/xsl" ?>
<ROOT>
<SECRET>
SEZIONE RISERVATA:
 <TAG1>Testo Privato</TAG1>
</SECRET>
<PUBLIC>
SEZIONE PUBBLICA
 <TAG1>Testo Pubblico</TAG1>
</PUBLIC>
</ROOT>

Selective processing - example

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"

 version="1.0"
>
 <xsl:template match="SECRET">A private part exists</

xsl:template>
 <xsl:template match="PUBLIC">A public part exists/xsl:template>
 <xsl:template match="PUBLIC">The public part contains:

<xsl:apply-templates/></xsl:template>
</xsl:stylesheet>

OUTPUT
<?xml version="1.0" encoding="UTF-8"?>

A private part exists
The public part contains:
SEZIONE PUBBLICA
Testo Pubblico

Selective processing - example

/ matches the root node

A matches any <A> element
* matches any element
A|B matches any <A> or element
A/B matches any element within a <A> element
A//B matches any element with a <A> ancestor

text() matches any text node

Pattern Matching - nodes

id(“pippo”) matches the element with unique ID pippo
A[1] matches any <A> element that is the first <A> child of its

parent
A[last()=1] matches any <A> element that is the last <A> child

of its parent
B/A[position() mod 2 = 1] matches any <A> element that is an

odd-numbered <A> child of its B parent

Pattern Matching

@A matches any A attribute
@* matches any attribute
B[@A=“v”]//C matches any <C> element that has a

ancestor with a A attribute with v value

processing-instruction()
node()

Pattern Matching - attributes

IMPORT
<import href=“…”>

PRIORITIES
<template match=“…” priority=“2” > (default 1)
When priorities are equal, the last definition wins

STRIPPING SPACES
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/

Transform"
 version="1.0">
<xsl:strip-space elements="*"/>
...
</xsl:stylesheet>

Imports, priorities and spaces

<variable name=“colore”>rosso</variable>
…
Il colore e’: <xsl:value-of select=“$colore”>.

<template name=“header”>
Sequence of text and tags
</template>
…
<call-template name=“header”/>

<template name=“header”><param name=“P”>default</param>
Sequence of text and tags, including <value-of select=“$P”/>
</template>
…
<call-template name=“header”>
<with-param name=“P”>3</with-param></call-template>

Variables, templates and
parameters

Once a value has
been assigned to a
variable, it cannot be
changed

< xsl: if test”position() mod 2 =0”>
 <apply_templates/>

</ xsl: if>

<xsl:choose>
<xsl: when test”position() mod 2 =0”>

 <apply_templates/>
</xsl: when>
<xsl: otherwise>

 <I><apply_templates/></I>
</xsl: otherwise >
</xsl: choose >

conditions

<xsl:for-each select=“expression”>
 some rule

</xsl:for-each>

for-each

<list>
 <item sortcode=“C”> Pluto</item>
 <item sortcode=“A”> Topolino </item>
 <item sortcode=“B”>Pippo</item>

</list>

<template match=“list”>
 <apply-templates><sort/></apply-templates>
</template>

<template match=“list”>
 <apply-templates>
 <sort select=“@sortcode” order=descending/>
</apply-templates>
</template>

Sorting

• 

•  Using XSLT from Java

Transformations

TrAX

TransformerFactory tf = TransformerFactory .newInstance();
 StreamSource xslSS=new StreamSource(“source.xsl”);
 StreamSource xmlSS=new StreamSource(“source.xml”);
 Transformer t=tf.newTrasformer(xslSS);
 t.transform(xmlSS,new StreamResult(new

 FileOutputStream(“out.html”);

java –Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TrasformerFactoryImpl MyClass

xml.transform packages
Package Description

javax.xml.transf
orm

Defines the TransformerFactory and Transformer classes,
which you use to get a object capable of doing
transformations. After creating a transformer object, you
invoke its transform() method, providing it with an input
(source) and output (result).

javax.xml.transf
orm.dom

Classes to create input (source) and output (result) objects
from a DOM.

javax.xml.transf
orm.sax

Classes to create input (source) from a SAX parser and output
(result) objects from a SAX event handler.

javax.xml.transf
orm.stream

Classes to create input (source) and output (result) objects
from an I/O stream.

•  javax.xml.transform.Transformer
•  transform(Source xmls, Result output)

•  javax.xml.transform.sax.SAXResult implements Result
•  javax.xml.transform.sax.SAXSource implements Source

•  javax.xml.transform.stream.StreamResult implements
Result

•  javax.xml.transform.stream.StreamSource implements
Source

•  javax.xml.transform.dom.DOMResult implements Result
•  javax.xml.transform. dom.DOMSource implements Source

TrAX main classes

Xpath

Sources:
http://www.brics.dk/~amoeller/XML

http://www.w3schools.com

Overlapping domains

XPath

•  XPath is a syntax for defining parts of
an XML document

•  XPath uses path expressions to
navigate in XML documents

•  XPath contains a library of standard
functions

•  XPath is a major element in XSLT
•  XPath is a W3C Standard

Terminology

•  Element
•  Attribute
•  text,
•  namespace,
•  processing-instruction,
•  comment,
•  document (root) nodes

expressions

The most useful path expressions:
•  nodename Selects all child nodes of the

named node
•  / Selects from the root node
•  // Selects nodes in the document from the

current node that match the selection no
matter where they are

•  . Selects the current node
•  .. Selects the parent of the current node
•  @ Selects attributes

Wildcards

Path wildcards can be used to select
unknown XML elements.

•  * Matches any element node
•  @* Matches any attribute node
•  node() Matches any node of any kind

Axis: a node-set relative to
the current node.

Operators

Xpath functions

•  See
http://www.w3schools.com/xpath/

xpath_functions.asp

/ matches the root node

A matches any <A> element
* matches any element
A|B matches any <A> or element
A/B matches any element within a <A> element
A//B matches any element with a <A> ancestor

text() matches any text node

Pattern Matching - nodes

id(“pippo”) matches the element with unique ID
pippo

A[1] matches any <A> element that is the first <A>
child of its parent

A[last()=1] matches any <A> element that is the last
<A> child of its parent

B/A[position() mod 2 = 1] matches any <A> element
that is an odd-numbered <A> child of its B parent

Pattern Matching

@A matches any A attribute
@* matches any attribute

B[@A=“v”]//C matches any <C> element that has a

 ancestor with a A attribute with v value
processing-instruction()
node()

Pattern Matching - attributes

Using Xpath from java

XPath expressions are much easier to write
than detailed (DOM) navigation code.

When you need to extract information from an
XML document, the quickest and simplest
way is to embed an XPath expression inside
your Java program.

Java 5 introduces the javax.xml.xpath
package, an XML object-model independent
library for querying documents with XPath.

Example

Find all the books by Dante Alighieri
•  //book[author="Dante Alighieri"]/title
assuming a suitable data structure:
…
 <book author="someone">
 …
 <title>Title of the book</title>
 …
 </book>
…

Java code

import java.io.IOException;
import org.w3c.dom.*;
import org.xml.sax.SAXException;
import javax.xml.parsers.*;
import javax.xml.xpath.*;
public class XPathExample {
 public static void main(String[] args)
 throws ParserConfigurationException, SAXException,
 IOException, XPathExpressionException {
 //read an XML file into a DOM Document
 DocumentBuilderFactory domFactory=
 DocumentBuilderFactory.newInstance();

domFactory.setNamespaceAware(true); // never forget this!
DocumentBuilder builder =
domFactory.newDocumentBuilder();Document doc =

 builder.parse("books.xml");

Java code

// prepare the XPath expression
 XPathFactory factory = XPathFactory.newInstance();
 XPath xpath = factory.newXPath();
 XPathExpression expr
 = xpath.compile("//book[author='Dante Alighieri']/title/text()");
// evaluate the expression on a Node
 Object result = expr.evaluate(doc, XPathConstants.NODESET);
// examine the results
 NodeList nodes = (NodeList) result;
 for (int i = 0; i < nodes.getLength(); i++) {
 System.out.println(nodes.item(i).getNodeValue());
 }
 }

XML Serialization

Using XML to serialize Java
Classes

JAXB Example

package jaxbdemo;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Customer {

String name; int age; int id;

public String getName() {
return name;

}
@XmlElement
public void setName(String name) {

this.name = name;
}

JAXB Example

public int getAge() {
return age;

}
@XmlElement
public void setAge(int age) {

this.age = age;
}

public int getId() {

return id;
}
@XmlAttribute
public void setId(int id) {

this.id = id;
}

}

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>
<customer id="22">
 <age>43</age>
 <name>Pippo De Pippis</name>
</customer>

JAXB Example – O2X

package jaxbdemo;
import java.io.File;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;

public class O2X {
public static void main(String[] args) {

 Customer customer = new Customer();
 customer.setId(22);
 customer.setName("Pippo De Pippis");
 customer.setAge(43);

JAXB Example – O2X

try {
 File file = new File("Data.xml");
 JAXBContext jaxbContext = JAXBContext.newInstance(Customer.class);
 Marshaller jaxbMarshaller = jaxbContext.createMarshaller();

 // output pretty printed
 jaxbMarshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
 jaxbMarshaller.marshal(customer, file);
 jaxbMarshaller.marshal(customer, System.out);
} catch (JAXBException e) { e.printStackTrace(); }

 }
}

JAXB Example – X2O

package jaxbdemo;
import java.io.File;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

public class X2O {
 public static void main(String[] args) {
 try {

 File file = new File("Data.xml");
 JAXBContext jaxbContext = JAXBContext.newInstance(Customer.class);
 Unmarshaller jaxbUnmarshaller = jaxbContext.createUnmarshaller();
 Customer customer = (Customer) jaxbUnmarshaller.unmarshal(file);
 System.out.println(customer);

 System.out.println(customer.getName()+" AGE="+customer.getAge());
 } catch (JAXBException e) {e.printStackTrace();}
} }

JAXB Tutorial

•  http://docs.oracle.com/javase/
tutorial/jaxb/intro/

import java.io.File;
import org.simpleframework.xml.Serializer;
import org.simpleframework.xml.load.Persister;
public class StorableAsXML implements Serializable {
 // ==== SERIALIZATION/DESERIALIZATION PRIMITIVES
 public void persist(File f){
 Serializer serializer = new Persister();
 try {
 serializer.write(this, f);
 } catch (Exception ex) {
 ex.printStackTrace();
 }

Using Simple-XML

import java.io.Serializable;
public class X implements Serializable
 FileOutputStream fos=null;
 ObjectOutputStream oos=null;
 try {
 fos=new FileOutputStream(f);
 oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 public StorableAsXML resume(File f, Class<? extends
StorableAsXML> c){

 StorableAsXML retval = null;
 try {
 Serializer serializer = new Persister();
 retval = (StorableAsXML)serializer.read(c, f);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return retval;
 }
}

Using Simple-XML

 FileInputStream fis=null;
 ObjectInputStream ois=null;
 try {
 fis=new FileInputStream(f);
 ois = new ObjectInputStream(fis);
 retval=(X)ois.readObject();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

public class Lecture extends StorableAsXML implements Serializable {
 private Set<String> lecturers=null; //non serialized field
 @Element(name="NAME")
 public String lectureName=null;
 @Element(name="DATE")
 private Date date=null;
 @Element(name="SEQUENCE_NUMBER")
 private int sequenceNumber=-1; //-1 means not initialized
 @Element(name="COURSE_HOME")
 private String courseRef=null; //Home per il corso
 @Element(name="LECTURE_HOME")
 private String dirName=null;
 @Element(name="LECTURER",required=false)
 private String lecturer=null;
 @Element(name="VIDEO",required=false)
 private String videoFileName=null;
 @Element(name="VIDEO_LENGTH",required=false)
 private String videoLenght=null; //null = Video does not exist
 @Element(name="HAS_POST_PROCESSING")
 private boolean hasPostProcessing=false;

Using Simple-XML

public Lecture(){
// needed to be a
bean
//for XMLSerialization
 …;
 }

Generated XML

<LECTURE>
 <NAME>gg</NAME>
 <DATE>2008-09-05 16:20:34.365 CEST</DATE>
 <SEQUENCE_NUMBER>1</SEQUENCE_NUMBER>
 <COURSE_HOME>/Users/ronchet/_LODE/COURSES/Hh_2008
 </COURSE_HOME>
 <LECTURE_HOME>01_Gg_2008-09-05</LECTURE_HOME>
 <LECTURER>A.B.</LECTURER>
 <HAS_POST_PROCESSING>false</HAS_POST_PROCESSING>
</LECTURE>

@Root(name="COURSE")
public class Course extends StorableAsXML implements Serializable

{
 @Element(name="NAME")
 private String courseName=null;
 @Element(name="YEAR")
 private String year=null;
 @Element(name="COURSE_HOME")
 private String fullPath=null;

 @ElementList(name="LECTURES",entry="LECTURE")
 private Set<String> lectures=new TreeSet<String>();

 @ElementList(name="TEACHERS",entry="TEACHER_NAME")
 private Set<String> teachers=new TreeSet<String>();

Using XML to serialize Java Classes

<COURSE>
 <NAME>hh</NAME>
 <YEAR>2008</YEAR>
 <COURSE_HOME>/Hh_2008</COURSE_HOME>
 <LECTURES class="java.util.TreeSet">
 <LECTURE>01_Gg_2008-09-05</LECTURE>
 </LECTURES>
 <TEACHERS class="java.util.TreeSet">
 <TEACHER_NAME>A.B.</TEACHER_NAME>
 <TEACHER_NAME>C.D.</TEACHER_NAME>
 </TEACHERS>
</COURSE>

Javadoc

http://simple.sourceforge.net/
download/stream/doc/javadoc/org/
simpleframework/xml/package-
summary.html

