Hands on XSL

XSL-basic elements

Transforming XML

XML file Documento
XSL file 1 HTML file
Processor
XSL file 2 WML file

HANDS ON! - Esempio1 XML

<?xml version="1.0"?>
<?xml-stylesheet href="hello.xsl" type="text/xsl|"?>

<l-- Here is a sample XML file -->
<page>
<title>Test Page<l/title>
<content>
<paragraph>What you see is what you get!</paragraph>
</content>
</page>

HANDS ON! - Esempio1 XSL a

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="page">
<html>
<head>
<title>
<xsl:value-of select="title"/>
</title>
</head>
<body bgcolor="#ffffff">
<xsl:apply-templates/>
</body>
</htmli>
</xsl:template>

HANDS ON! - Esempio1 XSL b

<xsl:template match="paragraph">
<p align="center">
<>
<xsl:apply-templates/>
<[i>
</p>
</xsl:template>
</xsl:stylesheet>

HANDS ON! - Esempio1 Xalan

Let us use the Apache XSLT processor: Xalan.
1) Get Xalan from xml.apache.org/xalan/index.html

2)Set CLASSPATH=%CLASSPATH%;.../xalan.jar; -
xerces.jar

3)javaOrg.apache.xalan.xslt.Process
—IN testPage.xml —XSL testPage.xsl —O out.html

HANDS ON! - Esempio1 Output
HTML

<html>
<head>
<title>
Test Page
<[title>
</head>
<body bgcolor="#ffffff">
<p align="center">
<i>
What you see is what you get!
<[i>
</p>
</body>
</html|>

The process

The process starts by traversing the document tree,

attempting to find a single matching rule for each visited
node.

Once the rule is found, the body of the rule is istantiated

Further processing is specified with the <xsl:apply-
templates>. The nodes to process are specified in the
match attribute. If the attribute is omitted, it continues with
the next element that has a matching template.

Implicit rules

<template match="/*">
<apply-templates/>
</template>

<template match="text()”>

<value-of select="."/>
</template>

Selective processing - example

<?xml version="1.0"?>

<?xml-stylesheet href="IgnoraParte4.xsl" type="text/xsl" ?>

<ROOT>

<SECRET>

SEZIONE RISERVATA:
<TAG1>Testo Privato</TAG1>

</[SECRET>

<PUBLIC>

SEZIONE PUBBLICA
<TAG1>Testo Pubblico</TAG1>

</PUBLIC>

</ROOT>

Selective processing - example

<xsl:stylesheet xmins:xs|="http://lwww.w3.0rg/1999/XSL/
Transform™

version="1.0"
>

<xsl:template match="SECRET">A private part exists</
xsl:template>

<xsl:template match="PUBLIC">A public part exists/xsl:template>

<xsl:template match="PUBLIC">The public part contains:
<xsl:apply-templates/></xsl:template>

</xsl:stylesheet>

OUTPUT
<?xml version="1.0" encoding="UTF-8"?>

A private part exists

The public part contains:
SEZIONE PUBBLICA
Testo Pubblico

Pattern Matching - nodes

/ matches the root node

A matches any <A> element
* matches any element
A|B matches any <A> or element

A/B matches any element within a <A> element
A/IB matches any element with a <A> ancestor

text() matches any text node

Pattern Matching

id(“pippo”) matches the element with unique ID pippo

A[1] matches any <A> element that is the first <A> child of its
parent

A[last()=1] matches any <A> element that is the last <A> child
of its parent

B/A[position() mod 2 = 1] matches any <A> element that is an
odd-numbered <A> child of its B parent

Pattern Matching - attributes

@A matches any A attribute
@* matches any attribute

B[@A="“v”’]//C matches any <C> element that has a
ancestor with a A attribute with v value

processing-instruction()
node()

Imports, priorities and spaces

IMPORT
<import href=“...”>

PRIORITIES
<template match="...” priority="2" > (default 1)
When priorities are equal, the last definition wins

STRIPPING SPACES

<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XSL/
Transform"

version="1.0">
<xsl:strip-space elements="*"/>

</xsl:stylesheet>

Variables, templates and
parameters

<variable name="“colore”>rosso</variable> Once a value has

been assigned to a
II colore e’ : <xsl:value-of select=“$colore”> varlable it cannot be

<template name=“header”> changed

Sequence of text and tags
</template>

<call-template name="header”/>
<template name="“header”><param name=“P”>default</param>
Sequence of text and tags, including <value-of select="$P"/>

</template>

<call-template name=“header”>
<with-param name=“P”>3</with-param></call-template>

conditions

< xsl: if test”position() mod 2 =0">
<apply_templates/>
</ xsl: if>

<xsl:choose>

<xsl: when test”position() mod 2 =0">
<apply_templates/>

</xsl: when>

<xsl: otherwise>
<I><apply_templates/></I>

</xsl: otherwise >
</xsl: choose >

for-each

<xsl:for-each select="expression”>
some rule
</xsl:for-each>

Sorting

<list>
<item sortcode=“C”> Pluto</item>
<item sortcode=“A"> Topolino </item>
<item sortcode=“B”>Pippo</item>
</list>

<template match="list”>
<apply-templates><sort/></apply-templates>
</template>

<template match="list”>

<apply-templates>

<sort select="@sortcode” order=descending/>
</apply-templates>

</template>

Transformations

 Using XSLT from Java

TrAX

Transformation
Instructions

~

TransformerFactory tf = TransformerFactory .newlnstance();
StreamSource xsISS=new StreamSource(“source.xsl”);
StreamSource xmISS=new StreamSource(“source.xml’);
Transformer t=tf.newTrasformer(xsISS);

t.transform(xmISS,new StreamResult(new
FileOutputStream(“out.html”);

java —Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TrasformerFactorylmpl MyClass

xml.transform packages

Package Description

javax.xml.transf Defines the TransformerFactory and Transformer classes,

orm which you use to get a object capable of doing
transformations. After creating a transformer object, you
invoke its transform() method, providing it with an input
(source) and output (result).

javax.xml.transf Classes to create input (source) and output (result) objects
orm.dom from a DOM.

javax.xml.transf Classes to create input (source) from a SAX parser and output
orm.sax (result) objects from a SAX event handler.

javax.xml.transf Classes to create input (source) and output (result) objects
orm.stream from an I/O stream.

TrAX main classes

e javax.xml.transform.Transformer
e transform(Source xmls, Result output)

e javax.xml.transform.sax.SAXResult implements Resulit
e javax.xml.transform.sax.SAXSource implements Source

« javax.xml.transform.stream.StreamResult implements
Result

e javax.xml.transform.stream.StreamSource implements
Source

 Jjavax.xml.transform.dom.DOMResult implements Result
« javax.xml.transform. dom.DOMSource implements Source

Xpath

Sources:
http://www.brics.dk/~amoeller/XML

http://www.w3schools.com

Overlapping domains
I

ZPointer =Link

XPath

« XPath is a syntax for defining parts of
an XML document

« XPath uses path expressions to
navigate in XML documents

» XPath contains a library of standard
functions

« XPath is a major element in XSLT
 XPath is a W3C Standard

Terminology

Element

Attribute

text,

namespace,
processing-instruction,
comment,

document (root) nodes

expressions

The most useful path expressions:

0 Selects all child nodes of the
named node

0 Selects from the root node

° Selects nodes in the document from the

current node that match the selection no
matter where they are

o Selects the current node
o Selects the parent of the current node
° Selects attributes

Wildcards

Path wildcards can be used to select
unknown XML elements.

¢ * Matches any element node
¢ @F Matches any attribute node
* node() Matches any node of any kind

AXxis: a hode-set relative to
the current node.

Result

ancestor

Selects all ancestors (parent, grandparent, etc.) of
the current node

ancestor-or-self

Selects all ancestors (parent, grandparent, etc.) of
the current node and the current node itself

attribute Selects all attributes of the current node
child Selects all children of the current node
descendant Selects all descendants (children, grandchildren, etc.)

of the current node

descendant-or-self

Selects all descendants (children, grandchildren, etc.)
of the current node and the current node itself

following

Selects everything in the document after the closing
tag of the current node

following-sibling

Selects all siblings after the current node

namespace Selects all namespace nodes of the current node
parent Selects the parent of the current node
preceding Selects everything in the document that is before the

start tag of the current node

preceding-sibling

Selects all siblings before the current node

self

Selects the current node

a1

Opera

Operator |Description Example Return value

| Computes two node-sets |[//book | //cd Returns a node-set
with all book and cd
elements

+ Addition &+ 4 10

- Subtraction 6 -4 2

* Multiplication 24

6 *4

div Division 8 div 4 2

= Equal price=9.80 true if price is 9.B0
false if price is 9.90

|= MNot equal price!=9,80 true if price is 9.90
false if price is 9.80

< Less than price<9.80 true if price is 9.00
false if price is 9.80

<= Less than or equal to price<=9.80 true if price is 9.00
false if price is 9.90

= Greater than price>9.80 true if price is 9.90
false if price is 9.80

= Greater than or equal to |price>=9.80 true if price is 9.90
false if price is 9.70

or or price=9.80 or price=9.70 |true if price is 9.80
false if price is 9.50

and and price=9.00 and true if price is 9.8B0

price<9.90 false if price is B.50
mod Modulus (division 5 mod 2 1

remainder)

Xpath functions

* See

http://www.w3schools.com/xpath/
xpath functions.asp

Pattern Matching - nodes

/| matches the root node

A matches any <A> element
* matches any element
A|B matches any <A> or element

A/B matches any element within a <A> element
A/lB matches any element with a <A> ancestor

text() matches any text node

Pattern Matching

id(“pippo”) matches the element with unique ID
pippo

A[1] matches any <A> element that is the first <A>
child of its parent

A[last()=1] matches any <A> element that is the last
<A> child of its parent

B/A[position() mod 2 = 1] matches any <A> element
that is an odd-numbered <A> child of its B parent

Pattern Matching - attributes

@A matches any A attribute
@* matches any attribute

B[@A="v"]//C matches any <C> element that has a
 ancestor with a A attribute with v value

processing-instruction()
node()

Using Xpath from java

XPath expressions are much easier to write
than detailed (DOM) navigation code.

When you need to extract information from an
XML document, the quickest and simplest
way is to embed an XPath expression inside
your Java program.

Java 5 introduces the javax.xml.xpath
package, an XML object-model independent
library for querying documents with XPath.

Example

Find all the books by Dante Alighieri

 //book[author="Dante Alighieri"]/title

assuming a suitable data structure:
<book author="someone">

<title>Title of the book< /title>

</book>

Java code

import java.io.lOException;
import org.w3c.dom.*;
import org.xml.sax.SAXException;
import javax.xml.parsers.*;
import javax.xml.xpath.*;
public class XPathExample {
public static void main(String[] args)
throws ParserConfigurationException, SAXException,
IOException, XPathExpressionException {
//read an XML file into a DOM Document
DocumentBuilderFactory domFactory=

DocumentBuilderFactory.newlnstance();
domFactory.setNamespaceAware(true); // never forget this!
DocumentBuilder builder =
domFactory.newDocumentBuilder();Document doc =

builder.parse("books.xml");

Java code

/| prepare the XPath expression
XPathFactory factory = XPathFactory.newlnstance();
XPath xpath = factory.newXPath();
XPathExpression expr
= xpath.compile("//book[author="'Dante Alighieri']/title/text()");
/| evaluate the expression on a Node
Object result = expr.evaluate(doc, XPathConstants.NODESET);
/| examine the results
NodeList nodes = (NodelList) result;
for (inti = 0; i < nodes.getLength(); i++) {
System.out.printin(nodes.item(i).getNodeValue());
}
}

XML Serialization

Using XML to serialize Java
Classes

JAXB Example

package jaxbdemo;

import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlIRootElement
public class Customer {
String name; int age; int id;

public String getName() {
return name;

}

@XmlElement

public void setName(String name) {
this.name = name;

JAXB Example

public int getAge() {
return age;

}

@XmlElement

public void setAge(int age) {
this.age = age;

}

public int getld() {
return id;

}

@XmlAttribute

public void setld(int id) {
this.id = id;

}

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

<customer id="22">
<age>43</age>
<name>Pippo De Pippis</name>
</customer>

JAXB Example - 02X

package jaxbdemo;

import java.io.File;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;

public class 02X {
public static void main(String[] args) {

Customer customer = new Customer();
customer.setld(22);
customer.setName("Pippo De Pippis");
customer.setAge(43);

JAXB Example - 02X

try {
File file = new File("Data.xml");

JAXBContext jaxbContext = JAXBContext.newlnstance(Customer.class);
Marshaller jaxbMarshaller = jaxbContext.createMarshaller();

/| output pretty printed
jaxbMarshaller.setProperty(Marshaller JAXB_FORMATTED_OUTPUT, true);
jaxbMarshaller.marshal(customer, file);
jaxbMarshaller.marshal(customer, System.out);

} catch (JAXBException e) { e.printStackTrace(); }

JAXB Example - X20

package jaxbdemo;

import java.io.File;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

public class X20 {
public static void main(String[] args) {

try {
File file = new File("Data.xml");
JAXBContext jaxbContext = JAXBContext.newInstance(Customer.class);
Unmarshaller jaxbUnmarshaller = jaxbContext.createUnmarshaller();
Customer customer = (Customer) jaxbUnmarshaller.unmarshal(file);
System.out.printin(customer);
System.out.printin(customer.getName()+" AGE="+customer.getAge());

} catch JAXBException e) {e.printStackTrace();}

I

JAXB Tutorial

» http://docs.oracle.com/javase/
tutorial/jaxb/intro/

Using Simple-XML

T ———
“import java.io.File;

import org.simpleframework.xml.Serializer;
import org.simpleframework.xml.load.Persister;
public class StorableAsXML implements Serializable {
/| ==== SERIALIZATION/DESERIALIZATION PRIMITIVES
public void persist(File f){
Serializer serializer = new Persister();
try {
serializer.write(this, f);
} catch (Exception ex) {
ex.printStackTrace();

Using Simple-XML

public StorableAsXML resume(File f, Class<? extends
StorableAsXML> c){

StorableAsXML retval = null;

try {
Serializer serializer = new Persister();
retval = (StorableAsXML)serializer.read(c, f);

} catch (Exception ex) {
ex.printStackTrace();

}

return retval;

}
}

Using Simple-XML

blic class | T A] Serializable |

private Set<String> lecturers=null; //non serialized field
@Element(name="NAME")

public String lectureName=null;

@Element(name="DATE")

private Date date=null;

@Element(name="SEQUENCE_NUMBER")

private int sequenceNumber=-1; //-1 means not initialized
@Element(name="COURSE_HOME")

private String courseRef=null; //Home per il corso public Lecture(){
@Element(name="LECTURE_HOME") // needed to be a
private String dirName=null; bean -
@Element(name="LECTURER",required=false) //for XMLSerlallzatlon
private String lecturer=null; i
@Element(name="VIDEO",required=false) ¥

private String videoFileName=null;
@Element(name="VIDEO_LENGTH",required=false)

private String videoLenght=null; //null = Video does not exist
@Element(name="HAS_POST_PROCESSING")

private boolean hasPostProcessing=false;

Generated XML

<LECTURE>
<NAME>gg</NAME>
<DATE>2008-09-05 16:20:34.365 CEST</DATE>
<SEQUENCE_NUMBER>1</SEQUENCE_NUMBER>
<COURSE_HOME> /Users/ronchet/ LODE/COURSES/Hh_2008
</COURSE_HOME>
<LECTURE_HOME>01_Gg_2008-09-05</LECTURE_HOME>
<LECTURER>A.B.</LECTURER>
<HAS_POST_PROCESSING>false</HAS_POST_PROCESSING>
</LECTURE>

Using XML to serialize Java Classes

public class Course extends StorableAsXML implements Serializable
{
@Element(name="NAME")

private String courseName=null;
@Element(name="YEAR")

private String year=null;
@Element(name="COURSE_HOME")
private String fullPath=null;

@ElementList(name="LECTURES",entry="LECTURE")
private Set<String> lectures=new TreeSet<String>();

@ElementList(name="TEACHERS",entry="TEACHER_NAME")
private Set<String> teachers=new TreeSet<String>();

Javadoc

http://simple.sourceforge.net/
download/stream/doc/javadoc/org/
simpleframework/xml/package-
summary.html

