How to access your database

from the development
environment

Marco Ronchetti
Universita degli Studi di Trento

Find your DB

1) Look into data/data/YOURPACKAGE/databases/YOURDATABASE.db

2) Pull the file on your PC

3) Use sglite on your PC (in your_sdk_dir/tools)

Use the following script, and

#!sh

adb shell "chmod 777 /data/data/com.mypackage/databases/store.db"
adb pull /data/data/com.mypackage/databases/store.db

OR

Run remote shell

adb -s <serialNumber> <command> to access a device

TRV L VAL s w AT N

lerminale — adb — 80x24
MarcoRonchetti-MacBookS00:platform-tools ronchet$fcd fapplications/Utilitiessan
roid-sdk-macosx/platform-tools
MarcoRonchetti-MacBook500:platform-tools ronchet$./adb -s emulator-5554 shell
pwd

sqlite3

SQL1i te wversion 3.7.4

Enter ".help" for instructions

Enter 5QL statements terminated with a ";"
sqlite> .exit

4

adb

adb is in your android-sdk/platform-tools directory

It allows you to:
Run shell commands on an emulator or device
Copy files to/from an emulator or device
Manage the state of an emulator or device NS
Manage port forwarding on an emulator or device

It is a client-server program that includes three components:
A client, which runs on your development machine.

A daemon, which runs as a background process on each
emulator or device instance.

A server, which runs as a background process on your
development machine and manages communication between
P the client and the daemon.

r|See hitps.//developer.android.com/studio/command-line/adb
4

b

A graphical sqglite browser

http:/ /sqlitebrowser.org/

. Cl‘eate and Compact d atabase fﬂes 000 =1 SQLite Database Browser - /Users/ronchet/Desktop/_tmp/contacts.db
DB BxEFe e B N

{ Database Structure = Browse Data = Execute SQL }—

- Create, define, modify and delete tables

- Create, define and delete indexes
- Browse, edit, add and delete records

Table: | people () (New Record) (Delete Re

l _id name surname

1| 1alfa beta

- Search records

- Import and export records as text

- Import and export tables from/to CSV files
- Import and export databases from/to SQL dump files
- Issue SQL queries and inspect the results

- Examine a log of all SQL commands issued by the application

=§1n-l-u—-h—- - D%
B Lot oo

Lo me w2

DustaceShwchur | Bowee Data

Nams Cooct Tyom

Schema.
CREATE 1A4 Feldlane Fkd T ype

w
- L] ey

2 merdactow

o
cancno| 3 e I

o
dreis
a

pIEE§
1t

P -
l@@

b

5

Testing and deploying on
your device

Marco Ronchetti
Universita degli Studi di Trento

Simple way to deploy
e.g. to give your app to your friends
Get Dropbox both on PC and Android device

Copy your apk from bin/res into dropbox (on PC)
Open dropbox on Android device, and open your apk

[LN/

By sharing your dropbox with others you can easily
pass your app.

www.dropbox.com

DAO Implementation
File System

Marco Ronchetti
Universita degli Studi di Trento

MODEL -

ARCHITECTURE

'|“l=_“ ‘ ! ‘, ‘y‘
' '

; ‘v.
,: ‘ \ N W
- Y

N\

: PRRAANS

— —— L ——— —— S~
— — .

1) Get a (raw) source

File f; ... ; InputStream s = new FileInputStream(f);

Socket s; ... ; InputStream s=s.getlinputStream();

StringBuffer b; ... ; InputStream s = new StringBufferinputStream(f);

2) Add functionality

Reader r=new InputStringReader(s); //bridge class

DatalnputString dis=snew DatalnputString(s); //primitive data
ObjectinputString ois=new ObjectinputString(s); //serialized objects

3) Compose multiple functionalities
InputStream es=new FilteredinputStream |
new BufferedinputStream(
new PushBacklputStream(s)));

L =

Choose the type of source!

You can choose among four types of basic sources:

BYTE CHARACTER

SOURCE InputStream OutputStream Reader Writer

Both file and directory information is available via the
File class, or the classes (like Path) in the nio package.

Buffering

Formatted

Byte Based
Input Output

InputStream OutputStream

ByteArraylnputStream ByteArrayOutputStream

FileInputStream FileOQutputStream
RandomAccessFile RandomAccessFile
PipedInputStream PipedOutputStream

BufferedInputStream BufferedOutputStream

FilterInputStream FilterOutputStream

PushbackInputStream

StreamTokenizer

DatalnputStream DataOutputStream
PrintStream

ObjectInputStream ObjectOutputStream

SequencelnputStream

InputStreamReader

CharArrayReader

FileReader

PipedReader
BufferedReader
FilterReader

PushbackReader

LineNumberReader

StringReader

Character Based

Output
Writer
OutputStreamWriter
CharArrayWriter

FileWriter

PipedWriter
BufferedWriter

Filter Writer

StringWriter

PrintWriter

Android internal file I/O

String FILENAME = "hello_file";
String string = "hello world!";

FileOutputStream fos = openFileOutput(FILENAME,
Context. MODE_PRIVATE);

fos.write(string.getBytes());
fos.close();

NOTA: MODE_WORLD_READABLE | s deprecated!
See https://developer.android.com/reference/android/content/Context

Using temporary files

File file = new File(getCacheDir(), "temp.txt");
try {

file.createNewFile();

FileWriter fw = new FileWriter(file);

BufferedWriter bw = new BufferedWriter(fw);

bw.write("Hello World\n");

bw.close();
} catch (IOException e) {

Toast.makeText(this,
"Error creating a file!”

,Toast LENGTH_SHORT).show();

}

When the device is low on internal storage space, Android may delete these cache
files to recover space.

You should not rely on the system to clean up these files for you.
Clean the cache files yourself

m stay within a reasonable limit of space consumed, such as 1IMB.

Other useful methods

getFilesDir()
Get the absolute path where internal files are saved.
getDir()

Creates (or opens an existing) directory within your
internal storage space.

deleteFile()
Deletes a file saved on the internal storage.

fileList()

Returns an array of files currently saved by your
application.

The DAO interface

package it.unitn.science.latemar;

import java.util.List;

public interface PersonDAO {
public void open();
public void close();

public Person insertPerson(Person person) ;
public void deletePerson(Person person) ;
public List<Person> getAllPerson() ;

package it.unitn.science.latemar;
import ...

The DAO implementation - FS

public class PersonDAO_FS_impl implements PersonDAO {
DataOutputStream fos;
DatalnputStream fis;
Context context=MyApplication.getAppContext();
final String FILENAME="contacts”;

@Qverride
public void open() {

try {
fos=new DataOutputStream(

context.openFileOutput(FILENAME, Context. MODE_APPEND)

);
} catch (FileNotFoundException e) {e.printStackTrace();}

}
@Qverride

public void close() { This should
try { never happen
fos.close();
} catch (IOException e) {e.printStackTrace();}

The DAO impl. — data access 2

@Override
public Person insertPerson(Person person) {

try { write as
fos.writeUTF(person.getName()); — Unicode

fos.writeUTF(person.getSurname());
} catch (IOException e) { e.printStackTrace(); }
return person;

@Override
public void deletePerson(Person person) {
Log.d("trace","deletePerson DAO_FS - UNIMPLEMENTED!");

The DAO impl. — data access 3

@Override
public List<Person> getAllPersons() {
List<Person> list=new ArrayList<Person>();
try { fis=new DatalnputStream(context.openFileInput(FILENAME));
} catch (FileNotFoundException e) {
e.printStackTrace(); return list;

}
while (true) {

try {

String name=fis.readUTF();
String surname=fis.readUTF();
Person p=new Person(name, surname);
list.add(p);
} catch (EOFException e) { break;
} catch (IOException e) { e.printStackTrace(); break; }
}
try { fis.close(); } catch (IOException e) { e.printStackTrace(); }
return list;

P satlite

Add New

Delete First

Ty
/ 4

Add New -

B saviite

A

uno

Restart...

Delete First

A uno

I saviite

Add New

Delete First
A uno

B due

P saviite

Add New -

B

dud

Delete First
A uno

B due

B saviite
Add New

B

dud

Delete First -

B due

Serializing any-size objects to a random access file

http:/ /photonsphere.org/ posts-output/2011-06-29-
serializing-any-size-objects-to-a-random-access-file/

Index-file Data-file

See iava.io
Class RandomAccessFile

External Files

Marco Ronchetti
Universita degli Studi di Trento

External storage

Every Android-compatible device supports a shared
"external storage" that you can use to save files.

It can be:
a removable storage media (such as an SD card)

an internal (non-removable) storage.

Files saved to the external storage
are world-readable

can be modified by the user when the USB card
storage in moved on a computer!

Possible states of external media

String Environment.getExternalStorageState();

MEDIA_MOUNTED

media is present and mounted at its mount point with read/write access.
MEDIA_MOUNTED_READ_ONLY

media is present and mounted at its mount point with read only access.
MEDIA_NOFS

media is present but is blank or is using an unsupported filesystem | .
MEDIA_CHECKING

media is present and being disk-checked
MEDIA_UNMOUNTED

media is present but not mounted
MEDIA_SHARED

media is in SD card slot, unmounted, and shared as a mass storage device.
MEDIA_UNMOUNTABLE

media is present but cannot be mounted.

MEDIA_REMOVED

.. boolean Environment.isExternalStorageEmulated ()
media is not present.

boolean Environment.isExternalStorageRemovable()

4T MEDIA BAD REMOVAL

' . media was removed before it was unmounted.
¥ -

Standard directories (constants):

DIRECTORY_DOWNLOADS

tiles that have been downloaded by the user.
DIRECTORY_MOVIES

movies that are available to the user.
DIRECTORY_PICTURES

pictures that are available to the user.
DIRECTORY_DCIM

The traditional location for pictures and videos when mounting the device as a
camera.

Places for audio files:

DIRECTORY_MUSIC

music for the user.
DIRECTORY_ALARMS

alarms sounds that the user can select (not as regular music).
DIRECTORY_NOTIFICATIONS

notifications sounds that the user can select (not as regular music).
DIRECTORY_PODCASTS

podcasts that the user can select (not as regular music).
DIRECTORY_RINGTONES

ringtones that the user can select (not as regular music).

Other Environment static methods

static File getRootDirectory()
Gets the Android root directory (typically returns /system).

static File getDataDirectory()
Gets the Android data directory (typically returns /data).

static File getDownloadCacheDirectory/()

Gets the Android Download/Cache content directory. Here go temporary files that
are specific to your application If the user uninstalls your application, this
directory and all its contents will be deleted. You should manage these cache files
and remove those that aren't needed in order to preserve file space.

static File getExternalStorageDirectory()

Gets the Android external storage directory. Here go files that are specific to your

ap})lication If the user uninstalls your application, this directory and all its contents
will be deleted.

static File getExternalStoragePublicDirectory(String type)

Get a top-level public external storage directory for placing files of a particular
type. This is where the user will typically place and manage their own files. Here
go files that are not specific to your application and that should not be deleted
when your application is uninstalled

