HTTP, HTTPS and
TCP Networking in Java

Some reminders

Credits

Some material derived from:
« HTTP vs. HTTPS by Eng. T. Aldaldooh

RFC

Request for Comments (RFC) are a type of
publication from the Internet Engineering Task
Force (IETF) and the Internet Society (ISOC), the
principal technical development and standards-
setting bodies for the Internet.

 An RFC is authored by engineers and computer
scientists in the form of a memorandum
describing methods, behaviors, research, or
iInnovations applicable to the working of the
Internet and Internet-connected systems. |

Protocol

* Synonymous of Etiquette

a code of behavior that dellneates
expectations for social behavior according to
contemporary conventional norms within a
society, social class, or group.

Communications protocol, a set of rules
and regulations that determine how data is
transmitted in telecommunications and
computer networking

HTTP on port 80

- * HTTP with SSL (HTTPS) on port 443
POrt « FTP on port 21

* SMTP on port 25

* POP on port 110

* SSH on port 22

A port is an endpoint of communication in an operating system.

A process associates its input or output channels, via an Internet socket,
with a transport protocol, a port number, and an IP address.

This process is known as binding,

PID PORT IP Protocol
84 21 193.205.196.130 FTP

78 80 193.205.196.130 HTTP
321 8080 193.205.196.130 HTTP
541 25 193.205.196.130 SMTP

Mistranslated into Italian as “Porta” (door)

URL and URI

e URLs used early on by all Internet protocols,
including various document retrieval protocols.

e More specifications (both from 1994):

— URL : Uniform Resource Locators - RFC 1738.
— URI : Universal Resource Identifiers - RFC 1630.

URL is just one type of a URI.

URLS and URIS

e URL (Uniform Resource Locators)
— Provides single short string to identify network-accessible resource
- <scheme>://<host>[:<port>]/<path>[?<query>]

— http://www.w3.org/lcons/w3c _home.qif

e URI (Uniform Resource Identifier)
— Identifies a resource either by location or name.
— The selection of the representation can be determined by the web server
through HTTP content negotiation.
— A superset of URLs

- http://www.w3.org/Icons/w3c_home.

- http request line contains a non-URL URI

URL, URN, URC

e URL: identify resources by specifying their locations
in the context of a particular access protocol, such as
HTTP or FTP.

e URN: persistent, location-independent identifiers

e URC: standardized representation of document
properties, such as owner, encoding, access

restrictions or cost.

URN

e URN are not locators, are not required to be associated with

a particular protocol or access method, and need not be
resolvable.

e They should be assigned by a procedure which provides

some assurance that they will remain unique and

identify the same resource persistently over a prolonged
period.

e A typical URN namespace is urn:isbn, for International
Standard Book Numbers.

URLSs cont.

http://guest:secret@www.ietf.org:80/html.charters/wg-dir.html?sess=1#Applications_Area

protocol - -- http

username -------- guest

fragment .. App"cations-Area

URLSs cont.

Protocol: Identifies the application protocol needed to access the
resource, in this case HTTP.

Username : If the protocol supports the concept of user names, this
provides a user name that has access to the resource; in the example
“‘guest.”

Password: The password associated with the user name, “secret” in
the example.

Host : The communication system that has the resource; for HTTP this
is the Web server, www.ietf.org in the example.

Port : The TCP port that the application protocols should use to access
the resource; many protocols have an implied TCP port (for HTTP that
port is 80

Path : The path through a hierarchical organization under which the
resource is located, often a file system’s directory structure or
equivalent.

File: The resource itself.

Query: Additional information about the resource or the client.
Fragment: A particular location within a resource.

URL and MIME type

URLs point to resources (content”).

Resources are represented using different Internet Media Types (MIME

Types)
— Multipurpose Internet Mail Extensions RFC 2045,6
MIME Type tells how content should be handled

- File extensions are mapped to certain MIME Types

e .html usually means a MIME Type of text/html
e .jpg usually means a MIME Type of image/jpeg

The most common MIME Types used on the Web come from the text, image

and application top-level groups
e text/html, text/css
e image/qgif, image/jpeg, image/png
e application/pdf, application/octet-stream

e application/x-javascript, application/x-shockwave-flash

An Introduction to HTTP

Hyper Text Transfer Protocol
One of the application layer protocols that make up the

Internet

e HTTP over TCP/IP
e Like SMTP, POP, IMAP, NNTP, FTP, etc.

The underlying language of the Web

Three versions have been used, two are in common use

and have been specified:
e RFC 1945 HTTP 1.0 (1996)
e RFC 2616 HTTP 1.1 (1999)

HTTP and TCP/IP

HTTP sits atop the TCP/IP Protocol Stack

Application Layer

Transport Layer

Network Layer

Data Link Layer Network Interfaces

HTTP

The Hypertext Transfer Protocol

distributed, collaborative, hypermedia
information systems.

HTTP functions as a request-response protocol
In the client-server computing model.
Actors:

— Internet Engineering Task Force (IETF)
— World Wide Web Consortium (W3C)

RFC

RFC 2616 (June 1999) defined HTTP/1.1

In June 2014, RFC 2616 was retired and HTTP/1.1 was
redefined by

« RFC 7230 - HTTP/1.1: Message Syntax and Routing

« RFC 7231 -HTTP/1.1: Semantics and Content

« RFC 7232 - HTTP/1.1: Conditional Requests

« RFC 7233 - HTTP/1.1: Range Requests

« RFC 7234 - HTTP/1.1: Caching

« RFC 7235 - HTTP/1.1: Authentication

HTTP 2.0 Current Status

- May 2015 RFC 7540

. May 2015 RFC 7541 (HPACK)

HTTP servers turn URLs into resources through a
request-response cycle

HTTP Request 3
— -

HTTP Response

Resource
HTTP Client <:| /test

Asks for resource by its URL:

HTTP Server
www.Site.com

2

http://www.Site.com/test.html

HTTP requests and responses Messages

e HTTP requests and responses are both types of Internet
Messages (RFC 822), and share a general format:

- A Start Line, followed by a CRLF
e Request Line for requests
e Status Line for responses

- Zero or more Message Headers
o field-name “:” [field-value] CRLF

- An empty line
e Two CRLFs mark the end of the Headers

- An optional Message Body if there is a payload
o All or part of the “"Entity Body” or “Entity”

HTTP Request: w / wmn

method - -- GET

GET /HTTP/1.1[CRLF] -
Host: www.iugaza.edu.ps[CRLF] version - TR 1
Connection: close[CRLF]

User-Agent: Moxzilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)[CRLF]
Accept-Encoding: gzip[CRLF]

Accept-Charset: 1ISO-8859-1,UTF-8;9=0.7,*;g=0.7[CRLF]
Cache-Control: no-cache[CRLF]

Accept-Language: de,en;qg=0.7,en-us;q=0.3[CRLF]

Referer: http://web-sniffer.net/[CRLF] [CRLF]

A Closer Look at the Request Methods

e GET
- By far most common method
- Retrieves a resource from the server

— Supports passing of query string arguments

e HEAD
— Retrieves only the Headers associated with a resource but not the entity itself

- Highly useful for protocol analysis, diagnostics

e POST
— Allows passing of data in entity rather than URL
- Can transmit of far larger arguments that GET

— Arguments not displayed on the URL

More Request Methods, cont.

OPTIONS

— Shows methods available for use on the resource (if given a path) or the host (if given a “*”)

TRACE

— Diagnostic method for assessing the impact of proxies along the request-response chain

PUT, DELETE
— Used in HTTP publishing (e.g., WebDav)

CONNECT

— A common extension method for Tunneling other protocols through HTTP

Web-based Distributed Authoring and Versioning (WebDAV) is a
set of methods based on the Hypertext Transfer Protocol (HTTP)
that facilitates collaboration between users in editing and
managing documents and files stored on World Wide Web
servers.

HTTP Response Header

HT TP Responses

http://web-sniffer.net/

| Value

Status: HTTP/1.1 200 OK

Cache-Control:
Content-Type:
Expires:
Last-Modified:
Server:
X-AspNet-Version:
X-Powered-By:
Date:

Connection:

Content-Length:

Content (50.58 KiB)

public, max-age=1
text/html; charset=utf-8

Sat, 24 Dec 2011 19:04:54 GMT
Sat, 24 Dec 2011 19:04:24 GMT

Microsoft-11S/7.0
2.0.50727
ASP.NET

Sat, 24 Dec 2011 19:04:52 GMT

close
70241

<html xmlns="http://www.w3.0rg/1999/xhtml™ dir="rtl">

<head>

<META name="y_ key" content="5c35482f6a3631739" >

<meta
<meta
<meta
<meta

<title>dje - asada¥!

Lulzli</title>

http-equiv="Content-Type" content="text/html; charset=windows-125&" />
name="description” content="Islamic University Of Gaza - Palestine , Gaza" />
name="keywords" content="Islamic University Of Gaza - Palestine ,
name="subject" content="Islamic University Of Gaza - Palestine" />

Gaza - palestine,

Gaza, university, faculties,

A Closer Look at the Status Line

e Consists of three major parts:
e The HTTP Version
— Just like third part of Request Line

e Status Code
- 5 groups of 3 digit integers indicating the result of the attempt to satisfy the

request:
- 1xx are informational
- 2XX are success codes
- 3xx are for alternate resource locations (redirects)
- 4xx indicate client side errors

— 5xX indicate server side errors

e The Reason Phrase followed by the CRLF

- Short textual description of the status code

A Closer Look at the Status Line

Table 3.2 HTTP Status Code Categories

Status Code Meaning

100-199

200-299

300-399

400-499

500-599

Informational; the server received the request but a final
resultis not yet available.

Success; the server was able to act on the request suc-
cessfully.

Redirection; the client should redirect the request toa
different server or resource.

Client error; the request contained an error that pre-
vented the server from acting on it successfully.

Server error; the server failed to act on a request even
though the request appears to be valid.

Making a simple HT TP request using Telnet

[=E

Administrator: C:\Windows\system32\cmd.exe

HTTP/1.8 362 Found

Location: http://wuww.google.ps/

Cache—Control: private

Content—-Type: text/html; charset=UTF-8

Set—Cookie: PREF=ID=2bbfh452dd10308f5:FF=0:TM=1324733265:LM=1324733265:S=8nMfMOA?
BuwNRGKQ; expires=Mon, 23-Dec—2013 13:27:45 GMT; path=/; domain=.google.com
Date: Sat, 24 Dec 20811 13:27:45 GMT

IlServer: gus

Content—Length: 218

A—8SS—Protection: 1; mode=hlock

R—Frame—-Options: SAMEORIGIN

<HTML><HEAD><{meta http—equiv=""content—type"' content="text/html;charset=utf-8"'>

LT
ITLE>382 Moved</TITLE>X/HEAD><BODY>
<H1>3682 Moved<-/H1>
The document has moved

<A HR

EF="http://uuu.google .ps/">herel/A>.
</BODY ></HTML>

Connection to host lost.

C:\>

A Closer Look at HT TP Headers

Ny
f“ 1 A
i

. | Headers come in four major types, some

for requests, some for responses, some for
both:

|

- General Headers

e Provide info about messages of both
kinds

- Request Headers

e Provide request-specific info
- Response Headers

e Provide response-specific info
- Entity Headers

e Provide info about request and response
entities

- Extension headers are also possible

General Headers

Connection - lets clients and servers manage connection state
— Connection: Keep-Alive

— Connection: close

Date - when the message was created
— Date: Sat, 31-May-03 15:00:00 GMT

Via - shows proxies that handled message
- Via: 1.1 www.myproxy.com (Squid/1.4)

Cache-Control - Among the most complex of headers, enables caching

directives

— Cache-Control: no-cache

Request Headers

Host - The hostname (and optionally port) of server to which
request is being sent

Referer — The URL of the resource from which the current request
URI came

— Referer: http://www.host.com/login.asp

User-Agent - Name of the requesting application, used in
browser sensing

— User-Agent: Mozilla/4.0 (Compatible; MSIE 6.0)
Accept and its variants — Inform servers of client’s capabilities

and preferences
- Enables content negotiation
- Accept: image/gif, image/jpeg;q=0.5
— Accept- variants for Language, Encoding, Charset

Cookie How clients pass cookies back to the servers that set

them
— Cookie: id=23432;level=3

Response Headers

e Server - The server’'s name and version
— Server: Microsoft-IIS/5.0
— Can be problematic for security reasons

e Set-Cookie - This is how a server sets a cookie on a client

— Set-Cookie: id=234; path=/shop; expires=Sat, 31-May-03
15:00:00 GMT; secure

Entity Headers

Allow - Lists the request methods that can be used on the entity
- Allow: GET, HEAD, POST

Location - Gives the alternate or new location of the entity
- Used with 3xx response codes (redirects)

- Location: http://www.iugaza.edu.ps/ar/

Content-Encoding - specifies encoding performed on the body of the

response

- Used with HTTP compression

— Corresponds to Accept-Encoding request header

- Content-Encoding: gzip
Content-Length - The size of the entity body in bytes
Content-Location — The actual if different than its request URL

Content-Type — specifies Media (MIME) type of the entity body

HTTP Requests
An HTTP request consists of
a request method, (“subprotocol” specification)

a request URL, (location)
header fields, (metadata)
a body. (data)

HTTP 1.1 defines the following request methods:

» GET: Retrieves the resource identified by the request URL

« HEAD: Returns the headers identified by the request URL

« POST: Sends data of unlimited length to the Web server

« PUT: Stores a resource under the request URL

« DELETE: Removes the resource identified by the request URL
* OPTIONS: Returns the HTTP methods the server supports

* TRACE: Returns the header fields sent with the TRACE request
« CONNECT request connection to a transparent TCP/IP tunnel,
« PATCH apply partial modifications to a resource.

HTTP 1.0 includes only the GET, HEAD, and POST methods.

Clients and Servers

*The client is the actor that requests to talk.
* The server is the actor that accepts to talk.

The client can create a socket to start a conversation to a
server app anytime.

The server must be repared in aadvance to accept an
incoming conversation.

Sockets
The java.net.Socket class represents a side of
connection (regardless if client o or server).

The server uses the java.net.ServerSocket class to
wait for incoming conversations. It creates a
ServerSocket object and waits, blocked on a
accept() call until a connection comes. Then it
creates a Socket object to be used to communicate
with the client.

Sockets
A server can maintain many conversations
simoultaneously.
There is only one ServerSocket, but one Socket
for every client.

. i ServerSocket § Server Application

~

incoming connectipn
~

'S
'

Client Application | 5 N B
Socket I ,

Client Application '
Socket

Server port

The client needs two pieces of info to establish a
connection: a hostname (to get the server’s address) and a
port number (to identify a process on the server
machine).

A server app listens on a predefined port while waiting
for a connection.

Port numbers are coded in the RFC (Es. Telnet 23, FTP 21,
ecc.), but they can be freely chosen for custom services.

Client port
The client’s port number is generally assigned by
the OS, and in general you do not care about it.

When the server responds it opens a new socket
whose number is assigned by the OS. It then
continues listening on the original port, and
serves the particular cliens on the new socket.

Sockets

The first choice is which protocol to use:
connection-oriented (TCP)
or
connectionless (UDP).

The Java Socket class uses TCP

java.net.Socket

This class implements a socket for interprocess
communication over the network.

The constructor methods create the socket and connect it
to the specified host on the specified port.

java.net.Socket - main methods

The constructor methods create the socket and connect it
to specified host and port.

Once the socket is created, getInputStream() e
getOutputStream() return InputStream e OutputStream
objects (usable as I/O channels).

getlnetAddress() e getPort() return address and port to
which the socket is connected.

getLocallPort() returns the local port used by the socket .

close() closes la socket.

java.net.ServerSocket

During creation you specity on which port to
listen

The accept() starts listening and blocks until
there is an incoming call.

At that point, accept() accepts the connection,
creates and returns a Socket that the server can
use to talk to the client.

jJava.net.ServerSocket — main methods

getlnetAddress() returns the local address
getLocallPort() returns the local port .

close() closes the socket.

Sockets
Clients

try {

Socket sock = new Socket("www.pippo.it", 80);
//Socket sock = new Socket("128.252.120.1", 80);

} catch (UnknownHostException e) {

System.out.println("Can't find host.");

} catch (IOException e) {

}

System.out.println ("Error connecting to host.");

Connection-oriented protocol

Server

*Create a ServerSocket object.

* After accepting the connection, create a Socket che
object.

* Create InputStream and OutputStream to read / write
bytes from/to the connection.

*Optionally create a new thread for every connection, so
that the serer can listen for new requests while serving
arrived clients.

Reading & Writing raw bytes — Client side

try {
Socket server = new Socket("foo.bar.com", 1234);

InputStream in = server.getInputStream() ;
OutputStream out = server.getOutputStream() ;
// Write a byte
out.write (42) ;
// Read a byte
Byte back = in.read() ;
server.close() ;
} catch (IOException e) { }

Reading & Writing raw bytes — Server side

try {
ServerSocket listener = new ServerSocket(1234) ;

while ('finished) {
Socket aClient = listener.accept()
// wait for connection
InputStream in = aClient.getInputStream() ;
OutputStream out = aClient.getOutputStream() ;
// Read a byte
Byte importantByte = in.read()
// Write a byte
out.write (43) ;
aClient.close() ;

}

listener.close() ;

} catch (IOException e) { }

Reading & Writing newline delimited strings —
Client

Incapsulating InputStream and OutputStream it is
possible to access streams in an easier way.

try {
Socket server = new Socket("foo.bar.com", 1234);

InputStream in = server.getInputStream() ;
DataInputStream din = new DatalInputStream(in);

OutputStream out = server.getOutputStream() ;
PrintStream pout = new PrintStream(out);

// Say "Hello" (send newline delimited string)
pout.println("Hello!") ;
// Read a newline delimited string
String response = din.readLine() ;
server.close() ;

} catch (IOException e) { }

Reading & Writing newline delimited strings —

Server

try {

ServerSocket listener = new ServerSocket(1234) ;
while ('finished) {

}

Socket aClient = listener.accept()

// wait for connection

InputStream in = aClient.getInputStream() ;
DataInputStream din = new DataInputStream(in) ;
OutputStream out = aClient.getOutputStream() ;
PrintStream pout = new PrintStream(out);

// Read a string

String request = din.readLine() ;

// Say "Goodbye"

pout.println ("Goodbye!") ;

aClient.close() ;

listener.close() ;
} catch (IOException e) { }

A concurrent HT TP mini-server -
Introduction

TinyHttpd listens on a specified port and services simple
HTTP "get file" requests. They look something like this:

GET /path/filename [optional stuff]

Your Web browser sends one or more as lines for each
document it retrieves. Upon reading the request, the server
tries to open the specified file and send its contents. If that
document contains references to images or other items to be
displayed inline, the browser continues with additional GET
requests. For best performance (especially in a time-slicing
environment), TinyHttpd services each request in its own
thread. Therefore, TinyHttpd can service several requests
concurrently.

A concurrent HT TP mini-server

package tinyhttpd;

import java.net.¥*;
import java.io.¥*;

public class TinyHttpd {
public static void main(String argv[])
throws IOException ({
int port = 8000;
if (argv.length>0) port=Integer.parselnt (argv[0])
ServerSocket ss = new ServerSocket (port);
System.out.println("Server is ready")
while (true)

new TinyHttpdConnection (ss.accept())

A concurrent HT TP mini-server

class TinyHttpdConnection extends Thread ({
Socket sock;

TinyHttpdConnection (Socket s) {
sock = s;
setPriority (NORM PRIORITY - 1);
start () ;

public void run() {

System.out.println (" ")

OutputStream out = null;

try {
out = sock.getOutputStream() ;
BufferedReader d =

new BufferedReader (new InputStreamReader (
sock.getInputStream())) ;

String req = d.readLine() ;;
System.out.println ("Request: " + req);
StringTokenizer st = new StringTokenizer (req) ;

A concurrent HTTP mini-server - Note

. By lowering its priority to NORM_PRIORITY-1 (just
below the default priority), we ensure that the
threads servicing established connections won't
block TinyHttpd's main thread from accepting new
requests.

(On a time-slicing system, this is less important.)

Un mini-server concorrente HT TP

if ((st.countTokens () >= 2) && st.nextToken() .equals("GET")) {
if ((req = st.nextToken()) .startsWith("/")) ({
req = req.substring(1l) ;
}
if (reqg.endsWith("/") || reqg.equals("")) {
req = req + "index.html";

}

try {
FileInputStream fis = new FileInputStream(req) ;

byte[] data = new byte[fis.available()];
fis.read(data) ;

out.write (data) ;

} catch (FileNotFoundException e) {
new PrintStream(out) .println("404 Not Found");

System.out.println("404 Not Found: " + req);
}

} else {
new PrintStream(out) .println("400 Bad Request") ;
System.out.println("400 Bad Request: " + req);

sock.close() ;

Un mini-server concorrente HT TP

} catch (IOException e) {
System.out.println("Generic I/O error " + e);
} finally ({
try {
out.close() ;
} catch (IOException ex) {
System.out.println("I/O error on close" + ex);

}

Project Properties - TinyHttpd

Categories:

Q
Q
v @

Sources
Libraries

Build

@ Compiling
© Packaging
@ Deployment
@ Documenting
Run
Application

© Web Start
License Headers
Formatting
Hints

Configuration: L <default config>

¢J [New... J Delete

Runtime Platform: [Project Platform

+| | Manage Platforms...

Main Class: Itinyhttpd.TinyHttpd

| [Browse...

Arguments: I

Working Direct@cts/carlfx/Tianttpd/ src/tinyhttpd | Q Browse...

VM Options: |

| [Customize

(e.g. ~Xms10m)

Run with Java Web Start

(To run and debug the application with Java Web Start, first enable Java Web Start)

[

Help J [Cancel J [

OK

| v [TinyHttpd

» (] build
» [dist
» (] nbproject
v [src
» O

[secret
» £ build.xml
‘@] manifest.mf

A concurrent HT TP mini-server - usage

Compile TinyHttpd and place it in your class path. Go to a
directory with some interesting documents and start the
ddemon, specifying an unused port number as an argument.
For example:

% jJava TinyHttpd 1234

You should now be able to use your Web browser to retrieve
files from your host. You'll have to specity the nonstandard
port number in the URL. For example, if your hostname is
foo.bar.com, and you started the server as above, you could
reference a file as in:

http://foo.bar.com:1234/welcome.html

A concurrent HT TP mini-server - Problems

TinyHttpd still has room for improvement. First, it
consumes a lot of memory by allocating a huge array
to read the entire contents of the file all at once. A
more realistic implementation would use a buffer
and send large amounts of data in several passes.

TinyHttpd also fails to deal with simple things like

directories. It wouldn't be hard to add a few lines of

code to read a directory and generate linked HTML
listings like most Web servers do.

A concurrent HT TP mini-server - Problems

TinyHttpd suffers from the limitations imposed by
the fickleness of filesystem access.

It's important to remember that file pathnames are
still architecture dependent--as is the concept of a
filesystem to begin with. TinyHttpd should work,
as is, on UNIX and DOS-like systems, but may
require some customizations to account for
differences on other platforms. It's possible to write
more elaborate code that uses the environmental
information provided by Java to tailor itself to the
local system.

A concurrent

ITTP mini-server - Problems

The biggest problem with TinyHttpd is that there are
no restrictions on the files it can access. With a little
trickery, the daemon will happily send any file in
your filesystem to the client.

[t would be nice if we could restrict TinyHttpd to
files that are in the current directory, or a

subdirectory.

Assignment

Modify the simple web server so that all the urls that start with the token "process "
(e.g. http://localhost:8000/process)
launch an external process.

For instance,
http://localhost:8000/process/reverse?pari=string&par2=booleanvalue
should activate an (external) process that takes the par1 string.

If par2 is true, it returns the reversed string (e.g. ROMA -> AMOR).

If par2 is false, it checks if the string is a palindrome, and returns the answer
(true or false). (e.g. ROOR -> true, ROAR —> false)

To see how to start an external process from Java, take a look at
http://www.rgagnon.com/javadetails/java-0014.htmi

Deadline Sept. 24, 2017, 23:59

SEE WEB SITE: latemar.science.unitn.it

https is a URI scheme which is syntactically identical to the http:
scheme normally used for accessing resources using HTTP. Using an
https: URL indicates that HTTP is to be used, but with a different default
port (443) and an additional encryption/authentication layer between
HTTP and TCP.

This system was developed by Netscape Communications Corporation
to provide authentication and encrypted communication and is widely
used on the World Wide Web for security-sensitive communication,
such as payment transactions.

Secure hypertext transfer protocol’ (S-HTTP) is an alternative
mechanism to the https URI scheme for encrypting web
communications carried over HTTP. S-HTTP is defined in RFC
2660.

Web browsers typically use HTTP to communicate with web servers,
sending and receiving information without encrypting it. For sensitive
transactions, such as Internet e-commerce or online access to financial
accounts, the browser and server must encrypt this information.

The https: URI scheme and S-HTTP were both defined in the mid 1990s
to address this need. Netscape and Microsoft supported HTTPS rather
than S-HTTP, leading to HTTPS becoming the de facto standard
mechanism for securing web communications. S-HTTP is an alternative

mechanism that is not widely used.

HTTPS

HTTP + SSL

Slides from HTTP vs. HTTPS by Eng. T. Aldaldooh

Figure 4.10 p

The SSL protocol inserts itself
between an application like HTTP and
the TCP transport layer. TCP sees SSL
as just another application, and HTTP
communicates with SSL much the
same as it does with TCP.

HTTPS

Standard HTTP

HTTP

> S =P

IP

=

Network Technology

=

HTTP Secured with SSL

HTTP

OO IOLEe

Network Technology

g

Cryptography

Important information Data, Data, Data.

Plain Text

W

Some random String

Hh2sh!~hH==E#@ns86/76% ===sdf

Cipher Text

Cryptography cont.

Important information Data, Data, Data.

Symmetric Key

WMQ

Some random String

Hh2sh!~hH==E#@ns86/76% ===sdf

"eyjeq ‘ejeq ‘ejeq uoneuw.ojui juellodw

JPS===%9/98SUD@ #3==HY~4YscyH

Public
Key

Asymmetric (public-key) encryption

"eyjeq ‘ejeq ‘ejeq uoneuw.ojui juelsodwy

SSL Session

e Uses asymmetric encryption to
privately share the session key

— Asymmetric has a lot of overhead

e Uses symmetric encryption to
encrypt data

- Symmetric encryption is quicker and
uses less resource

=
S [[=="w

SSL Handshake Proces

J

Client requests HTTPS session

Certificate sent back (with public key)

53

Encrypted session key sent to server
X$qp0

Session encrypted with

symmetric session key (53)

E £y
— , L

X

B€)> [hps

ail

/MW

@

Facebook x

/1, Untrusted Connection

://www.gcc.gov.ps/index.php?option=com_gcclogin

v = oy
General Media Feeds
Web Site Identity
Web site: mail.google.con
Owner: This web site do
Verified by: Thawte Consulti
Privacy & History

Have I visited this web site prior

Is this web site storing informati
computer?

Have I saved any passwords for

Technical Details
Connection Encrypted: High-g
The page you are viewing was e

Encryption makes it very difficul
computers, It is therefore very u

MS
\
number authc
Gmal
frlend - abu t
- . info
php ¥ Next 4 Previ

0 send personalzed hokday phone

This Connection is Untrusted

You have asked Firefox to connect securely to www.gcc.gov.ps, but we can't confirm that your
connection is secure,

Normally, when you try to connect securely, sites will present trusted identification to prove
that you are going to the right place. However, this site's identity can't be verified.

What Should I Do?

If you usually connect to this site without problems, this error could mean that someone is
trying to impersonate the site, and you shouldn't continue.

Get me out of here!

Technical Details

www.gcc.gov.ps uses an invalid security certificate.

The certificate is not trusted because the issuer certificate is not trusted.

(Error code: sec_error_untrusted_issuer)

I Understand the Risks

If you understand what's going on, you can tell Firefox to start trusting this site’s

identification. Even if you trust the site, this error could mean that someone is tampering with
your connection.

Don’t add an exception unless you know there's a good reason why this site doesn’'t use
trusted identification.

0:47:82:75:3A:9B:B9

7:C4:4C:4D:44:9D:CF:25:8C:D5:34
C:5F:96:DB:CF:B6:6F

_ r

Fui%3D2&service=maildum=1 77 ~ C|

GOugle

Man-in-the-Middle (MITM) Attack
Concept

e There were away to get around the encryption
instead oOf trying to break it

Ec

Ea ‘
S —— o -

[
»

E{a,b,c} = Ali’s, Ahmed’s, and Man’s public keys, respectively

e Ali wants to send secure messages to Ahmed.
e Man intercepts Ali's messages.

e Man talks to Ali and pretends to be Ahmed.

e Man talks to Ahmed and pretends to be Ali.

MITM Attack Concept

e Ali uses the public key she thinks she
received from Ahmed (Man’s)

e Ahmed uses the key he thinks is Ali’s
(also Man’s)

e As a result, Man not only gains
access to secure information but also
can modify it (e.qg. transfer money to
a different account etc.)

MITM and Certificates

e Digital Certificates designed to solve
the problem but do they always help ?

 The MITM would have to create his own
certificate with a private/public key.

* He still sit between client and server, acting
as server to the client and client to the server,

listening in on everything sent between the
two.

The solution “chain of trust”

e To verify the authenticity and identity of the certificates
themselves.

e |inked back to a trustworthy source of certificates.

e Web browsers and operating systems will only trust
certificates that directly or indirectly link back to one of a
handful of CAs, the "root CAs."

« Any certificate that doesn't link back to a root CA such as a self-

signed certificate will generate a big scary warning in the browser.
 How to create a self-signed SSL Certificate ...
o http://www.akadia.com/services/ssh_test_certificate.html

Conclusion

e HTTPS only slightly slower than
HTTP.

- Cost Of Security

Reference

HTTP Essentials Protocols for Secure, Scaleable Web Sites by
Stephen Thomas .

HTTP The Definitive Guide.

View HTTP Request and Response Header < http://web-
sniffer.net/ >

USFUL MATERIAL

« TO BE SORTED OUT

HTTP requires a TCP connection

\

Qs ~

X TCP SYN, ACK o

\
//—\)
©

TCPACK 7
\

=

Client Server

<« Figure
Before systems can exchange HTTP

HTTP Request
™ messages, they must establish a TCP
'jTTP Resm"seo connection. Steps 1, 2, and 3 in this

,_,/ example show the connection

TCP FIN establishment. Once the TCP
,'_/ connection is available, the client
sends the server an HTTP request. The
0 TCPFIN, ACK final two steps, 6 and 7, show the

___./ / closing of the TCP connection.

\
ZQ o P

\

B
\\T/c;;N,ACK @

\

e Response@)

Q HTTP Request

_//

Server

<« Figure2.4

With persistent connections, a client
can issue many HTTP requests over a
single TCP connection. The first
request is in step 4, which the server
answers in step 5. In step 6 the client
continues by sending the server
another request on the same TCP
connection. The server responds to
this request in step 7 and then closes
the TCP connection.

Figure 2.5 p \

Pipelining lets an HTTP client issue m/
new requests without waiting for \
responses from its previous =
messages. In the figure, the client \@’;YN' ACK o
sends its first request in step 4. It N
. . . /""——\
immediately follows that with a € rcrack ”
second request in step 5. The client \
does not wait for the server's /;T:P:\/
response, which arrives in step 6. Client 0 equestl o ver
N
/——_\/
HTTP Request 2
HTTP Response 1
L9
HTTP Response 2
o
TCP FIN

Compares the performance of pipelining,
persistence, and single, serial connections

Display Time (seconds)
Figure 2.6 p S Separate
Both persistence and pipelining al CO""eCt'O"SU
can offer significant improvements ot
in HTTP performance, especially 3l -D,.D'D
for complex Web pages with many = o e
objects. As the graph shows, a 2 b ._D..D" P
Web page with 20 objects (not D_.D"D e L
atypical) can take about 4 seconds 1k : D'.D“A..A-' AL Pipelining
when the client uses serial _ B.-;S-.levéfﬁff 0-0-0-0-00+0+0+0+00-0+0-0
connections. Persistence and O e
pipelining together can reduce this 0 5 10 15 20

time to less than 1 second. Number of Objects in Page

