
HTTP, HTTPS and
TCP Networking in Java

Some reminders

Credits

Some material derived from:
•  HTTP vs. HTTPS by Eng. T. Aldaldooh

RFC

Request for Comments (RFC) are a type of
publication from the Internet Engineering Task
Force (IETF) and the Internet Society (ISOC), the
principal technical development and standards-
setting bodies for the Internet.
•  An RFC is authored by engineers and computer

scientists in the form of a memorandum
describing methods, behaviors, research, or
innovations applicable to the working of the
Internet and Internet-connected systems. I

Protocol

•  Synonymous of Etiquette
a code of behavior that delineates
expectations for social behavior according to
contemporary conventional norms within a
society, social class, or group.

Communications protocol, a set of rules
and regulations that determine how data is
transmitted in telecommunications and
computer networking

Port

Mistranslated into Italian as “Porta” (door)

A port is an endpoint of communication in an operating system.

A process associates its input or output channels, via an Internet socket,
 with a transport protocol, a port number, and an IP address.

This process is known as binding,

PID PORT IP Protocol
84 21 193.205.196.130 FTP
78 80 193.205.196.130 HTTP
321 8080 193.205.196.130 HTTP
541 25 193.205.196.130 SMTP

HTTP on port 80
•  HTTP with SSL (HTTPS) on port 443
•  FTP on port 21
•  SMTP on port 25
•  POP on port 110
•  SSH on port 22

•  URLs used early on by all Internet protocols,

including various document retrieval protocols.

•  More specifications (both from 1994):
–  URL : Uniform Resource Locators - RFC 1738.

–  URI : Universal Resource Identifiers - RFC 1630.

URL is just one type of a URI.

URL and URI

•  URL (Uniform Resource Locators)
–  Provides single short string to identify network-accessible resource

–  <scheme>://<host>[:<port>]/<path>[?<query>]

–  http://www.w3.org/Icons/w3c_home.gif

•  URI (Uniform Resource Identifier)
–  Identifies a resource either by location or name.

–  The selection of the representation can be determined by the web server

through HTTP content negotiation.

–  A superset of URLs

–  http://www.w3.org/Icons/w3c_home.

–  http request line contains a non-URL URI

URLS and URIS

•  URL: identify resources by specifying their locations

in the context of a particular access protocol, such as

HTTP or FTP.

•  URN: persistent, location-independent identifiers

•  URC: standardized representation of document

properties, such as owner, encoding, access

restrictions or cost.

URL, URN, URC

•  URN are not locators, are not required to be associated with

a particular protocol or access method, and need not be

resolvable.

•  They should be assigned by a procedure which provides

some assurance that they will remain unique and

identify the same resource persistently over a prolonged

period.

•  A typical URN namespace is urn:isbn, for International

Standard Book Numbers.

 URN

URLs cont.

URLs cont.
•  Protocol: Identifies the application protocol needed to access the

resource, in this case HTTP.
•  Username : If the protocol supports the concept of user names, this

provides a user name that has access to the resource; in the example
“guest.”

•  Password: The password associated with the user name, “secret” in
the example.

•  Host : The communication system that has the resource; for HTTP this
is the Web server, www.ietf.org in the example.

•  Port : The TCP port that the application protocols should use to access
the resource; many protocols have an implied TCP port (for HTTP that
port is 80

•  Path : The path through a hierarchical organization under which the
resource is located, often a file system’s directory structure or
equivalent.

•  File: The resource itself.
•  Query: Additional information about the resource or the client.
•  Fragment: A particular location within a resource.

•  URLs point to resources (“content”).

•  Resources are represented using different Internet Media Types (MIME

Types)

–  Multipurpose Internet Mail Extensions RFC 2045,6

•  MIME Type tells how content should be handled

–  File extensions are mapped to certain MIME Types

•  .html usually means a MIME Type of text/html

•  .jpg usually means a MIME Type of image/jpeg

•  The most common MIME Types used on the Web come from the text, image

and application top-level groups

•  text/html, text/css

•  image/gif, image/jpeg, image/png

•  application/pdf, application/octet-stream

•  application/x-javascript, application/x-shockwave-flash

URL and MIME type

•  Hyper Text Transfer Protocol

•  One of the application layer protocols that make up the

Internet
•  HTTP over TCP/IP

•  Like SMTP, POP, IMAP, NNTP, FTP, etc.

•  The underlying language of the Web

•  Three versions have been used, two are in common use

and have been specified:
•  RFC 1945 HTTP 1.0 (1996)

•  RFC 2616 HTTP 1.1 (1999)

An Introduction to HTTP

HTTP and TCP/IP

HTTP sits atop the TCP/IP Protocol Stack

Network Interfaces

HTTP

TCP

IP

Application Layer

Transport Layer

Network Layer

Data Link Layer

HTTP

•  The Hypertext Transfer Protocol
•  distributed, collaborative, hypermedia

information systems.
•  HTTP functions as a request-response protocol

in the client-server computing model.
•  Actors:

–  Internet Engineering Task Force (IETF)
–  World Wide Web Consortium (W3C)

RFC
RFC 2616 (June 1999) defined HTTP/1.1

In June 2014, RFC 2616 was retired and HTTP/1.1 was
redefined by
•  RFC 7230 - HTTP/1.1: Message Syntax and Routing
•  RFC 7231 - HTTP/1.1: Semantics and Content
•  RFC 7232 - HTTP/1.1: Conditional Requests
•  RFC 7233 - HTTP/1.1: Range Requests
•  RFC 7234 - HTTP/1.1: Caching
•  RFC 7235 - HTTP/1.1: Authentication

HTTP 2.0 Current Status

• May 2015 RFC 7540

• May 2015 RFC 7541 (HPACK)

•  User agent (client) issues an HTTP request to a host
(server) for a given resource using its URL

•  Server “resolves” the URL, acts on the resource

•  Server sends an HTTP response back to the client

•  Each request is discontinuous with all previous
requests – HTTP is stateless

HTTP servers turn URLs into resources through a
request-response cycle

HTTP Request

HTTP Client

Asks for resource by its URL:

http://www.Site.com/test.html HTTP Server
www.Site.com

HTTP Response
Resource

/test

•  HTTP requests and responses are both types of Internet
Messages (RFC 822), and share a general format:
–  A Start Line, followed by a CRLF

•  Request Line for requests
•  Status Line for responses

–  Zero or more Message Headers
•  field-name “:” [field-value] CRLF

–  An empty line
•  Two CRLFs mark the end of the Headers

–  An optional Message Body if there is a payload
•  All or part of the “Entity Body” or “Entity”

 HTTP requests and responses Messages

HTTP Requests

GET / HTTP/1.1[CRLF]
Host: www.iugaza.edu.ps[CRLF]
Connection: close[CRLF]
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)[CRLF]
Accept-Encoding: gzip[CRLF]
Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7[CRLF]
Cache-Control: no-cache[CRLF]
Accept-Language: de,en;q=0.7,en-us;q=0.3[CRLF]
Referer: http://web-sniffer.net/[CRLF] [CRLF]

•  GET

–  By far most common method

–  Retrieves a resource from the server

–  Supports passing of query string arguments

•  HEAD

–  Retrieves only the Headers associated with a resource but not the entity itself

–  Highly useful for protocol analysis, diagnostics

•  POST

–  Allows passing of data in entity rather than URL

–  Can transmit of far larger arguments that GET

–  Arguments not displayed on the URL

A Closer Look at the Request Methods

•  OPTIONS
–  Shows methods available for use on the resource (if given a path) or the host (if given a “*”)

•  TRACE
–  Diagnostic method for assessing the impact of proxies along the request-response chain

•  PUT, DELETE
–  Used in HTTP publishing (e.g., WebDav)

•  CONNECT
–  A common extension method for Tunneling other protocols through HTTP

More Request Methods, cont.

Web-based Distributed Authoring and Versioning (WebDAV) is a
set of methods based on the Hypertext Transfer Protocol (HTTP)
that facilitates collaboration between users in editing and
managing documents and files stored on World Wide Web
servers.

HTTP Responses

HTTP/1.1 302 Moved Temporarly [CRLF]
Cache-Control: private[CRLF]
Content-Type: text/html; charset=utf-8 [CRLF]
Location: http://www.iugaza.edu.ps/ar [CRLF]
Server: Microsoft-IIS/7.0 [CRLF]
X-AspNet-Version: 2.0.50727 [CRLF]
X-Powered-By: ASP.NET [CRLF]
Date: Sat, 24 Dec 2011 19:00:27 GMT [CRLF]
Connection: close [CRLF]
Content-Length: 519 [CRLF] [CRLF]

http://web-sniffer.net/

•  Consists of three major parts:

•  The HTTP Version
–  Just like third part of Request Line

•  Status Code
–  5 groups of 3 digit integers indicating the result of the attempt to satisfy the

request:

–  1xx are informational

–  2xx are success codes

–  3xx are for alternate resource locations (redirects)

–  4xx indicate client side errors

–  5xx indicate server side errors

•  The Reason Phrase followed by the CRLF
–  Short textual description of the status code

A Closer Look at the Status Line

A Closer Look at the Status Line

• Open a TCP connection to a host
• Can borrow telnet protocol to do this, by

pointing it at the default HTTP port (80)
• C:\>telnet www.google.com 80

•  Ask for a resource using a minimal
request syntax:

• GET / HTTP/1.1 <CRLF>
• Host: www.google.ps <CRLF><CRLF>

•  A Host header is required for HTTP 1.1
connections, though not for HTTP 1.0

Making a simple HTTP request using Telnet

A Closer Look at HTTP Headers
 Headers come in four major types, some

for requests, some for responses, some for
both:

–  General Headers

•  Provide info about messages of both
kinds

–  Request Headers
•  Provide request-specific info

–  Response Headers
•  Provide response-specific info

–  Entity Headers
•  Provide info about request and response

entities
–  Extension headers are also possible

•  Connection – lets clients and servers manage connection state
–  Connection: Keep-Alive

–  Connection: close

•  Date – when the message was created
–  Date: Sat, 31-May-03 15:00:00 GMT

•  Via – shows proxies that handled message
–  Via: 1.1 www.myproxy.com (Squid/1.4)

•  Cache-Control – Among the most complex of headers, enables caching

directives
–  Cache-Control: no-cache

General Headers

•  Host – The hostname (and optionally port) of server to which
request is being sent

•  Referer – The URL of the resource from which the current request
URI came
–  Referer: http://www.host.com/login.asp

•  User-Agent – Name of the requesting application, used in
browser sensing
–  User-Agent: Mozilla/4.0 (Compatible; MSIE 6.0)

•  Accept and its variants – Inform servers of client’s capabilities
and preferences
–  Enables content negotiation
–  Accept: image/gif, image/jpeg;q=0.5
–  Accept- variants for Language, Encoding, Charset

•  Cookie How clients pass cookies back to the servers that set
them
–  Cookie: id=23432;level=3

Request Headers

•  Server – The server’s name and version
–  Server: Microsoft-IIS/5.0
–  Can be problematic for security reasons

•  Set-Cookie – This is how a server sets a cookie on a client

–  Set-Cookie: id=234; path=/shop; expires=Sat, 31-May-03
15:00:00 GMT; secure

Response Headers

•  Allow – Lists the request methods that can be used on the entity
–  Allow: GET, HEAD, POST

•  Location – Gives the alternate or new location of the entity
–  Used with 3xx response codes (redirects)

–  Location: http://www.iugaza.edu.ps/ar/

•  Content-Encoding – specifies encoding performed on the body of the

response
–  Used with HTTP compression

–  Corresponds to Accept-Encoding request header

–  Content-Encoding: gzip

•  Content-Length – The size of the entity body in bytes
•  Content-Location – The actual if different than its request URL

•  Content-Type – specifies Media (MIME) type of the entity body

Entity Headers

HTTP Overview

HTTP Requests
An HTTP request consists of
a request method, (“subprotocol” specification)
a request URL, (location)
header fields, (metadata)
a body. (data)

HTTP 1.1 defines the following request methods:
• GET: Retrieves the resource identified by the request URL
• HEAD: Returns the headers identified by the request URL
• POST: Sends data of unlimited length to the Web server
• PUT: Stores a resource under the request URL
• DELETE: Removes the resource identified by the request URL
• OPTIONS: Returns the HTTP methods the server supports
• TRACE: Returns the header fields sent with the TRACE request
•  CONNECT request connection to a transparent TCP/IP tunnel,
•  PATCH apply partial modifications to a resource.

HTTP 1.0 includes only the GET, HEAD, and POST methods.

Clients and Servers

• The client is the actor that requests to talk.
• The server is the actor that accepts to talk.

The client can create a socket to start a conversation to a
server app anytime.
The server must be repared in aadvance to accept an
incoming conversation.

Sockets
The java.net.Socket class represents a side of
connection (regardless if client o or server).

The server uses the java.net.ServerSocket class to
wait for incoming conversations. It creates a
ServerSocket object and waits, blocked on a
accept() call until a connection comes. Then it
creates a Socket object to be used to communicate
with the client.

Sockets
A server can maintain many conversations

simoultaneously.
There is only one ServerSocket, but one Socket

for every client.

Server port
The client needs two pieces of info to establish a
connection: a hostname (to get the server’s address) and a
port number (to identify a process on the server
machine).

A server app listens on a predefined port while waiting
for a connection.

Port numbers are coded in the RFC (Es. Telnet 23, FTP 21,
ecc.), but they can be freely chosen for custom services.

Client port
The client’s port number is generally assigned by
the OS, and in general you do not care about it.

When the server responds it opens a new socket
whose number is assigned by the OS. It then
continues listening on the original port, and
serves the particular cliens on the new socket.

Sockets

The first choice is which protocol to use:
connection-oriented (TCP)
or
connectionless (UDP).

The Java Socket class uses TCP

java.net.Socket

This class implements a socket for interprocess
communication over the network.

The constructor methods create the socket and connect it
to the specified host on the specified port.

java.net.Socket - main methods

The constructor methods create the socket and connect it
to specified host and port.

Once the socket is created, getInputStream() e
getOutputStream() return InputStream e OutputStream
objects (usable as I/O channels).

getInetAddress() e getPort() return address and port to
which the socket is connected.

getLocalPort() returns the local port used by the socket .

close() closes la socket.

java.net.ServerSocket

During creation you specify on which port to
listen

The accept() starts listening and blocks until
there is an incoming call.

At that point, accept() accepts the connection,
creates and returns a Socket that the server can
use to talk to the client.

 java.net.ServerSocket – main methods

getInetAddress() returns the local address

getLocalPort() returns the local port .

close() closes the socket.

Sockets

Clients

try {
 Socket sock = new Socket("www.pippo.it", 80);
 //Socket sock = new Socket("128.252.120.1", 80);

} catch (UnknownHostException e) {
 System.out.println("Can't find host.");

} catch (IOException e) {
 System.out.println("Error connecting to host.");

}

Connection-oriented protocol

 Server

• Create a ServerSocket object.
• After accepting the connection, create a Socket che
object.
• Create InputStream and OutputStream to read/write
bytes from/to the connection.
• Optionally create a new thread for every connection, so
that the serer can listen for new requests while serving
arrived clients.

Reading & Writing raw bytes – Client side

try {
 Socket server = new Socket("foo.bar.com", 1234);

 InputStream in = server.getInputStream();
 OutputStream out = server.getOutputStream();
 // Write a byte
 out.write(42);
 // Read a byte
 Byte back = in.read();
 server.close();

} catch (IOException e) { }

Reading & Writing raw bytes – Server side

try {
 ServerSocket listener = new ServerSocket(1234);
 while (!finished) {
 Socket aClient = listener.accept();
 // wait for connection
 InputStream in = aClient.getInputStream();
 OutputStream out = aClient.getOutputStream();
 // Read a byte
 Byte importantByte = in.read();
 // Write a byte
 out.write(43);
 aClient.close();
 }
 listener.close();

} catch (IOException e) { }

Reading & Writing newline delimited strings –
Client

Incapsulating InputStream and OutputStream it is
possible to access streams in an easier way.

try {
 Socket server = new Socket("foo.bar.com", 1234);

 InputStream in = server.getInputStream();
 DataInputStream din = new DataInputStream(in);

 OutputStream out = server.getOutputStream();
 PrintStream pout = new PrintStream(out);

 // Say "Hello" (send newline delimited string)
 pout.println("Hello!");
 // Read a newline delimited string
 String response = din.readLine();
 server.close();

} catch (IOException e) { }

Reading & Writing newline delimited strings –
Server

try {
 ServerSocket listener = new ServerSocket(1234);
 while (!finished) {
 Socket aClient = listener.accept();
 // wait for connection
 InputStream in = aClient.getInputStream();
 DataInputStream din = new DataInputStream(in);
 OutputStream out = aClient.getOutputStream();
 PrintStream pout = new PrintStream(out);
 // Read a string
 String request = din.readLine();
 // Say "Goodbye"
 pout.println("Goodbye!");
 aClient.close();
 }
 listener.close();

} catch (IOException e) { }

A concurrent HTTP mini-server -
Introduction

• 

TinyHttpd listens on a specified port and services simple
HTTP "get file" requests. They look something like this:
GET /path/filename [optional stuff]

Your Web browser sends one or more as lines for each
document it retrieves. Upon reading the request, the server
tries to open the specified file and send its contents. If that
document contains references to images or other items to be
displayed inline, the browser continues with additional GET
requests. For best performance (especially in a time-slicing
environment), TinyHttpd services each request in its own
thread. Therefore, TinyHttpd can service several requests
concurrently.

A concurrent HTTP mini-server

•  package tinyhttpd;

import java.net.*;
import java.io.*;

public class TinyHttpd {
 public static void main(String argv[])
 throws IOException {
 int port = 8000;
 if (argv.length>0) port=Integer.parseInt(argv[0]);

 ServerSocket ss = new ServerSocket(port);
 System.out.println("Server is ready");

 while (true)
 new TinyHttpdConnection(ss.accept());

 }
}

A concurrent HTTP mini-server

• 

class TinyHttpdConnection extends Thread {

 Socket sock;

 TinyHttpdConnection(Socket s) {
 sock = s;
 setPriority(NORM_PRIORITY - 1);
 start();
 }

 public void run() {
 System.out.println("=========");
 OutputStream out = null;
 try {
 out = sock.getOutputStream();
 BufferedReader d =
 new BufferedReader(new InputStreamReader(

 sock.getInputStream()));
 String req = d.readLine();;
 System.out.println("Request: " + req);
 StringTokenizer st = new StringTokenizer(req);

A concurrent HTTP mini-server - Note

• 
. By lowering its priority to NORM_PRIORITY-1 (just

below the default priority), we ensure that the
threads servicing established connections won't

block TinyHttpd's main thread from accepting new
requests.

 (On a time-slicing system, this is less important.)

Un mini-server concorrente HTTP

• 

 if ((st.countTokens() >= 2) && st.nextToken().equals("GET")) {
 if ((req = st.nextToken()).startsWith("/")) {
 req = req.substring(1);
 }
 if (req.endsWith("/") || req.equals("")) {
 req = req + "index.html";
 }
 try {
 FileInputStream fis = new FileInputStream(req);
 byte[] data = new byte[fis.available()];
 fis.read(data);
 out.write(data);
 } catch (FileNotFoundException e) {
 new PrintStream(out).println("404 Not Found");
 System.out.println("404 Not Found: " + req);
 }
 } else {
 new PrintStream(out).println("400 Bad Request");
 System.out.println("400 Bad Request: " + req);
 sock.close();
 }

Un mini-server concorrente HTTP

• 

} catch (IOException e) {
 System.out.println("Generic I/O error " + e);
 } finally {
 try {
 out.close();
 } catch (IOException ex) {
 System.out.println("I/O error on close" + ex);
 }
 }
 }
}

A concurrent HTTP mini-server - usage

• 

Compile TinyHttpd and place it in your class path. Go to a
directory with some interesting documents and start the
daemon, specifying an unused port number as an argument.
For example:

% java TinyHttpd 1234

You should now be able to use your Web browser to retrieve
files from your host. You'll have to specify the nonstandard
port number in the URL. For example, if your hostname is
foo.bar.com, and you started the server as above, you could
reference a file as in:

http://foo.bar.com:1234/welcome.html

A concurrent HTTP mini-server - Problems

•  TinyHttpd still has room for improvement. First, it
consumes a lot of memory by allocating a huge array

to read the entire contents of the file all at once. A
more realistic implementation would use a buffer
and send large amounts of data in several passes.

TinyHttpd also fails to deal with simple things like
directories. It wouldn't be hard to add a few lines of
code to read a directory and generate linked HTML

listings like most Web servers do.

A concurrent HTTP mini-server - Problems

• 

TinyHttpd suffers from the limitations imposed by
the fickleness of filesystem access.

It's important to remember that file pathnames are
still architecture dependent--as is the concept of a
filesystem to begin with. TinyHttpd should work,
as is, on UNIX and DOS-like systems, but may
require some customizations to account for
differences on other platforms. It's possible to write
more elaborate code that uses the environmental
information provided by Java to tailor itself to the
local system.

A concurrent HTTP mini-server - Problems

• 
The biggest problem with TinyHttpd is that there are
no restrictions on the files it can access. With a little
trickery, the daemon will happily send any file in

your filesystem to the client.

It would be nice if we could restrict TinyHttpd to
files that are in the current directory, or a

subdirectory.

Assignment
Modify the simple web server so that all the urls that start with the token "process "
(e.g. http://localhost:8000/process)
launch an external process.

For instance,
http://localhost:8000/process/reverse?par1=string&par2=booleanvalue
should activate an (external) process that takes the par1 string.
If par2 is true, it returns the reversed string (e.g. ROMA -> AMOR).
If par2 is false, it checks if the string is a palindrome, and returns the answer
(true or false). (e.g. ROOR -> true, ROAR –> false)

To see how to start an external process from Java, take a look at
http://www.rgagnon.com/javadetails/java-0014.html

Deadline Sept. 24, 2017, 23:59

SEE WEB SITE: latemar.science.unitn.it

HTTPS Overview
https is a URI scheme which is syntactically identical to the http:
scheme normally used for accessing resources using HTTP. Using an
https: URL indicates that HTTP is to be used, but with a different default
port (443) and an additional encryption/authentication layer between
HTTP and TCP.

This system was developed by Netscape Communications Corporation
to provide authentication and encrypted communication and is widely
used on the World Wide Web for security-sensitive communication,
such as payment transactions.

S-HTTP Overview
Secure hypertext transfer protocol' (S-HTTP) is an alternative
mechanism to the https URI scheme for encrypting web
communications carried over HTTP. S-HTTP is defined in RFC
2660.

Web browsers typically use HTTP to communicate with web servers,
sending and receiving information without encrypting it. For sensitive
transactions, such as Internet e-commerce or online access to financial
accounts, the browser and server must encrypt this information.

The https: URI scheme and S-HTTP were both defined in the mid 1990s
to address this need. Netscape and Microsoft supported HTTPS rather
than S-HTTP, leading to HTTPS becoming the de facto standard
mechanism for securing web communications. S-HTTP is an alternative
mechanism that is not widely used.

HTTPS
=

HTTP + SSL
Slides from HTTP vs. HTTPS by Eng. T. Aldaldooh

•  (HTTPS) Hypertext Transfer Protocol over Secure Socket Layer

(SSL).

•  First implementation of HTTP over SSL was issued in 1995

by Netscape.

HTTPS

Cryptography

Important information Data, Data, Data.

Encryption

Encryption
Algorithm = cipher

Hh2sh!~hH==E#@ns8676%===sdf

Plain Text

Cipher Text

Some random String

Cryptography cont.

Decryption
Algorithm

Important information Data, Data, Data.

Hh2sh!~hH==E#@ns8676%===sdf

Some random String

Symmetric Key

Asymmetric (public-key) encryption
Im

p
or

ta
n

t
in

fo
rm

at
io

n
 D

at
a,

 D
at

a,
 D

at
a.

H
h2

sh
!~

hH
=

=
E#

@
ns

86
76

%
=

=
=

sd
f

Im
p

or
ta

n
t

in
fo

rm
at

io
n

 D
at

a,
 D

at
a,

 D
at

a.

Decrypt Encrypt

Public
Key

Private
Key

• Uses asymmetric encryption to
privately share the session key
– Asymmetric has a lot of overhead

• Uses symmetric encryption to
encrypt data
– Symmetric encryption is quicker and

uses less resource

SSL Session

SSL Handshake Process

Client requests HTTPS session

Certificate sent back (with public key)

Client creates session
key (53)

Session key
encrypted with public
key(X$qp0)

At this point only client
knows session key

Session encrypted with

symmetric session key (53)

session key
decrypted with
private key

At this point both
client and server
knows session
key

Encrypted session key sent to server

Server

Port 443

Client Hello

Highest SSL Version: 2.0
Cipher: SMAL-SHAL-DES

Compression: gzip
Random:”sdf31nbj2”

Server Hello

SSL Version: 2.0
Cipher: SHAL

Compression: gzip
SessionID: “dash342h”
Random:”sdf31nbj2”

Certificates

Public key: 324fdg3
Issued TO: google.com
Issued By: Thene SG

Valid From: 26\10\2011
Valid From: 1\10\2013

Certificate verify
Change Cipher

SPEC

Finished
Digest:
ef432kjkjh4kjh234h23h42h
4h32i@32=23=424=324kjl
32jlj23j23klj432jj23432422

Change Cipher
SPEC

Finished
Digest:
ef432kjkjh4kjh234h23h
42h4h32i@32=23=424
=324kjl32jlj23j23klj432jj
23432422

Symmetric
Session Key:

Wehkj$@hjgd=wef=we$#D
%^fjh3dgqgdgq

•  There were away to get around the encryption
instead o0f trying to break it

•  Ali wants to send secure messages to Ahmed.

•  Man intercepts Ali’s messages.
•  Man talks to Ali and pretends to be Ahmed.
•  Man talks to Ahmed and pretends to be Ali.

Man-in-the-Middle (MITM) Attack
Concept

Ali Ahmed Man
Ea Ec

Ec Eb

E{a,b,c} = Ali’s, Ahmed’s, and Man’s public keys, respectively

• Ali uses the public key she thinks she
received from Ahmed (Man’s)

• Ahmed uses the key he thinks is Ali’s
(also Man’s)

• As a result, Man not only gains
access to secure information but also
can modify it (e.g. transfer money to
a different account etc.)

MITM Attack Concept

• Digital Certificates designed to solve
the problem but do they always help ?

•  The MITM would have to create his own

certificate with a private/public key.

•  He still sit between client and server, acting
as server to the client and client to the server,
listening in on everything sent between the
two.

MITM and Certificates

•  To verify the authenticity and identity of the certificates
themselves.

•  linked back to a trustworthy source of certificates.
•  Web browsers and operating systems will only trust

certificates that directly or indirectly link back to one of a
handful of CAs, the "root CAs.“

•  Any certificate that doesn't link back to a root CA such as a self-
signed certificate will generate a big scary warning in the browser.

•  How to create a self-signed SSL Certificate ...
•  http://www.akadia.com/services/ssh_test_certificate.html

The solution “chain of trust”

• HTTPS only slightly slower than
HTTP.

 - Cost Of Security

Conclusion

}  HTTP Essentials Protocols for Secure, Scaleable Web Sites by
Stephen Thomas .

}  HTTP The Definitive Guide.
}  View HTTP Request and Response Header < http://web-

sniffer.net/ >

USFUL MATERIAL

•  TO BE SORTED OUT

HTTP requires a TCP connection

•  The first versions of HTTP required clients to establish a
separate TCP connection with each request.

•  HTTP 1.1 protocol eliminates the problem of multiple TCP
connections with a feature known as persistence.

Persistence Connection

•  Persistence allows another http feature that
improves performance pipelining.

•  Pipelining, a client does not have to wait for a
response to one request before issuing a new
request on the connection.

Pipelining

Compares the performance of pipelining,
persistence, and single, serial connections

