
J0
1

The Web, revisited

The interactive WEB

marco.ronchetti@unitn.it

Credits: Some of the slides are based on material adapted from

www.telerik.com/documents/Telerik_and_AJAX.pdf

1

J0
2

The old web: 1994
HTML pages (hyperlinks)

+ static graphics
 + cgi (active engines)

 + some separated dynamic graphics
(Applets)

HTTP is a stateless protocol: cookies

2

J0
3

3
The original web architecture

HTTP Get

Cgi-bin Query SQL

Data

Client

Browser

Server

File System

J0
4

Evolution of the web: 1
Better dynamic engines

Servlets, ASP, JSP (+ Php, Perl, Python...)

Better Server-side organization

 EJB, frameworks (Struts, Hybernate,
Spring)

4

J0
5

5
The Bottleneck!

HTTP Get

Cgi-bin Query SQL

Data

Client

Browser

Server

File System

J0
6

6 The solution:

HTTP Get

Cgi-bin Query SQL

Data

Client

Smart
browser

How?
Including code in HTML

Server

File System

reduce net traffic by having a
smarter client!

J0
7

Evolution of the web: 2
Better control of the browser

Javascript + DOM
Applet-Javascript interaction

Better separation of content and presentation

 CSS (DHTML=HTML4+Javascript+DOM
+CSS)

 XML+XSLT, Cocoon (XHTML)

7

J0
8

Evolution of the web: 3
Better construction of interfaces (widgets)

 .Net

 Java Server Faces

8

J0
9

Scripting the Web

Client Side
ECMAScript

&
Document Object Model

J0
10

JavaScript History

•  JavaScript was born as “LiveScript” at the beginning
of the 94’s.

• Name changed into JavaScript (name owned by
Netscape)

• Microsoft responds with Vbscript
• Microsoft introduces JScript (dialect of Javascript)
• A standard is defined: ECMAScript (ECMA-262,

ISO-16262)

J0
11

JavaScript Myths

JavaScript is NOT simple
Simple tasks are indeed simple

JavaScript is NOT Java

Java JavaScript

Browser Control NO YES
Networking YES NO

Graphics YES Partial

J0
12

JavaScript is…

Scripted (not compiled)
Powerful

Object-based
Cross-Platform

Client and Server

J0
13

JavaScript allows…

Dynamic Web Sites
Dynamic HTML (DHTML)

Interactive Pages/Forms
Server-Side CGI Functionality

Application Development

J0
14

JavaScript can…

Build Objects
Use Events

Enforce Security
Embed or Componentize

J0
15

Javascript in the url field
Firefox

Not working any more in Chrome

J0
16

Base
•  Syntax is C-like (C++-like, Java-like)

 case-sensitive,
 statements end with (optional) semicolon ;
 //comment /*comment*/
 operators (=,*,+,++,+=,!=,==,&&,…)

•  Basic data types
 integer, floating point, strings (more later)

•  Loosely typed variables (Basic-like) var x=3;

J0
17

Statements

•  if (expression) {statements} else {statements}
•  switch (expression) {

 case value: statements; break;
 …
 default: statements; break;

 }
•  while (expression) {statements}
•  do (expression) while {statements}
•  for (initialize ; test ; increment) {statements}

J0
18

JavaScript and HTML
Between <SCRIPT> and </SCRIPT> tags
Between <SERVER> and </SERVER> tags
In a <SCRIPT SRC=“url”></SCRIPT> tag

In an event handler:

 <INPUT TYPE=“button” VALUE=“Ok”
 onClick=“js code”>
 <B onMouseOver=“Jscode”>hello

J0
19

Strings

a=“foo”; b=‘tball’
Useful methods:

 a+b => football a<b => true
 a.charAt(0) => f
 indexOf(substring), lastIndexOf(substring)
 charCodeAt(n),fromCharCode(value,…)
 concat(value,…),slice(start,end)
 toLowerCase(), toUpperCase()
 replace(regexp,string), search(regexp)

J0
20

Strings

a=“foo”;

TAG-related methods:

 a.bold() => foo
 big(), blink(), fontcolor(), fontsize(), small(),
 strike(), sup()

 anchor(),link()

J0
21

Functions

function f(x) {return x*x}

function add(x,y) {return x+y};
function multiply(x,y) {return x*y};
function operate(op,x,y) {return op(x,y)};

operate(add,3,2); => 5

J0
22

 Example
<HTML>
<HEAD>
<SCRIPT>
function fact(n) {

 if (n==1) return n;
 return n*fact(n-1);

}
</SCRIPT>
</HEAD>
…

J0
23

 Example
<BODY>
<H2>Table of Factorial Numbers </H2>
<SCRIPT>
for (i=1; i<10; i++) {

 document.write(i+"!="+fact(i));
 document.write("
");

}
</SCRIPT>
</BODY>
</HTML>

J0
24

<BODY>
<SCRIPT>
n=window.prompt("Give me the value of n",3)
document.write("fact("+n+")="+fact(n));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

Example

J0
25

Objects

Object: A data structure with methods;
 a special method is the “constructor”.

function Rectangle(w, h) {

 this.width=w;
 this.height=h;
 this.area=function(){return this.width*this.height}
 }

a=new Rectangle(3,4); a.area() => 12 a.width => 3

Instance variables

method

J0
26

Objects

Actually, JavaScript does NOT have traditional classes and
inheritance.

Moreover, the approach we have shown is not the most
efficient in terms of memory allocation.

It would be better to use the “prototype” feature, which can

 be considered a STATIC object

Rectangle.prototype.area=function(){return this.w*this.h}

J0
27

Arrays

a = new Array()
a[0]=3; a[1]=“hello”; a[10]=new Rectangle(2,2);
a.length() => 11

Arrays can be
SPARSE, INHOMOGENEOUS , ASSOCIATIVE

a[“name”]=“Jaric”

z=new Rectangle(3,4); z[“width”] ó z.width

J0
28

Object hierarchy

frames[] history

anchors[] applets[] embeds[]

Button Checkbox Form Hidden

Input Password Radio Reset

Select Submit Text Textarea

elements[]

forms[] links[] plugins[] images[]

document location navigator screen parent top

Window

 Objects

Symbol means containment (has-a)

Dashed line means “is an instance of”

J0
29

Window

Other properties
status – defaultStatus
name

Main properties
Objects
history
frames[]
document
location
navigator
screen
parent – top

“A web browser window or frame”

J0
30

Window

Main methods
alert(), prompt(), confirm()
focus(), blur()
moveBy(), moveTo()
resizeBy(), resizeTo()
scroll(), scrollBy(), scrollTo()
setInterval(), clearInterval()
setTimeout(), clearTimeout()

J0
31

Screen

Main properties
availHeight, availWidth
height, width
colorDepth, pixelDepth
hash

“Information about the display”

J0
32

Navigator

Main methods
javaEnabled()

Other properties
Info on available plugins, but only in Netscape

Navigator!

Main properties
appName
appVersion
Platform

“Information about the browser in use”

J0
33

History

Main methods
back()
forward()
go(+/-n)
go(target_substring)

Main properties
lenght

“The URL history of the browser”

J0
34

Location

Main methods
reload()
replace()

Main properties
href
protocol, hostname, port
search
hash

“The specification of the current URL”

J0
35

Document

Main methods
open()
close()
clear()
write()

 Other properties
bgColor, fgColor, linkColor, vlinkColor
lastModified
title, URL, referrer, cookie

Main properties
Arrays of Component Objects
anchors[]
applets[]
embeds[]
forms[]
links[]
plugins[]

“An HTML document”

J0
36

Image

Main properties
border [width in pixels]
height
width
src [URL of the image to be displayed]

“An image embedded in an HTML document”

J0
37

Events
onClick User clicks once. (*) Link, button

onDblClick User clicks twice Document, Image, Link,
button

onMouseDow
n

User presses mouse button (*) Document, Image, Link,
button

onMouseUp User releases mouse button (*) Document, Image, Link,
button

onMouseOver Mouse moves over element Link, Image, Layer

onMouseOut Mouse moves off element Link, Image, Layer

onKeyDown User presses key (*) Document, Image, Link,
Text elements

onKeyUp User releases key Document, Image, Link,
Text elements

onKeyPress KeyDown+KeyUp (*) Document, Image, Link,
Text elements

(*) Return false to cancel default action

J0
38

Events
onFocus Element gains focus TextElement, Window, all

form elements

onBlur

Element loses focus TextElement, Window, all
form elements

onChange User selects/deselects a text
and moves focus away

Select, text input elements

onError Error while loading image Image

onAbort Loading interrupted Image

onLoad Document or image finishes
loading

Window, Image

onUnload Document is unloaded Window

onResize Window is resized Window

onReset Form reset requested (*) Form

onSubmit Form submission requested(*) Form

(*) Return false to cancel default action

J0
39

 Input

Button X X X X X X X X X X

Checkbox X X X X X X X X X X X X

Radio X X X X X X X X X X X X

Reset X X X X X X X X X X

Submit X X X X X X X X X X

Text X X X X X X X X X X X

Textarea X X X X X X X X X X X

Password X X X X X X X X X X X

FileUpload X X X X X X X X X X X

Select X X X X X X X X X X X X

Hidden X X X X

defaultChecked
checked

defaultValue

form
length

name
options[] selectedIndex

type value

blur()
click()

focus()
select()

onblur
onchange

onclick
onfocus

Methods

Event
Handlers

Properties

Properties

Objects

J0
40

Form

Main properties
action [destination URL]
method [get/post]
name [name of Form]
name [destination Window]

Elements[] [list ;of contained elements]

Main methods
reset()
submit()

“An HTML input form”

J0
41

Events
<HTML>
<HEAD>
<TITLE>Form Example</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
function setColor() {

 var choice;

 choice = document.colorForm.color.selectedIndex;

 switch(choice) {
 case 0: document.bgColor = "FF0000"; break;
 case 1: document.bgColor = "00FF00"; break;
 case 2: document.bgColor = "0000FF"; break;
 case 3: document.bgColor = "FFFFFF"; break;
 case 4: document.bgColor = "FFFF00"; break;
 case 5: document.bgColor = "FF00FF"; break;
 }

}
</SCRIPT>

J0
42

Events
<BODY>
<CENTER><H1>Color Changer</H1></CENTER>

Select Your Favorite Background Color:
<FORM NAME="colorForm">
<SELECT NAME="color" onChange=setColor() >

 <OPTION VALUE="red">Red <OPTION VALUE="green">Green
 <OPTION VALUE="blue">Blue <OPTION VALUE="white">White
 <OPTION VALUE="yellow">Yellow <OPTION
VALUE="purple">Purple

</SELECT>
</FORM>

</BODY>
</HTML>

J0
43

A more complex example -1

A simple data entry
validation page

J0
44

A more complex example -2

<HTML>
<HEAD>
<TITLE>Data Form Validation Example</TITLE>

<SCRIPT LANGUAGE="JavaScript1.1" SRC="FormCheck.js"></SCRIPT>

Start of file “FormValidation.html”

Load file “FormCheck.js”,
which contains several JavaScript functions

J0
45

A more complex example -3
function isEmpty(s)
{ return ((s == null) || (s.length == 0))
}

function warnEmpty (theField, s)
{
 var mPrefix = "You did not enter a value into the ";
 var mSuffix = " field. This is a required field. Please enter it now.";
 theField.focus();
 alert(mPrefix + s + mSuffix);
 return false;
}

Check that the string
“s” is not empty

Issue a warning
message

All this is contained in the file “FormCheck.js”

J0
46

A more complex example -4
function promptEntry (s)
{ window.status = "Please enter a " + s;
}

function validatePersonalInfo(form)
{ return (
 checkString(form.elements["LastName"],sLastName)
)
}

function checkString (theField, s)
{
 if (isEmpty(theField.value)) return warnEmpty (theField, s);
 else return true;
}

Type a message in the status bar

Check that “theField”
is not empty

Validate the form
(should run over all fields
And perform suitable checks)

All this is contained in the file “FormCheck.js”

J0
47

A more complex example -5
<SCRIPT>
var sCompany="Company Name"; var sLastName="Last Name"; var

form="PersonalInfo";

function displayPersonalInfo(form)
{ var outputTable = "<HTML><HEAD><TITLE>Results</TITLE></HEAD>" +
 "<BODY><H1>Data Entered:</H1><TABLE BORDER=1>" +
 "<TR><TD>" + sLastName + "</TD><TD>" + form.elements["LastName"].value + "</

TD></TR>" +
 "<TR><TD>" + sCompany + "</TD><TD>" + form.elements["Company"].value + "</

TD></TR></TABLE><FORM>“ +
 "<INPUT TYPE=\"BUTTON\" NAME=\"Back\" VALUE=\"Back\" onClick=

\"history.back()\"> </FORM></BODY></HTML>"
 document.writeln(outputTable)
 document.close()
 return true
} </SCRIPT>
</HEAD>

Value-printing
function

End of “HEAD” portion of “FormValidation.html”

Global variables

Add a Button to go
back in history

J0
48

A more complex example -6
<BODY BGCOLOR="#ffffff">
<CENTER><H2>PERSONAL INFORMATION </H2></CENTER>
<P><P><I>Fields marked with an asterisk (*) must be entered.</I>
<FORM NAME="PersonalInfo">
<TABLE>
<TR>
 <TD>* Family Name:</TD>
 <TD><INPUT TYPE="text" NAME="LastName"

 onFocus="promptEntry(sLastName)"
 onChange="checkString(this,sLastName)" ></TD>

</TR>
<TR>
 <TD>Company Name:</TD>
 <TD><INPUT TYPE="text" NAME="Company"

 onFocus="promptEntry(sCompany)"></TD>
</TR>

First Field

Start of “BODY” portion of “FormValidation.html”

Second Field

J0
49

A more complex example -7
<TR>
 <TD>
 <INPUT TYPE="BUTTON" NAME="fakeSubmit" VALUE="Display"

 onClick="if (validatePersonalInfo(this.form)) displayPersonalInfo(this.form); ">
 </TD>
 <TD><INPUT TYPE = "reset" VALUE = "Reset">
 </TD>
</TR>
</TABLE>
<P> NOTE: We replace the usual Submit button with a "Display" that acts locally,

by calling some code to display what was typed in.
</FORM>
</BODY>
</HTML>

First Button

End of file “FormValidation.html”

Second Button

J0
50

Applet

Methods
Same as the public methods
of the Java applet

Properties
Same as the public fields
of the Java applet

“An applet embedded in a Web page”

J0
51

Layout engines

A web browser engine (sometimes called layout engine or
rendering engine) is a software component that takes
•  marked up content (such as HTML, XML, image files, etc.) and
•  formatting information (such as CSS, XSL, etc.)
and displays the formatted content on the screen.

It draws onto the content area of a window,
which is displayed on a monitor or a printer.

See:
https://en.wikipedia.org/wiki/Comparison_of_layout_engines_(ECMAScript)

•  Blink (Chromium)
•  Gecko (Mozilla)
•  Trident (IE)
•  Webkit (Safari, Android)

J0
52

ECMAScript Engine

An ECMAScript engine is a program that
 executes source code written in a version
of the ECMAScript language standard

See https://en.wikipedia.org/wiki/List_of_ECMAScript_engines

Examples:
•  V8 (chrome)
•  SpiderMonkey (Mozilla)
•  Chakra (I.E.)
•  Squirrelfish/Nitro (Apple)
•  Nashorn (Oracle – JDK)

J0
53

References
Standard ECMA-262 ECMAScript Language Specification:
http://www.ecma-international.org/publications/standards/

Ecma-262.htm

Books:
•  D.Flanagan “Javascript. The definitive guide” O’Reilly.
•  D.Goodman “Dynamic HTML. The definitive reference” O’Reilly

J0
54

Server-Side JavaScript
A substitute for CGI.
Server-dependent technology to process the
Web page before passing it to the client.
(An approach which started long ago (Netscape SSJS)

Then mostly forgotten, later revived by Rhino (a bridge

between JS and Java) and recently by Node.js

J0
55

Node.js

Node.js is an open-source, cross-platform JavaScript
run-time environment for executing JavaScript code server-side.
Node.js has an event-driven architecture capable of asynchronous I/O.

Optimize throughput and scalability
•  in Web applications with many input/output operations,
•  for real-time Web applications

https://www.w3schools.com/nodejs/default.asp

