Marco Ronchetti -

Java XML parsing

Marco Ronchetti -

Tree-based vs Event-based API pOI‘sAx

Tree-based API
A tree-based API compiles an XML document into an internal
tree structure. This makes it possible for an application
program to navigate the tree to achieve its objective. The

Document Object Model (DOM) working group at the W3C is
developing a standard tree-based API for XML.

Event-based API
An event-based API reports parsing events (such as the start
and end of elements) to the application using callbacks. The
application implements and registers event handlers for the
different events. Code in the event handlers is designed to
achieve the objective of the application. The process is similar
(but not identical) to creating and registering event listeners in

the Java Delegation Event Model.

Marco Ronchetti -

what is SAX? v

SAX is a set of interface definitions
For the most part, SAX is a set of interface definitions. They
specify one of the ways that application programs can interact
with XML documents.

(There are other ways for programs to interact with XML documents
as well. Prominent among them is the Document Object Model,
or DOM)

SAX is a standard interface for event-based XML parsing, developed
collaboratively by the members of the XML-DEV mailing list. SAX
1.0 was released on Monday 11 May 1998, and is free for both
commercial and noncommercial use.

The current version is SAX 2.0.1 (released on 29-January 2002)

See

Marco Ronchetti -

JAXP "Ly

JAXP:

This API provides a common interface for creating and using the
standard SAX, DOM, and XSLT APIs in Java, regardless of which
vendor's implementation is actually being used.

The main JAXP APIs are defined in the package.
That package contains two vendor-neutral factory classes:
SAXParserFactory and DocumentBuilderFactory that give you a
SAXParser and a DocumentBuilder, respectively. The
DocumentBuilder, in turn, creates DOM-compliant Document
object.

The actual binding to a DOM or SAX engine can be specified using
the System properties (but a default is provided).

Marco Ronchetti -

JAXP - other packages Dousﬂ‘

org.xml.sax
The "Simple API" for XML (SAX) is the event-driven, serial-access
mechanism that does element-by-element processing. The API for this
level reads and writes XML to a data repository or the Web.

org.w3c.dom

The DOM API is generally an easier API to use. It provides a familiar tree
structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it
can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU

and memory intensive.
javax.xml.transform

SAX architecture pol|sAr

Marco Ronchetti -

SAXParserFactory factory = SAXParserFactory.newinstance();

SAXParser saxParser = factory.newSAXParser();

saxParser.parse(File f, DefaultHandler-subclass h)

SAXParser "Wraps

SAX
Reader

Content
Handler

S

S

Error
Handler

C

DTD
Handler

Entity
Resolver

G

File containing
input XML

Default-handler
(classe che

implementa le
callback)

Interfaces implemented
by DefaultHandler class

¥

SAX packages

Marco Ronchetti -

Package

org.xml.sax

org.xml.sax.ext

org.xml.sax.hel
pers

javax.xml.parse
rs

Description

Defines the SAX interfaces. The name "org.xml" 1s the package
prefix that was settled on by the group that defined the SAX API.

Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process a document
type definitions (DTD) or to see the detailed syntax for a file.

Contains helper classes that make it easier to use SAX -- for
example, by defining a default handler that has null-methods for all
of the interfaces, so you only need to override the ones you actually
want to implement.

Defines the SAXParserFactory class which returns the SAXParser.
Also defines exception classes for reporting errors.

SAX callbacks

Marco Ronchetti -

[| =mmmmmmm——ee———————————— ContentHandler methods

void characters(char[] ch, int start, int length)

void startDocument()

void startElement(String name, AttributeList attrs)
void endElement(String name)

void endDocument()

void processinglnstruction(String target,String data)

p

SAX example

Marco Ronchetti -

package jaxp_demo;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.*;

import java.io.¥*;

public class MySaxHandler extends DefaultHandler ({
int indentCount=0;
boolean printContent=true;
String indentString=" "y
private void print (String s) { System.out.print(s) ;}
private void println(String s) { System.out.println(s);}

private void indent () { .y
String s=""; Utility methods
for (int i=1;i<=indentCount;i++) s=s+indentString;
print(s);

p

SAX example

Marco Ronchetti -

JO
10

//
// SAX DocumentHandler methods

//

public void startDocument () throws SAXException {
println ("<?xml version='1.0' encoding='UTF-8'?>");

public void endDocument () throws SAXException {
println() ;

p

SAX example

Marco Ronchetti -

JO
11

public void startElement (String namespaceURI,
String lName, // local name

String gName, // qualified name
Attributes attrs) throws SAXException ({
String eName = 1lName; // element name
if ("".equals(eName)) eName = gName;
indent () ;
print ("<" + eName) ;
if (attrs '= null) {
for (int i = 0; 1 < attrs.getLength(); i++) ({
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName (i) ;
print(" ");
print (aName + "=\"" + attrs.getValue(i) + "\"");

}

}
println(">") ;
indentCount++;

p

Local v. qualified names

public void startElement (String namespaceURI,
String lName, // local name
String gName, // qualified name
Attributes attrs) throws SAXException ({
System.err.println("local="+1Name+" qualified="+gName) ;

<?xml version="1.0" encoding="UTF-8" ?>
<h:SCHOOL xmlns:h="http://somecompany.com/someLocation/"><CLASS>2nd A

Marco Ronchetti -

If factory.setNamespaceAware (true); the output will be:
local=SCHOOL qualified=h:SCHOOL
local=CLASS qualified=CLASS

Else it will be:
local= qualified=SCHOOL

local= qualified=CLASS

JO
12

SAX example

Marco Ronchetti -

JO
13

public void endElement (String namespaceURI,
String sName, // simple name

String gName // qualified name
) throws SAXException ({

indentCount--;
indent () ;
println("</" + gName + ">'");

SAX example

s

Marco Ronchetti -

JO
14

public void characters(char buf[],

throws SAXException ({
if (printContent) {

String s=new String(buf, offset, len);
S=s.

trim() ;

if (! (s.length()==0)) {

//}

indentCount++;
indent () ;
println(s) ;
indentCount--;

int offset,

int len)

Marco Ronchetti -

JO
15

school.xml poﬂslx

<?xml version="1.0" encoding="UTF-8"?>

<SCHOOL><CLASS>2nd A<PROFESSOR>Albert Einstein</
PROFESSOR><STUDENT>Walter Matthau</STUDENT><STUDENT>Jack
Lemmon</STUDENT> <STUDENT>Marylin Monroe </STUDENT>

</CLASS> <CLASS>

3rd B <PROFESSOR>Alan Turing</PROFESSOR> <STUDENT>
Fernando Alonso </STUDENT>

<STUDENT> Jenson Button

</STUDENT> <STUDENT>

Sebastian Vettel </STUDENT>

</CLASS>

</SCHOOL>

Output (printContent=false poﬂwc

<?xml version='1.0' encoding='UTF-8'?>
<SCHOOL>

<CLASS>
<PROFESSOR>
</PROFESSOR>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>

</CLASS>

<CLASS>
<PROFESSOR>
</PROFESSOR>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>

</CLASS>

Marco Ronchetti

</SCHOOL>

JO
16

Output (printContent=true

<?xml version='1.0' encoding='UTF-8'?> <STUDENT>
<SCHOOL> Fernando Alonso
<CLASS> </STUDENT>
2nd A <STUDENT>
<PROFESSOR> Jenson Button
Albert Einstein </STUDENT>
</PROFESSOR> <STUDENT>
:'J <STUDENT> Sebastian Vettel
E Walter Matthau </STUDENT>
3 </STUDENT> </CLASS>
é <STUDENT> </SCHOOL>
S Jack Lemmon
5 </STUDENT>
2 <STUDENT>
Marylin Monroe
</STUDENT>
</CLASS>
<CLASS>
3rd B
<PROFESSOR>
Alan Turing
</PROFESSOR>
JO
17

Validation

Marco Ronchetti -

JO
18

static final String JAXP_SCHEMA_LANGUAGE =
"http:/ /java.sun.com/xml/jaxp/properties/schemalLanguage";
static final String W3C_XML_SCHEMA =
"http:/ /www.w3.0org/2001/XMLSchema";
static final String JAXP_SCHEMA_SOURCE =
"http:/ /java.sun.com/xml/jaxp/properties /schemaSource";

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);

factory.setValidating(true);

SAXParser saxParser = factory.newSAXParser();

saxParser.setProperty (JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA)
saxParser.setProperty (JAXP_SCHEMA_SOURCE, new File(schemaSource));

See http:/ /docs.oracle.com/javaee/1.4/tutorial/doc/JAXPSAX9.html

/4

SAX references

p

Ronchetti -

Marco

JO
19

A full tutorial with more info and details

http://docs.oracle.com/javase/tutorial/jaxp/sax/
parsing.html

DOM architecture

p

Marco Ronchetti -

JO
20

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlinstance();
dbf.setValidating(true); // optional — default is non-validating

DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(file);

[l
=

Document

(DOM)

s

DOM packages

Marco Ronchetti -

Package Description

org.w3c.dom Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C.

Defines the DocumentBuilderFactory class and the
DocumentBuilder class, which returns an object that implements
the W3C Document interface. The factory that is used to create the
javax.xml.parsers builder is determined by the javax.xml.parsers system property,
which can be set from the command line or overridden when
invoking the newlnstance method. This package also defines the
ParserConfigurationException class for reporting errors.

Marco Ronchetti -

JO
22

The Node interface poﬂs‘x

public interface Node

The Node interface is the primary datatype for the entire DOM. It

represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with
children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and
adding children to such nodes results in a DOMEXxception being

raised.

The attributes nodeName, nodeValue and attributes are included as a

mechanism to get at node information without casting down to the
specific derived interface. In cases where there is no obvious
mapping of these attributes for a specific nodeType (e.g.,
nodeValue for an Element or attributes for a Comment), this returns
null. Note that the specialized interfaces may contain additional and
more convenient mechanisms to get and set the relevant
information.

Marco Ronchetti -

JO
23

The Document interface poﬂs‘x

public interface Document extends Node

The Document interface represents the entire HTML or XML document.
Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within

whose context they were created.

The Node hierarchy p()l‘s‘f

Marco Ronchetti -

— Node
/\

Document Entity CharacterData
mydocument

I I
& Comment Text
I

<l-- Demo --> I |
hello comment A =3 |

Demo hello

The Node hierarchy polﬁ‘r

Marco Ronchetti -

—1 Node
/\
Document | | | DocumentType || |EntityReference Processinglnstruction
DocumentFragment Entity Notation||CharacterData
? I I
Attr Comment Text

AN

CDATASection

Node: WARNING! g

Marco Ronchetti -

JO
26

The implied semantic of this model 1s
WRONG!

You might deduce that a comment might contain another comment, or
a document, or any other node!

The integrity 1s delegated to a series of Node’s attributes, that the
programmer should check.

Node: main methods polﬁ‘r

Marco Ronchetti -

JO
27

NAVIGATION

The parent of this node.

A NodelList that contains all children of this node.
The first child of this node.

The last child of this node.

The node immediately following this node

The node immediately preceding this node.

Marco Ronchetti -

JO
28

The Node interface

s

Interface nodeName nodeValue attributes
Attr name of attribute value of attribute null
CDATASection "#cdata-section” content of the CDATA null
Section
Comment "#fcomment” content of the comment | null
Document "#document” null null
DocumentFragment "#document-fragment” | null null
DocumentType document type name | null null
Element tag name null NamedNodeMap
Entity entity name null null
EntityReference name of entity null null
referenced
Notation notation name null null
Processinglinstruction | target entire content excluding | null
the target
Text "#text” content of the text node | null

Node: main methods

Marco Ronchetti -

JO
29

INSPECTION

The name of this node, depending on its type; see table.
A code representing the type of the underlying object.
The value of this node, depending on its type; see the table.

The Document object associated with this node.

Returns whether this node (if it is an element) has any attributes.

Returns whether this node has any children.

Node: main methods polﬁ‘r

Marco Ronchetti -

JO
30

EDITING NODES

Returns a duplicate of this node, i.e., serves as a generic copy constructor
for nodes.

The value of this node, depending on its type; see the table.

Marco Ronchetti -

JO
31

Node: main methods poﬂs‘x

EDITING STRUCTURE

Adds the node newChild to the end of the list of children of this node.

Removes the child node indicated by oldChild from the list of children, and
returns it.

Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.

Inserts the node newChild before the existing child node refChild.

Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal” form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references)
separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text

nodes.

Marco Ronchetti -

JO
32

NODE: determining the type

switch (node.getNodeType()) {
case Node.ELEMENT_NODE; ...; break;
case Node.ATTRIBUTE_NODE; ...; break;
case Node.TEXT_NODE; ...; break;
case Node.CDATA_SECTION_NODE; ...; break;
case Node.ENTITY_REFERENCE_NODE; ...; break;
case Node.PROCESSING_INSTRUCTION; ...; break;
case Node.COMMENT_NODE; ...; break;
case Node.DOCUMENT_NODE; ...; break;
case Node.DOCUMENT_TYPE_NODE; ...; break;
case Node.DOCUMENT_FRAGMENT NODE; ...; break;
case Node.NOTATION_NODE; ...; break;
default: throw (new Exception());

p

DOM example

Marco Ronchetti -

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

public class CountDom ({
public static void main(String[] arg) throws Exception {
if (arg.length !'=1) {
System.err.printin("Usage: cmd filename (file must exist)");
System.exit(1);

}
readFile(new File(arg[0]))

getElementCount(node)

JO
33

v

DOM example

Marco Ronchetti -

JO
34

public static Document readFile(File file) throws Exception {

Document doc; Parse File,
try { Return Document

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlnstance();

dbf.setValidating(false);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(file);
return doc;
} catch (SAXParseException ex) {
throw (ex);
} catch (SAXException ex) {
Exception x = ex.getException(); // get underlying Exception
throw ((x == null) ? ex : x);

}

Marco Ronchetti -

JO
35

"

DOM example

public static int getElementCount(Node node) {
if (null == node) return 0;
int sum = 0;
boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
if (isElement) sum = 1;
NodelList children = node.getChildNodes();
if (null == children) return sum;

for (inti = 0; i < children.getLength(); i++) {
sum += getElementCount(children.item(i)); // recursive call

}
] use DOM methods to count elements:
return sum; i !
) for each subtree if the root is an Element,
set sum to 1, else to 0;
} add element count of all children of the root to sum

—_—

Alternatives to DOM poﬂ"x

Marco Ronchetti -

JO
36

"Build a better mousetrap, and the world will
beat a path to your door."
--Emerson

Marco Ronchetti -

JO
37

Alternatives to DOM pOI‘sAx

JDOM: (see).

The standard DOM is a very simple data structure that intermixes text
nodes, element nodes, processing instruction nodes, CDATA nodes,
entity references, and several other kinds of nodes. That makes it
difficult to work with in practice, because you are always sifting through
collections of nodes, discarding the ones you don't need into order to
process the ones you are interested in. JDOM, on the other hand,
creates a tree of objects from an XML structure. The resulting tree is
much easier to use, and it can be created from an XML structure
without a compilation step.

DOM4J: (see)

domdj is an easy to use, open source library for working with XML, XPath
and XSLT on the Java platform using the Java Collections Framework
and with full support for DOM, SAX and JAXP. (last release 2010,

Javal)

Transformations

s

Marco Ronchetti -

JO
38

Using XSLT from Java

TrAX

Marco Ronchetti -

JO
39

[
O=HM=C
.

Transformation
Instructions

S~

TransformerFactory tf = TransformerFactory .newlnstance();
StreamSource xsISS=new StreamSource(“source.xsl”);
StreamSource xmISS=new StreamSource(“source.xml”);
Transformer t=tf.newTrasformer(xslISS);

t.transform(xmISS,new StreamResult(new
FileOutputStream(“out.html”);

java —Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TrasformerFactorylmpl MyClass

I

xml.transform packages

¥

Marco Ronchetti -

JO

Package

javax.xml.transfo
rm

javax.xml.transfo
rm.dom

javax.xml.transfo
rm.sax

javax.xml.transfo
rm.stream

40

Description

Defines the TransformerFactory and Transformer classes, which
you use to get a object capable of doing transformations. After
creating a transformer object, you invoke its transform() method,
providing it with an input (source) and output (result).

Classes to create input (source) and output (result) objects from a
DOM.

Classes to create input (source) from a SAX parser and output
(result) objects from a SAX event handler.

Classes to create input (source) and output (result) objects from an
I/O stream.

TrAX main classes poﬂs‘f

Marco Ronchetti -

JO
41

javax.xml.transform.Transformer
transform(Source xmls, Result output)

javax.xml.transform.sax.SAXResult implements Result
javax.xml.transform.sax.SAXSource implements Source

javax.xml.transform.stream.StreamResult implements Result
javax.xml.transform.stream.StreamSource implements Source

javax.xml.transform.dom.DOMResult implements Result
javax.xml.transform. dom.DOMSource implements Source

Other Java-XML APls g

Java Architecture for XML Binding (JAXB) provides a
convenient way to bind an XML schema to a

representation in Java code.

See also:

¢ JAX-WS

¢ JAX-SWA

* JAX-RPC

* SAA]J

* XML -Digital Signatures

¢ ecc.

Marco Ronchetti -

