
J0
1

M
ar

co
 R

on
ch

et
ti

 -

Java XML parsing

J0
2

M
ar

co
 R

on
ch

et
ti

 -

Tree-based API
A tree-based API compiles an XML document into an internal

tree structure. This makes it possible for an application
program to navigate the tree to achieve its objective. The

Document Object Model (DOM) working group at the W3C is
developing a standard tree-based API for XML.

Event-based API
An event-based API reports parsing events (such as the start
and end of elements) to the application using callbacks. The
application implements and registers event handlers for the
different events. Code in the event handlers is designed to

achieve the objective of the application. The process is similar
(but not identical) to creating and registering event listeners in

the Java Delegation Event Model.

Tree-based vs Event-based API

J0
3

M
ar

co
 R

on
ch

et
ti

 -

SAX is a set of interface definitions
For the most part, SAX is a set of interface definitions. They

specify one of the ways that application programs can interact
with XML documents.

(There are other ways for programs to interact with XML documents

as well. Prominent among them is the Document Object Model,
or DOM)

SAX is a standard interface for event-based XML parsing, developed

collaboratively by the members of the XML-DEV mailing list. SAX
1.0 was released on Monday 11 May 1998, and is free for both

commercial and noncommercial use.
The current version is SAX 2.0.1 (released on 29-January 2002)

See http://www.saxproject.org/

what is SAX?

J0
4

M
ar

co
 R

on
ch

et
ti

 -

JAXP: Java API for XML Processing
This API provides a common interface for creating and using the

standard SAX, DOM, and XSLT APIs in Java, regardless of which
vendor's implementation is actually being used.

The main JAXP APIs are defined in the .
�
�������
��
�� package.

That package contains two vendor-neutral factory classes:
SAXParserFactory and DocumentBuilderFactory that give you a
SAXParser and a DocumentBuilder, respectively. The
DocumentBuilder, in turn, creates DOM-compliant Document
object.

The actual binding to a DOM or SAX engine can be specified using

the System properties (but a default is provided).

JAXP

J0
5

M
ar

co
 R

on
ch

et
ti

 -

org.xml.sax Defines the basic SAX APIs.
The "Simple API" for XML (SAX) is the event-driven, serial-access

mechanism that does element-by-element processing. The API for this
level reads and writes XML to a data repository or the Web.

org.w3c.dom Defines the Document class (a DOM), as well as
classes for all of the components of a DOM.

The DOM API is generally an easier API to use. It provides a familiar tree
structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it
can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU
and memory intensive.

javax.xml.transform Defines the XSLT APIs that let you
transform XML into other forms.

JAXP – other packages

J0
6

M
ar

co
 R

on
ch

et
ti

 -

SAX architecture
SAXParserFactory factory = SAXParserFactory.newInstance();
�
(���;��
�	
��)
��������
�� //optional - default is non-validating
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(File f, DefaultHandler-subclass h)

File containing
input XML

Default-handler
(classe che

implementa le
callback)

Interfaces implemented
by DefaultHandler class

wraps

J0
7

M
ar

co
 R

on
ch

et
ti

 -

SAX packages
Package Description
org.xml.sax

Defines the SAX interfaces. The name "org.xml" is the package
prefix that was settled on by the group that defined the SAX API.

org.xml.sax.ext
Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process a document
type definitions (DTD) or to see the detailed syntax for a file.

org.xml.sax.hel
pers

Contains helper classes that make it easier to use SAX -- for
example, by defining a default handler that has null-methods for all
of the interfaces, so you only need to override the ones you actually
want to implement.

javax.xml.parse
rs

Defines the SAXParserFactory class which returns the SAXParser.
Also defines exception classes for reporting errors.

J0
8

M
ar

co
 R

on
ch

et
ti

 -

// ----------------------------- ContentHandler methods
void characters(char[] ch, int start, int length)
void startDocument()
void startElement(String name, AttributeList attrs)
void endElement(String name)
void endDocument()
void processingInstruction(String target,String data)

SAX callbacks

J0
9

M
ar

co
 R

on
ch

et
ti

 -

package jaxp_demo;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.*;
import java.io.*;
public class MySaxHandler extends DefaultHandler {
 int indentCount=0;
 boolean printContent=true;
 String indentString=" ";
 private void print(String s) { System.out.print(s);}
 private void println(String s) { System.out.println(s);}
 private void indent(){
 String s="";
 for (int i=1;i<=indentCount;i++) s=s+indentString;
 print(s);
 }

SAX example

Utility methods

J0
10

M
ar

co
 R

on
ch

et
ti

 -

//==
// SAX DocumentHandler methods
//==
 public void startDocument() throws SAXException {
 println("<?xml version='1.0' encoding='UTF-8'?>");
}

 public void endDocument() throws SAXException {
 println();
}

SAX example

J0
11

M
ar

co
 R

on
ch

et
ti

 -

public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs) throws SAXException {
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName;
 indent();
 print("<" + eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 print(" ");
 print(aName + "=\"" + attrs.getValue(i) + "\"");
 }
 }
 println(">");
 indentCount++;
 }

SAX example

J0
12

M
ar

co
 R

on
ch

et
ti

 -

public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs) throws SAXException {
 System.err.println("local="+lName+" qualified="+qName);
 …
==========

<?xml version="1.0" encoding="UTF-8" ?>
<h:SCHOOL xmlns:h="http://somecompany.com/someLocation/"><CLASS>2nd A
…
==========
If factory.setNamespaceAware(true); the output will be:
local=SCHOOL qualified=h:SCHOOL
local=CLASS qualified=CLASS

Else it will be:
local= qualified=SCHOOL
local= qualified=CLASS

Local v. qualified names

J0
13

M
ar

co
 R

on
ch

et
ti

 -

SAX example
public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
) throws SAXException {
 indentCount--;
 indent();
 println("</" + qName + ">");
}

J0
14

M
ar

co
 R

on
ch

et
ti

 -

 public void characters(char buf[], int offset, int len)
 throws SAXException {
 if (printContent) {
 String s=new String(buf, offset, len);
 s=s.trim();
 if (! (s.length()==0)) {
 indentCount++;
 indent();
 println(s);
 indentCount--;
 //}
 }
 }

SAX example

J0
15

M
ar

co
 R

on
ch

et
ti

 -

school.xml
<?xml version="1.0" encoding="UTF-8"?>
<SCHOOL><CLASS>2nd A<PROFESSOR>Albert Einstein</
PROFESSOR><STUDENT>Walter Matthau</STUDENT><STUDENT>Jack
Lemmon</STUDENT> <STUDENT>Marylin Monroe </STUDENT>

</CLASS> <CLASS>
3rd B <PROFESSOR>Alan Turing</PROFESSOR> <STUDENT>
Fernando Alonso </STUDENT>
<STUDENT> Jenson Button
</STUDENT> <STUDENT>
Sebastian Vettel </STUDENT>
</CLASS>
</SCHOOL>

J0
16

M
ar

co
 R

on
ch

et
ti

 -

Output (printContent=false)
<?xml version='1.0' encoding='UTF-8'?>
<SCHOOL>
 <CLASS>
 <PROFESSOR>
 </PROFESSOR>
 <STUDENT>
 </STUDENT>
 <STUDENT>
 </STUDENT>
 <STUDENT>
 </STUDENT>
 </CLASS>
 <CLASS>
 <PROFESSOR>
 </PROFESSOR>
 <STUDENT>
 </STUDENT>
 <STUDENT>
 </STUDENT>
 <STUDENT>
 </STUDENT>
 </CLASS>
</SCHOOL>

J0
17

M
ar

co
 R

on
ch

et
ti

 -

Output (printContent=true)
<?xml version='1.0' encoding='UTF-8'?>
<SCHOOL>
 <CLASS>
 2nd A
 <PROFESSOR>
 Albert Einstein
 </PROFESSOR>
 <STUDENT>
 Walter Matthau
 </STUDENT>
 <STUDENT>
 Jack Lemmon
 </STUDENT>
 <STUDENT>
 Marylin Monroe
 </STUDENT>
 </CLASS>
 <CLASS>
 3rd B
 <PROFESSOR>
 Alan Turing
 </PROFESSOR>

 <STUDENT>
 Fernando Alonso
 </STUDENT>
 <STUDENT>
 Jenson Button
 </STUDENT>
 <STUDENT>
 Sebastian Vettel
 </STUDENT>
 </CLASS>
</SCHOOL>

J0
18

M
ar

co
 R

on
ch

et
ti

 -

Validation
 static final String JAXP_SCHEMA_LANGUAGE =
 "http://java.sun.com/xml/jaxp/properties/schemaLanguage";
 static final String W3C_XML_SCHEMA =
 "http://www.w3.org/2001/XMLSchema";
 static final String JAXP_SCHEMA_SOURCE =
 "http://java.sun.com/xml/jaxp/properties/schemaSource";

 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 factory.setValidating(true);
 SAXParser saxParser = factory.newSAXParser();
 saxParser.setProperty(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);
 saxParser.setProperty(JAXP_SCHEMA_SOURCE, new File(schemaSource));

See http://docs.oracle.com/javaee/1.4/tutorial/doc/JAXPSAX9.html

J0
19

M
ar

co
 R

on
ch

et
ti

 -

A full tutorial with more info and details

http://docs.oracle.com/javase/tutorial/jaxp/sax/
parsing.html

SAX references

J0
20

M
ar

co
 R

on
ch

et
ti

 -

DOM architecture
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(true); // optional – default is non-validating
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(file);

J0
21

M
ar

co
 R

on
ch

et
ti

 -

DOM packages
Package Description
org.w3c.dom

Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C.

javax.xml.parsers

Defines the DocumentBuilderFactory class and the
DocumentBuilder class, which returns an object that implements
the W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system property,
which can be set from the command line or overridden when
invoking the �
�����
�(
 method. This package also defines the
�
��
���������
������(
����� class for reporting errors.

J0
22

M
ar

co
 R

on
ch

et
ti

 -

public interface Node
The Node interface is the primary datatype for the entire DOM. It

represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with
children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and
adding children to such nodes results in a DOMException being
raised.

The attributes nodeName, nodeValue and attributes are included as a
mechanism to get at node information without casting down to the
specific derived interface. In cases where there is no obvious
mapping of these attributes for a specific nodeType (e.g.,
nodeValue for an Element or attributes for a Comment), this returns
null. Note that the specialized interfaces may contain additional and
more convenient mechanisms to get and set the relevant
information.

The Node interface

J0
23

M
ar

co
 R

on
ch

et
ti

 -

public interface Document extends Node
The Document interface represents the entire HTML or XML document.

Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a
ownerDocument attribute which associates them with the Document within
whose context they were created.

The Document interface

J0
24

M
ar

co
 R

on
ch

et
ti

 -

The Node hierarchy

<!-- Demo -->
hello

mydocument

comment

Demo

A id=“3”

hello

Document

Comment Text

Entity

Attr

Node

CharacterData

J0
25

M
ar

co
 R

on
ch

et
ti

 -

The Node hierarchy

EntityReference ProcessingInstruction DocumentType

DocumentFragment Notation

CDATASection

Document

Comment Text

Entity

Attr

Node

CharacterData

J0
26

M
ar

co
 R

on
ch

et
ti

 -

Node: WARNING!

The implied semantic of this model is
WRONG!

You might deduce that a comment might contain another comment, or
a document, or any other node!

The integrity is delegated to a series of Node’s attributes, that the

programmer should check.

J0
27

M
ar

co
 R

on
ch

et
ti

 -

Node: main methods

NAVIGATION
Node getParentNode() The parent of this node.

NodeList getChildNodes() A NodeList that contains all children of this node.

Node getFirstChild() The first child of this node.

Node getLastChild() The last child of this node.

Node getNextSibling() The node immediately following this node
.
Node getPreviousSibling() The node immediately preceding this node.

J0
28

M
ar

co
 R

on
ch

et
ti

 -

The Node interface
Interface nodeName nodeValue attributes
Attr name of attribute value of attribute null
CDATASection "#cdata-section“ content of the CDATA

Section
null

Comment "#comment“ content of the comment null

Document "#document“ null null

DocumentFragment "#document-fragment“ null null

DocumentType document type name null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity
referenced

null null

Notation notation name null null

ProcessingInstruction target entire content excluding
the target

null

Text "#text“ content of the text node null

J0
29

M
ar

co
 R

on
ch

et
ti

 -

Node: main methods

INSPECTION

java.lang.String getNodeName()

 The name of this node, depending on its type; see table.
short getNodeType()

 A code representing the type of the underlying object.
java.lang.String getNodeValue()

 The value of this node, depending on its type; see the table.
Document getOwnerDocument()

 The Document object associated with this node.
Boolean hasAttributes()

 Returns whether this node (if it is an element) has any attributes.
Boolean hasChildNodes()

 Returns whether this node has any children.

J0
30

M
ar

co
 R

on
ch

et
ti

 -

Node: main methods
EDITING NODES
Node cloneNode(boolean deep)

 Returns a duplicate of this node, i.e., serves as a generic copy constructor
for nodes.

void setNodeValue(java.lang.String nodeValue)

 The value of this node, depending on its type; see the table.

J0
31

M
ar

co
 R

on
ch

et
ti

 -

Node: main methods
EDITING STRUCTURE
Node appendChild(Node newChild)

 Adds the node newChild to the end of the list of children of this node.
Node removeChild(Node oldChild)

 Removes the child node indicated by oldChild from the list of children, and
returns it.
Node replaceChild(Node newChild, Node oldChild)

 Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.
Node insertBefore(Node newChild, Node refChild)

 Inserts the node newChild before the existing child node refChild.

void normalize()

 Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references)
separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text
nodes.

J0
32

M
ar

co
 R

on
ch

et
ti

 -

switch (node.getNodeType()) {
 case Node.ELEMENT_NODE; …; break;
 case Node.ATTRIBUTE_NODE; …; break;
 case Node.TEXT_NODE; …; break;
 case Node.CDATA_SECTION_NODE; …; break;
 case Node.ENTITY_REFERENCE_NODE; …; break;
 case Node.PROCESSING_INSTRUCTION; …; break;
 case Node.COMMENT_NODE; …; break;
 case Node.DOCUMENT_NODE; …; break;
 case Node.DOCUMENT_TYPE_NODE; …; break;
 case Node.DOCUMENT_FRAGMENT_NODE; …; break;
 case Node.NOTATION_NODE; …; break;
 default: throw (new Exception());
}

NODE: determining the type

J0
33

M
ar

co
 R

on
ch

et
ti

 -

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class CountDom {
 public static void main(String[] arg) throws Exception {
 if (arg.length != 1) {
 System.err.println("Usage: cmd filename (file must exist)");
 System.exit(1);
 }
 Node node = readFile(new File(arg[0]));
 System.out.println(arg + " elementCount: " + getElementCount(node));
 }
 }

DOM example

J0
34

M
ar

co
 R

on
ch

et
ti

 -

public static Document readFile(File file) throws Exception {
 Document doc;
 try {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 DocumentBuilder db = dbf.newDocumentBuilder();
 doc = db.parse(file);
 return doc;
 } catch (SAXParseException ex) {
 throw (ex);
 } catch (SAXException ex) {
 Exception x = ex.getException(); // get underlying Exception
 throw ((x == null) ? ex : x);
 }
 }

DOM example

Parse File,
Return Document

J0
35

M
ar

co
 R

on
ch

et
ti

 -

 public static int getElementCount(Node node) {
 if (null == node) return 0;
 int sum = 0;
 boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
 if (isElement) sum = 1;
 NodeList children = node.getChildNodes();
 if (null == children) return sum;

 for (int i = 0; i < children.getLength(); i++) {
 sum += getElementCount(children.item(i)); // recursive call
 }
 return sum;
 }
}

DOM example

use DOM methods to count elements:
for each subtree if the root is an Element,
 set sum to 1, else to 0;
 add element count of all children of the root to sum

J0
36

M
ar

co
 R

on
ch

et
ti

 -

"Build a better mousetrap, and the world will
beat a path to your door."

--Emerson

Alternatives to DOM

J0
37

M
ar

co
 R

on
ch

et
ti

 -

JDOM: Java DOM (see http://www.jdom.org).

The standard DOM is a very simple data structure that intermixes text
nodes, element nodes, processing instruction nodes, CDATA nodes,
entity references, and several other kinds of nodes. That makes it
difficult to work with in practice, because you are always sifting through
collections of nodes, discarding the ones you don't need into order to
process the ones you are interested in. JDOM, on the other hand,
creates a tree of objects from an XML structure. The resulting tree is
much easier to use, and it can be created from an XML structure
without a compilation step.

DOM4J: DOM for Java (see http://www.dom4j.org/)

dom4j is an easy to use, open source library for working with XML, XPath
and XSLT on the Java platform using the Java Collections Framework
and with full support for DOM, SAX and JAXP. (last release 2010,
Java5)

Alternatives to DOM

J0
38

M
ar

co
 R

on
ch

et
ti

 -

Using XSLT from Java

Transformations

J0
39

M
ar

co
 R

on
ch

et
ti

 -

TrAX

TransformerFactory tf = TransformerFactory .newInstance();
 StreamSource xslSS=new StreamSource(“source.xsl”);
 StreamSource xmlSS=new StreamSource(“source.xml”);
 Transformer t=tf.newTrasformer(xslSS);
 t.transform(xmlSS,new StreamResult(new

 FileOutputStream(“out.html”);

java –Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TrasformerFactoryImpl MyClass

J0
40

M
ar

co
 R

on
ch

et
ti

 -

xml.transform packages
Package Description

javax.xml.transfo
rm

Defines the TransformerFactory and Transformer classes, which
you use to get a object capable of doing transformations. After
creating a transformer object, you invoke its transform() method,
providing it with an input (source) and output (result).

javax.xml.transfo
rm.dom

Classes to create input (source) and output (result) objects from a
DOM.

javax.xml.transfo
rm.sax

Classes to create input (source) from a SAX parser and output
(result) objects from a SAX event handler.

javax.xml.transfo
rm.stream

Classes to create input (source) and output (result) objects from an
I/O stream.

J0
41

M
ar

co
 R

on
ch

et
ti

 -

javax.xml.transform.Transformer
transform(Source xmls, Result output)

javax.xml.transform.sax.SAXResult implements Result
javax.xml.transform.sax.SAXSource implements Source

javax.xml.transform.stream.StreamResult implements Result
javax.xml.transform.stream.StreamSource implements Source

javax.xml.transform.dom.DOMResult implements Result
javax.xml.transform. dom.DOMSource implements Source

TrAX main classes

J0
42

M
ar

co
 R

on
ch

et
ti

 -

Java Architecture for XML Binding (JAXB) provides a
convenient way to bind an XML schema to a
representation in Java code.

See also:
•  JAX-WS
•  JAX-SWA
•  JAX- RPC
•  SAAJ
•  XML –Digital Signatures
•  ecc.

Other Java-XML APIs

