
jar & jar files

jar command

Java Archive
•  inherits from tar : Tape Archive

commands:
jar cvf filename | jar tvf filename | jar xvf filename

java –jar filename.jar

jar file
A JAR file can contain Java class files, XML descriptor files,
auxiliary resources, static HTML files, and other files

META-INF - Manifest

see http://docs.oracle.com/javase/tutorial/deployment/jar/

specialized jars:
-  war
-  ear

Quick introduction to Java beans

Java Bean

JavaBeans are reusable software components
for Java.

They are classes that encapsulate information
and behavior into a single object (the bean).

They are serializable, have a 0-argument
constructor, and allow access to properties
using getter and setter methods.

Introduction to Session beans

Enterprise Java Beans

Architecture

Application
Server

Web
container

EJB
Container

Stateless session Beans

• 

A stateless session bean does not maintain a
conversational state for a particular client.

 When a client invokes the method of a
stateless bean, the bean's instance variables
may contain a state, but only for the
duration of the invocation. When the method
is finished, the state is no longer retained.

Stateless vs. stateful session Beans

• 

All instances of a stateless bean are
equivalent, allowing the EJB container to
assign an instance to any client.

=> Stateless session beans can support
multiple clients, and offer better
scalability for applications that require
large numbers of clients.
Typically, an application requires fewer stateless session
beans than stateful session beans to support the same number
of clients.

Pool

Logical structure

Bean
Implementation

Local
Interface

Remote
Interface

Bean instance

Bean instance

Instance
Manager

Home
Interface

Client

EJB ingredients

• 

Interfaces: The remote and home interfaces are
required for remote access. For local access,
the local and local home interfaces are
required.

Enterprise bean class: Implements the methods

defined in the interfaces.

Helper classes: Other classes needed by the
enterprise bean class, such as exception and
utility classes.

Deployment descriptor: see later

Remote Interface
/**
* This is the HelloBean remote interface.
*
* This interface is what clients operate on when
* they interact with EJB objects. The container
* vendor will implement this interface; the
* implemented object is the EJB object, which
* delegates invocations to the actual bean.
*/
public interface Hello extends javax.ejb.EJBObject
{
/**
* The one method - hello - returns a greeting to the client.
*/
 public String hello() throws java.rmi.RemoteException;
}

 Must throw
RemoteException

Home Interface
/**
* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the
* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.
*
* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/
public interface HelloHome extends javax.ejb.EJBHome
{
/*
* This method creates the EJB Object.
*
* @return The newly created EJB Object.
*/
 Hello create() throws java.rmi.RemoteException,
 javax.ejb.CreateException;
}

Bean Implementation
/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext ctx;
//
// EJB-required methods
//
public void ejbCreate() { System.out.println(“ejbCreate()”); }
public void ejbRemove() { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”);}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx; }
//
// Business methods
//
public String hello() {

System.out.println(“hello()”);
return “Hello, World!”;

}
}

Client Implementation
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;
/**
* This class is an example of client code that invokes
* methods on a simple stateless session bean.
*/
public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Setup properties for JNDI initialization.
* These properties will be read in from the command line.
*/
Properties props = System.getProperties();
/*
* Obtain the JNDI initial context.
* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/
Context ctx = new InitialContext(props);

Client Implementation
/* Get a reference to the home object - the
* factory for Hello EJB Objects
*/
Object obj = ctx.lookup(“HelloHome”);
/* Home objects are RMI-IIOP objects, and so they must be cast
* into RMI-IIOP objects using a special RMI-IIOP cast.
*/
HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject.narrow(obj, HelloHome.class);
/* Use the factory to create the Hello EJB Object
*/
Hello hello = home.create();
/*Call the hello() method on the EJB object. The
* EJB object will delegate the call to the bean,
* receive the result, and return it to us.
* We then print the result to the screen.
*/
System.out.println(hello.hello());
/*
* Done with EJB Object, so remove it.
* The container will destroy the EJB object.
*/
hello.remove();

}
}

NamingService

Directory
Machine

Client

Client
Machine

The logical architecture

• 
Pool

App server (container)
Machine

HomeInterface

Find the
Home interface

Give me an instance

Instance

Create or fetch
An instance

Find

Method()

Deployment Descriptor

• 

Deployment descriptor: An XML file that
specifies information about the bean such as
its transaction attributes.

•  You package the files in the preceding list

into an EJB JAR file, the module that stores
the enterprise bean.

•  To assemble a J2EE application, you package
one or more modules--such as EJB JAR files--
into an EAR file, the archive file that holds
the application.

ejb-jar.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<ejb-jar

xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”
version=”2.1”>
<enterprise-beans>

<session>
<ejb-name>HelloWorldEJB</ejb-name>
<home>examples.ejb21.HelloHome</home>
<remote>examples.ejb21.Hello</remote>
<local-home>examples.ejb21.HelloLocalHome</local-home>
<local>examples.ejb21.HelloLocal</local>
<ejb-class>examples.ejb21.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>
...

</ejb-jar>

ejb-jar.xml (continued)
<assembly-descriptor>
 <security-role>
 <description> This role represents everyone who is allowed
 full access to the HelloWorldEJB. </description>
 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-name>HelloWorldEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <container-transaction>
 <method>
 <ejb-name>HelloWorldEJB</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

Jboss

The file structure

packages

packages

.class

.java

ejb-jar.xml
jboss.xml

jndi.properties

ejb.jar

Client

Introduction to Session beans

EJB 3.0

Remote Interface
EJB 2.1 ===

public interface Hello extends javax.ejb.EJBObject
{
/**
* The one method - hello - returns a greeting to the client.
*/
 public String hello() throws java.rmi.RemoteException;
}

EJB 3.0 ===

package examples.session.stateless;
public interface Hello {

public String hello();
}

business
interface

Bean Implementation
EJB 2.1 ===
public class HelloBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext ctx;
public void ejbCreate() { System.out.println(“ejbCreate()”); }
public void ejbRemove() { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”);}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext(javax.ejb.SessionContext ctx) {
 this.ctx = ctx; }
public String hello() {

System.out.println(“hello()”); return “Hello, World!”;
}

}
EJB 3.0 ==
package examples.session.stateless;
import javax.ejb.Remote; import javax.ejb.Stateless;
@Stateless
@Remote(Hello.class)
public class HelloBean implements Hello {

public String hello() {
System.out.println(“hello()”); return “Hello, World!”;

}
}

enterprise
bean
instance

The remote client – 3.0
package examples.session.stateless;
import javax.naming.Context;
import javax.naming.InitialContext;
public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Obtain the JNDI initial context.
*
* The initial context is a starting point for
* connecting to a JNDI tree.
*/

Context ctx = new InitialContext();
Hello hello = (Hello)
ctx.lookup(“examples.session.stateless.Hello”);

/*
* Call the hello() method on the bean.
* We then print the result to the screen.
*/

System.out.println(hello.hello());
}

}

ejb-jar.xml – 3.0
<?xml version=”1.0” encoding=”UTF-8” ?>
<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchemainstance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd”
version=”3.0”>
<enterprise-beans>
</enterprise-beans>
</ejb-jar>

Keep in mind these terms…
•  The enterprise bean instance is a plain old Java object instance of an

enterprise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session beans.

•  The business interface is a plain old Java interface that enumerates the
business methods exposed by the enterprise bean. Depending on the
client view supported by the bean, the business interface can be further
classified into a local business interface or a remote business interface.

•  The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to inform
the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify the
middleware requirements using deployment annotations within the bean
class as well.

Keep in mind these terms…
•  The Ejb-jar file is the packaging unit for an enterprise bean,

consisting of all the above artifacts. An EJB 3.0 Ejb-jar file can
also consist of the old-style beans, if your application uses
components defined using pre–EJB 3.0 technologies.

•  The vendor-specific deployment descriptor lets you
specify your bean’s needs for proprietary container services
such as clustering, load balancing, and so on. Avendor can
alternatively provide deployment metadata for these services,
which, like standard metadata, can be used within the bean
class to specify the configuration for these services. The
vendor-specific deployment descriptor’s definition changes
from vendor to vendor.

3.0 Packaging

3.0 Packaging

Development steps
Create a new project for an empty EJB Application Client (Class AppCli)
•  New Project -> Java à Java Application
•  name it AppCli in package pack1

Create New Project for the EJB Application
•  New Project -> Java EE -> Enterprise Application
•  name it EntApp
•  choose ONLY “Create EJB Module” (not “Web Application Module”) and name it AppServ,

create a Remote Interface in project AppCli. Call it ABean

Create a
skeleton for the

client

Create the Application
module containing bean
interface(s) and empty

implementation(s)

Development steps

Go to the Project AppServ
•  go to the class ABean, right click “insert code”
•  add a Business method called method, with a param String and return type String

•  Clean and build the project

Go to the EntApp
•  Clean and build the project

•  Look in its dist folder: take the EntApp.ear file and drop it in the JBOSS standalone/
deployments folder.

•  Look at the JBoss console to find the JNDI reference
(java:jboss/exported/EntApp/AppServer/ABean!package_name.BBeanRemote)

Fill the body
of the bean(s)

Create the jar for
the Application

module

Deploy the
application

Create the ear for the
application

Development steps

Go to AppCli ,
•  fix the JNDI Access to the bean (using the info above).
•  Remove any unneeded library
•  Add the to the library the jboss-client.jar

Run the client!

Write the client

RUN !

