jar & jar files

jar command

Java Archive
* inherits from tar : Tape Archive

commands:
jar cvf filename | jar tvf flename | jar xvf filename

java —jar filename.jar

jar file

A JAR file can contain Java class files, XML descriptor files,
auxiliary resources, static HTML files, and other files

META-INF - Manifest

See http://docs.oracle.com/javase/tutorial/deployment/jar/

specialized jars:
- war
- ear

Quick introduction to Java beans

Java Bean

JavaBeans are reusable software components
for Java.

They are classes that encapsulate information
and behavior into a single object (the bean).

They are serializable, have a 0-argument
constructor, and allow access to properties
using getter and setter methods.

Introduction to Session beans

Enterprise Java Beans

Architecture

Client Tier Web Service Client| | HTML Client
I I
SOAP/HTTP HTTP
Firewall
Messaging C++ CORBA Java Application
Client Client Client Serviet JSP
Messaging CORBA-IIOP RMI-11OP RMI-1IOP RMI-IIOP
protocol

b ———— -

Message-Driven
Bean

Session Bean

Session Bean

A

| \ 1

Session Bean

Entity

Web
container

Application
Server

EJB
Container

Stateless session Beans

A stateless session bean does not maintain a
conversational state for a particular client.

When a client invokes the method of a
stateless bean, the bean's instance wvariables
may contain a state, but only for the
duration of the invocation. When the method
is finished, the state is no longer retained.

Stateless vs. stateful session Beans

All instances of a stateless bean are
equivalent, allowing the EJB container to
assign an instance to any client.

=> Stateless session beans
, and offer
for applications that require

large numbers of clients.

Typically, an application requires fewer stateless session
beans than stateful session beans to support the same number
of clients.

Logical structure

Client
Remote
Interface Home
A Interface
Local Pool A

Interface

Implementation

EJB ingredients

Interfaces: The remote and home interfaces are
required for remote access. For local access,
the local and local home interfaces are
required.

Enterprise bean class: the methods
defined in the interfaces.

Helper classes: Other classes needed by the
enterprise bean class, such as exception and
utility classes.

Deployment descriptor: see later

Remote Interface

This is the HelloBean remote interface.

they interact with EJB objects. The container
vendor will implement this interface; the
implemented object is the EJB object, which
delegates invocations to the actual bean.
*/
public interface Hello extends javax.ejb.EJBObject
{
/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

/**
*
*
* This interface is what clients operate on when
*
*
*
*

Must throw
RemoteException

Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.
*/

public interface HelloHome extends javax.ejb.EJBHome
{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

Bean Implementation

/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean ({
private javax.ejb.SessionContext ctx;
//
// EJB-required methods
//
public void ejbCreate() { System.out.println(“ejbCreate()”); 1}
public void ejbRemove() { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”) ;}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext (javax.ejb.SessionContext ctx) {
this.ctx = ctx; }
//
// Business methods
//
public String hello() {
System.out.println (“hello()"”) ;
return “Hello, World!”;

Client Implementation

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Properties;

/**

* This class is an example of client code that invokes

* methods on a simple stateless session bean.

*/

public class HelloClient ({

public static void main(String[] args) throws Exception {

/*
* Setup properties for JNDI initialization.
* These properties will be read in from the command line.
*/
Properties props = System.getProperties();
/*
* Obtain the JNDI initial context.
* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/

Context ctx = new InitialContext (props);

Client Implementation

/* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup (“HelloHome”) ;

/* Home objects are RMI-IIOP objects, and so they must be cast
* into RMI-IIOP objects using a special RMI-IIOP cast.
*/

HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject.narrow (obj, HelloHome.class)
/* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create() ;

/*Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

* We then print the result to the screen.

*/

System.out.println (hello.hello()) ;

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove() ;

The loc

ical architecture

Client Directory App server (container)
Machine Machine Machine
Client NamingService Homelnterface Pool Instance
Find the
Home|interface J
Find
>
4 _______ N P S P
Give me an instanice
Create or fetch
> .
An 1nstance
>
< _______ N) S S (S
Method()
P

Deployment Descriptor

Deployment descriptor: An file that
specifies information about the bean such as
its transaction attributes.

* You package the files in the preceding list
into an , the module that stores
the enterprise bean.

 To assemble a J2EE application, you package
one or more modules--such as EJB JAR files--

into an , the archive file that holds
the application.

ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"7?>
<ejb-jar
xmlns="http://java.sun.com/xml/ns/j2ee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar 2 1.xsd”
version="2.1">
<enterprise-beans>
<session>
<ejb-name>HelloWorldEJB</ejb-name>
<home>examples.ejb2l.HelloHome</home>
<remote>examples.ejb2l.Hello</remote>
<local-home>examples.ejb2l.HelloLocalHome</local-home>
<local>examples.ejb2l.HelloLocal</local>
<ejb-class>examples.ejb2l.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>

</ejb-jar>

ejb-jar.xml (continued)

<assembly-descriptor>
<security-role>

<description> This role represents everyone who is allowed

full access to the HelloWorldEJB.

<role-name>everyone</role-name>
</security-role>
<method-permission>
<role-name>everyone</role-name>
<method>
<ejb-name>HelloWorldEJB</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<container-transaction>
<method>
<ejb-name>HelloWorldEJB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

</description>

The file structure
= 1) build
=) classes

5 €3 com Client
B) titan packages
() cabin -
) clients \t .Class
D jndi —

=0 src jndi.properties |
= 1) main

U

Jboss

ejb.jan

=l i) com
=) titan <aCkages
() cabin ~
) (:Iientc :
=l) resources -Java
ejb-jar.xml

jboss.xml

Introduction to Session beans

EJB 3.0

Remote Interface

EJB 2.1

public interface Hello extends javax.ejb.EJBObject
{

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

}

EJB 3.0

package examples.session.stateless;
public interface Hello {

public String hello(); business
} interface

Bean Implementation

EJB 2.1

public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext ctx;

public
public
public
public
public

this
public

void ejbCreate() { System.out.println(“ejbCreate()”); }
void ejbRemove () { System.out.println(“ejbRemove()”); }
void ejbActivate() { System.out.println(“ejbActivate()”) ;}
void ejbPassivate() {System.out.println(“ejbPassivate()”) ;}
void setSessionContext (javax.ejb.SessionContext ctx) ({

.ctx = ctx; }

String hello() {

System.out.println (“hello()”); return “Hello, World!”;

}
}

EJB 3.0

package examples.session.stateless;
import javax.ejb.Remote; import javax.ejb.Stateless;

@Stateless enterprise

QRemote (Hello.class) bean

public class HelloBean implements Hello { instance
public String hello () {

System.out.println(“hello()”); return “Hello, World!”;

The remote client — 3.0

package examples.session.stateless;
import javax.naming.Context;
import javax.naming.InitialContext;
public class HelloClient ({
public static void main(String[] args) throws Exception ({
/*
* Obtain the JNDI initial context.
*
* The initial context is a starting point for
* connecting to a JNDI tree.

*/

Context ctx = new InitialContext();

Hello hello = (Hello)

ctx.lookup (“examples.session.stateless.Hello”);
/*

* Call the hello() method on the bean.
* We then print the result to the screen.

*/
System.out.println (hello.hello());

ejb-jar.xml — 3.0

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchemainstance”
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar 3 0.xsd”
version="3.0">

<enterprise-beans>

</enterprise-beans>

</ejb-jar>

Keep In mind these terms...

The enterprise bean instance is a plain old Java object instance of an
enterprise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session beans.

The business interface is a plain old Java interface that enumerates the
business methods exposed by the enterprise bean. Depending on the
client view supported by the bean, the business interface can be further
classified into a local business interface or a remote business interface.

The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to inform
the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify the
middleware requirements using deployment annotations within the bean
class as well.

Keep In mind these terms...

« The Ejb-jar file is the packaging unit for an enterprise bean,
consisting of all the above artifacts. An EJB 3.0 Ejb-jar file can
also consist of the old-style beans, if your application uses
components defined using pre—EJB 3.0 technologies.

* The vendor-specific deployment descriptor lets you
specify your bean’ s needs for proprietary container services
such as clustering, load balancing, and so on. Avendor can
alternatively provide deployment metadata for these services,
which, like standard metadata, can be used within the bean
class to specify the Conflguratlon for these services. The
vendor-specific deployment descriptor’ s definition changes
from vendor to vendor.

3.0 Packaging

AN

Standard
Bean Deployment
Class Descriptor
(if any)
\\\-\\

N T
Remote T
Business
Interface

(if any) -
//"" /
'/ .

AN

Local Vendor-
Business Specific
Interface Deployment

(if any) Descriptor

|ar File
Generator

EJB Container JVM

EJB Jar File

3.0 Packaging

AN

Standard
Bean Deployment
Class Descriptor
(if any)
\\\-\\

N T
Remote T
Business
Interface

(if any) -
//"" /
'/ .

AN

Local Vendor-
Business Specific
Interface Deployment

(if any) Descriptor

|ar File
Generator

EJB Container JVM

EJB Jar File

Development step

Create a new project for an empty EJB Application Client (Class AppCli)
 New Project -> Java - Java Application
« name it AppCli in package pack1

Create a
skeleton for the <
client

Create New Project for the EJB Application
 New Project -> Java EE -> Enterprise Application
 name it EntApp

« choose ONLY “Create EJB Module” (not “Web Application Module”) and name it AppServ,
create a Remote Interface in project AppCli. Call it ABean

Create the Application

module containing bean

interface(s) and empty
implementation(s)

Fill the body
of the bean(s)

Development step

Go to the Project AppServ
» go to the class ABean, right click “insert code”
 add a Business method called method, with a para

<

String and return type String

Create the jar for
the Application
module

* Clean and build the project

Go to the EntApp

« Clean and build the proje Create the ear for the

%

« Look in its dist folder: take the EntApp.ear file and drop it in the JBOSS standalone/
deployments folder.

« Look at the JBoss console to find the JNDI reference
(java:jboss/exported/EntApp/AppServer/ABean!package name.BBeanRemote)

Deploy the
application

/NN

Development steps

Go to AppCli,

« fix the JNDI Access to the bean (using the info above).
« Remove any unneeded library

« Add the to the library the jboss-client.jar

Write the client

Run the client!

