

Compito	di		

Linguaggi	di	Programmazione	–	Programmazione	2	–	prof.	Picco	
Linguaggi	di	Programmazione	(Mod.1)	-	prof.	Ronchetti	

	
Prova	al	calcolatore	–	9	gennaio	2020	

	
1) È	 richiesto	 il	 class	 diagram	 UML.	 E7 	 sufficiente	 la	 vista	 di	 alto	 livello	 (senza	

attributi/metodi)	ma	 devono	 essere	mostrate	 le	 associazioni	 più̀	 importanti,	 oltre	 a	
quella	 di	 ereditarietà̀.	 Il	 diagramma	 UML	 deve	 essere	 consegnato	 su	 un	 foglio	
protocollo	 indicando	nome,	 cognome,	 numero	di	matricola.	 Si	 prepari	 su	un	 foglio	 il	
diagramma	UML	di	 tutte	 le	 classi	 coinvolte	 nel	 progetto	 sotto	 specificato.	Non	 serve	
mostrare	le	classi	di	JavaFX,	a	parte	quelle	che	hanno	un	ruolo	diretto	nel	programma,	
e	 quelle	 da	 cui	 le	 classi	 scritte	 dal	 programmatore	 ereditano	 direttamente,	 se	 ve	 ne	
sono.	Al	termine,	il	foglio	(sul	quale	devono	essere	presenti	nome,	cognome,	numero	di	
matricola)	dovrà	essere	consegnato.	
	

2) Si	costruisca	una	interfaccia	composta	di	una	griglia	quadrata	(lato	500	px)	di	10x10	
celle	e	due	gruppi	di	bottoni,	possibilmente	disposti	come	in	figura	e	descritti	ai	
successivi	punti	5	e	7.	La	dimensione	totale	della	finestra	è	500x600.	

	

	 	
	

3) Le	celle	della	griglia	possono	essere	di	 vario	 tipo:	 “Prato”	 (verdi)	o	 “Strada”	 (grigie).	
Queste	 ultime	 si	 suddividono	 in	 quattro	 categorie:	 “Nord”,	 “Sud”,	 “Est”,	 “Ovest”,	
caratterizzate	da	un	piccolo	cerchio	posto	rispettivamente	in	alto,	in	basso,	a	destra	e	a	
sinistra.	

	
4) Inizialmente	la	griglia	è	interamente	composta	di	celle	di	tipo	“Prato”.	

	

5) Il	 primo	 gruppo	 di	 bottoni	 comprende	 quelli	 che	 descrivono	 il	 tipo	 di	 cella:	 “Nord”,	
“Sud”,	 “Est”,	 “Ovest”,	 “Prato”.	 Questi	 bottoni	 sono	 mutuamente	 esclusivi,	 ovvero	
premendone	uno	questo	si	disabilita	e	i	restanti	quattro	sono	abilitati.		
	

6) Cliccando	sulla	griglia,	viene	effettuata	una	azione	che	corrisponde	al	bottone	relativo	
al	tipo	di	cella	attualmente	disabilitato:	la	cella	su	cui	si	è	cliccato	viene	sostituita	con	
una	cella	del	tipo	indicato	(ad	esempio	inizialmente	si	potrà	sostituire	una	delle	celle	
“Prato”	preesistenti	con	una	cella	di	tipo	“Strada	Nord”).	

	
7) La	pressione	dei	tasti	“N”,	“S”,	“E”,	“O”,	“P”	sulla	tastiera	è	equivalente	rispettivamente	

alla	pressione	dei	bottoni	“Nord”,	“Sud”,	“Est”,	“Ovest”,	“Prato”.	
	

8) Nel	secondo	gruppo	di	bottoni	troviamo:	“Aggiungi	Auto”,	“Muovi	Auto”,	“Reset”.	Il	
bottone	“Muovi	Auto”	è	inizialmente	disabilitato.		

	
9) Dopo	 aver	 premuto	 il	 bottone	 “Aggiungi	 auto”,	 il	 click	 su	 una	 cella	 tenterà	 di	

aggiungere	una	 auto	 (rappresentabile	 con	un	 rettangolo	di	 dimensione	minore	della	
cella).		

a. Se	 la	cella	su	cui	si	è	premuto	è	di	 tipo	“Prato”,	un	messaggio	 in	console	(o	 in	
una	finestra	di	pop-up)	dirà	“la	macchina	non	può	essere	aggiunta	su	un	prato!”		

b. Se	la	cella	su	cui	si	è	premuto	è	di	tipo	“Strada”,	l’automobile	verrà	aggiunta	su	
di	 essa	 e	 il	 bottone	 “Aggiungi	 auto”	 si	 disabiliterà,	 mentre	 il	 bottone	 “Muovi	
Auto”	viene	abilitato.	
	

10) La	 pressione	 del	 tasto	 “Muovi	 Auto”	 tenterà	 di	 muovere	 l’automobile	 sulla	 cella	
adiacente	nella	direzione	 indicata	dal	 cerchietto	della	cella	su	 cui	 si	 trova	 (in	alto,	 in	
basso,	a	destra	o	a	sinistra)”	

a. Se	 la	 cella	 di	 destinazione	 è	 di	 tipo	 “Strada”,	 l’operazione	 avrà	 successo	 e	 la	
macchina	verrà	spostata.	

b. Se	 la	 cella	di	destinazione	è	di	 tipo	 “Prato”,	un	messaggio	 in	 console	o	 in	una	
finestra	di	pop-up	dirà	“Crash!”	e	la	macchina	resterà	dove	si	trova.	

c. Altrettanto	accadrà	se	la	destinazione	è	fuori	dalla	griglia.		
	

11) Il	bottone	“Reset”	elimina	l’automobile,	riabilita	il	bottone	“Aggiungi	Auto”	e	disabilita	
il	bottone	“Muovi	Auto”.	
	

12) 	Si	documenti	il	codice	prodotto	con	Javadoc	(solo	studenti	del	prof.	Ronchetti).	
	
Altri	requisiti	

• Il	 codice	 generato	 deve	 rispettare	 i	 principi	 della	 programmazione	 object-
oriented.	 In	 particolare,	 si	 usi,	 quando	 evidente/utile,	 una	 gerarchia	 di	
ereditarietà,	sfruttando	ove	possibile	il	polimorfismo.	

• Si	usino	costanti	ove	ragionevole,	e	si	badi	alla	pulizia	del	codice	(es.,	linee	guida	
Java)	evitando	duplicazioni	e	codice	inutilmente	complesso.	

	
Note	

• Per	raggiungere	la	sufficienza	basta	fare	bene	i	punti	da	1	a	7.	
• Non	è	richiesto	di	gestire	il	resize	della	finestra.	

	

	
Suggerimenti	
	
1)	Per	realizzare	una	componente	che	abbia	sfondo	grigio	e	mostri	un	cerchio	a	destra,	
si	suggerisce	di	usare	il	seguente	frammento	di	codice:	
	
																					int radius=10;
 bp.setStyle("-fx-background-color: #666666;");
 circle.setRadius(radius);
 circle.setStroke(Color.YELLOW);
 bp.setAlignment(circle,Pos.CENTER);
 bp.setRight(circle);
	
dove	bp è	un	BorderPane	e	circle	è	un’istanza	di	Circle.	
	
2)	 Volendo	 avere	 i	 bordini	 delle	 celle,	 si	 consiglia	 di	 usare	 il	 metodo	 setMargin	
presente	nella	maggior	parte	dei	Pane	 (HBox,	VBox,	BorderPane,	StackPane…)	e	
documentato	nelle	relative	API.	

