

Spring.thymeleaf

Thymeleaf's main goal is to bring elegant natural
templates to your development workflow — HTML

that can be correctly displayed in browsers and
also work as static prototypes, allowing for

stronger collaboration in development teams.

Natural Template

<table>

 <thead>

 <tr>

 <th th:text="#{msgs.headers.name}">Name</th>

 <th th:text="#{msgs.headers.price}">Price</th>

 </tr>

Form
<form action="#" th:action="@{/seedstartermng}" th:object="${seedStarter}"

 method="post">

<label th:for="${#ids.next('covered')}"

 th:text="#{seedstarter.covered}">Covered</label>

 <input type="checkbox" th:field="*{covered}" />

<select th:field="*{type}">

 <option th:each="type : ${allTypes}"

 th:value="${type}"

 th:text="#{${'seedstarter.type.' + type}}">Wireframe</option>

</select>

</form>

Validation - Model

import javax.validation.constraints.Min;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

public class PersonForm {

 @NotNull

 @Size(min=2, max=30)

 private String name;

Validation - Controller

@PostMapping("/")

 public String checkPersonInfo(@Valid PersonForm personForm,
BindingResult bindingResult) {

 if (bindingResult.hasErrors()) {

 return "form";

Validation - View

<form action="#" th:action="@{/}" th:object="${personForm}" method="post">

<table>

 <tr>

 <td>Name:</td>

 <td><input type="text" th:field="*{name}" /></td>

 <td th:if="${#fields.hasErrors('name')}" th:errors="*{name}">Name Error</td>

 </tr>

ConvertionService
<bean id="conversionService"

 class="org.springframework.format.support.FormattingConversionServiceFactoryBean">

 <property name="formatters">

 <set>

 <bean class="thymeleafexamples.stsm.web.conversion.VarietyFormatter" />

 <bean class="thymeleafexamples.stsm.web.conversion.DateFormatter" />

 </set>

 </property>

 </bean>

Formatter
public class DateFormatter implements Formatter<Date> {

 @Autowired

 private MessageSource messageSource;

 public DateFormatter() {

 super();

 }

 public Date parse(final String text, final Locale locale) throws ParseException {

 final SimpleDateFormat dateFormat = createDateFormat(locale);

 return dateFormat.parse(text);

 }

Formatter
 public String print(final Date object, final Locale locale) {

 final SimpleDateFormat dateFormat = createDateFormat(locale);

 return dateFormat.format(object);

 }

 private SimpleDateFormat createDateFormat(final Locale locale) {

 final String format = this.messageSource.getMessage("date.format", null, locale);

 final SimpleDateFormat dateFormat = new SimpleDateFormat(format);

 dateFormat.setLenient(false);

 return dateFormat;

 }

}

Riferimenti

● https://www.thymeleaf.org/doc/tutorials/2.1/thym
eleafspring.html

● https://spring.io/guides/gs/serving-web-content/
● https://spring.io/guides/gs/validating-form-input/

https://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html
https://www.thymeleaf.org/doc/tutorials/2.1/thymeleafspring.html
https://spring.io/guides/gs/serving-web-content/
https://spring.io/guides/gs/validating-form-input/

