Spring.repository

Relational JPA

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;

import javax.persistence.ld;

@Entity // This tells Hibernate to make a table out of this class
public class User {

@ld

@GeneratedValue(strategy=GenerationType.AUTO)

private Integer id;

Repository Interface

public interface CrudRepository<T, ID extends Serializable>

extends Repository<T, ID> {

<S extends T> S save(S entity);
T findOne(ID primaryKey);
Iterable<T=> findAll();

Long count();

void delete(T entity);

boolean exists(ID primaryKey);

// ... more functionality omitted.

Paging Sorting Interface

public interface PagingAndSortingRepository<T, ID extends Serializable>

extends CrudRepository<T, ID> {

Iterable<T> findAll(Sort sort);
Page<T> findAll(Pageable pageable);
}

Custom Repository

src/main/java/hello/UserRepository. java

package hello;
import org.springframework.data.repository.CrudRepository;
import hello.Person;

public interface PersonRepository extends CrudRepository<Person, Integer> {

J

Usage

@Controller
@RequestMapping("/users")

public class PersonController {
@Autowired PersonRepository repository;

@RequestMapping
public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";
}
}

Query Methods

List<Person> persons =
personRepository.findByFirstNameLike("J%");

Custom Methods

interface PersonRepository extends Repository<User, Long> {
List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

// Enables the distinct flag for the query
List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);

List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

// Enabling ignoring case for an individual property
List<Person> findByLastnamelgnoreCase(String lastname);
// Enabling ignoring case for all suitable properties

List<Person> findByLastnameAndFirstnameAlllgnoreCase(String lastname, String firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);

List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

@Query

public final static String FIND_BY_ADDRESS_QUERY ="SELECT p " +

"FROM Person p LEFT JOIN p.addressesa " +
"WHERE a.address = :address";
@Query(FIND_BY_ADDRESS_QUERY)

public List<Person> findByAddress(@Param("address") String address);

Typed SQL

public interface Queryds|PredicateExecutor<T> {
Optional<T>findByld(Predicate predicate);
Iterable<T> findAll(Predicate predicate);
long count(Predicate predicate);
boolean exists(Predicate predicate);

// ... more functionality omitted.

}

Typed SQL Usage

Predicate predicate = user.firstname.equalslgnoreCase("dave")

.and(user.lastname.startsWithlgnoreCase("mathews"));

userRepository.findAll(predicate);

Document

import static org.springframework.data.mongodb.core.query.Criteria.where;

MongoOperations mongoOps
= new MongoTemplate(new MongoClient(), "database");

mongoOps.insert(new Person("Joe", 34));

log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

mongoOps.dropCollection("person”);

Collection

db.orders.mapReduce(

map

— function() { emit(this.cust_id, this.amount); 3},
reduce — function(key, values) { return Array.sum(values) },

query: { status: "A" 3},

{"A123": [500, 250 1}

—

map

{ EB272E: 200}

{
query ——»
output —» out: "order_totals”
3
)
{
cust_id: "A123",
amount: 500,
status: "A"
3 { id. " "
cust_id: "A123",
amount: 500,
{ status: "A"
cust_id: "A123", }
amount: 250,
status: "A"
3 {
cust_id: "A123",
P> | amount: 250,
{ query status: "A"
cust_id: "B212", }
amount: 200,
status: "A"
) { :
cust_id: "B212",
amount: 200,
{ status: "A”
cust_id: "A123", }
amount: 300,
status: "D"
3

orders

reduce

{
_id: "A123",
value: 750

_id: "B212",
value: 200

order_totals

Map Reduce

MapReduceResults<ValueObject> results = mongoOperations.mapReduce(

"imrl", "classpath:map.js", "classpath:reduce.js", ValueObject.class);

for (ValueObject valueObject : results) {

System.out.println(valueObject);
}

GeoSpatial

Circle circle = new Circle(-73.99171, 40.738868, 0.01);
List<Venue> venues =

template.find(new Query(Criteria.where("location").within(circle)), Venue.class);

Riferimenti

https://spring.io/guides/gs/relational-data-access/
https://spring.io/guides/gs/accessing-data-mysql/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/

https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repo
sitory-query-keywords

http://www.querydsl.com/
https://docs.mongodb.com/manual/core/map-reduce/

https://github.com/spring-projects/spring-data-book

https://spring.io/guides/gs/relational-data-access/
https://spring.io/guides/gs/accessing-data-mysql/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repository-query-keywords
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repository-query-keywords
http://www.querydsl.com/
https://docs.mongodb.com/manual/core/map-reduce/
https://github.com/spring-projects/spring-data-book

