

Spring.repository

Relational JPA
import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

@Entity // This tells Hibernate to make a table out of this class

public class User {

 @Id

 @GeneratedValue(strategy=GenerationType.AUTO)

 private Integer id;

...

Repository Interface
public interface CrudRepository<T, ID extends Serializable>

 extends Repository<T, ID> {

 <S extends T> S save(S entity);

 T findOne(ID primaryKey);

 Iterable<T> findAll();

 Long count();

 void delete(T entity);

 boolean exists(ID primaryKey);

 // … more functionality omitted.

}

Paging Sorting Interface

public interface PagingAndSortingRepository<T, ID extends Serializable>

 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);

}

Custom Repository

src/main/java/hello/UserRepository.java

package hello;

import org.springframework.data.repository.CrudRepository;

import hello.Person;

public interface PersonRepository extends CrudRepository<Person, Integer> {

}

Usage
@Controller

@RequestMapping("/users")

public class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping

 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));

 return "users";

 }

}

Query Methods

List<Person> persons =
personRepository.findByFirstNameLike("J%");

Custom Methods
interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query

 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);

 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property

 List<Person> findByLastnameIgnoreCase(String lastname);

 // Enabling ignoring case for all suitable properties

 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query

 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);

 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

@Query

 public final static String FIND_BY_ADDRESS_QUERY = "SELECT p " +

 "FROM Person p LEFT JOIN p.addresses a " +

 "WHERE a.address = :address";

 @Query(FIND_BY_ADDRESS_QUERY)

 public List<Person> findByAddress(@Param("address") String address);

Typed SQL
public interface QuerydslPredicateExecutor<T> {

 Optional<T> findById(Predicate predicate);

 Iterable<T> findAll(Predicate predicate);

 long count(Predicate predicate);

 boolean exists(Predicate predicate);

 // … more functionality omitted.

}

Typed SQL Usage

Predicate predicate = user.firstname.equalsIgnoreCase("dave")

 .and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

Document

import static org.springframework.data.mongodb.core.query.Criteria.where;

 MongoOperations mongoOps

 = new MongoTemplate(new MongoClient(), "database");

 mongoOps.insert(new Person("Joe", 34));

log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

mongoOps.dropCollection("person");

Map Reduce

MapReduceResults<ValueObject> results = mongoOperations.mapReduce(

 "jmr1", "classpath:map.js", "classpath:reduce.js", ValueObject.class);

for (ValueObject valueObject : results) {

 System.out.println(valueObject);

}

GeoSpatial

Circle circle = new Circle(-73.99171, 40.738868, 0.01);

List<Venue> venues =

 template.find(new Query(Criteria.where("location").within(circle)), Venue.class);

Riferimenti
● https://spring.io/guides/gs/relational-data-access/

● https://spring.io/guides/gs/accessing-data-mysql/

● https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/

● https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repo
sitory-query-keywords

● http://www.querydsl.com/

● https://docs.mongodb.com/manual/core/map-reduce/

● https://github.com/spring-projects/spring-data-book

https://spring.io/guides/gs/relational-data-access/
https://spring.io/guides/gs/accessing-data-mysql/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repository-query-keywords
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repository-query-keywords
http://www.querydsl.com/
https://docs.mongodb.com/manual/core/map-reduce/
https://github.com/spring-projects/spring-data-book

