Spring.transactions




Strategy

The Spring Framework gives you the choice of when to scale
your application to a fully loaded application server.



PlatformTransactionManager

public interface PlatformTransactionManager {

TransactionStatus getTransaction(TransactionDefinition definition)

throws TransactionException;
void commit(TransactionStatus status) throws TransactionException;

void rollback(TransactionStatus status) throws TransactionException;



Propagation

* PROPAGATION_REQUIRES_NEW

* PROPAGATION_REQUIRED

* PROPAGATION_NESTED

 a participating transaction joins the characteristics
of the outer scope



Isolation

DEFAULT: use the default isolation level of the underlying datastore.

READ_COMMITTED: dirty reads are prevented; non-repeatable reads and
phantom reads can occur.

READ_UNCOMMITTED: dirty reads, non-repeatable reads and phantom reads
can occur.

REPEATABLE_READ: dirty reads and non-repeatable reads are prevented;
phantom reads can occur.

SERIALIZABLE: dirty reads, non-repeatable reads and phantom reads are
prevented.

Only applicable to propagation settings of REQUIRED or REQUIRES_NEW.



TimeOut

e Only applicable to propagation settings of
REQUIRED or REQUIRES_NEW.



Transaction Defaults

 The propagation setting is PROPAGATION_REQUIRED.
 Theisolation level is ISOLATION_DEFAULT.

e The transaction is read-write.

 Thetransaction timeout defaults to the default
timeout of the underlying transaction system, or to none
if timeouts are not supported.

* Any RuntimeException triggers rollback, and any
checked Exception does not.



@Transactional

e @Transactional, meaning that any failure causes

the entire operation to
state, and to re-throw t

* Only to methods with pub
* OruseAspect)

roll back to its previous
ne original exception.

ic visibility, else ignored.



Usage

@Component
public class BookingService {

private final JdbcTemplate jdbcTemplate;

public BookingService(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

@Transactional
public void book(String... persons) {
for (String person : persons) {
jdbcTemplate.update("insert into BOOKINGS(FIRST_NAME) values (?)", person);
}



Riferimenti

https://docs.spring.io/spring/docs/current/spring-framework-refer
ence/data-access.html#transaction

https://docs.spring.io/spring-data/mongodb/docs/current/refere
nce/html/#_transactions_with_code_mongotransactionmanager_code

https://spring.io/guides/gs/managing-transactions/



https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#_transactions_with_code_mongotransactionmanager_code
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#_transactions_with_code_mongotransactionmanager_code
https://spring.io/guides/gs/managing-transactions/

