

Spring.transactions

Strategy

The Spring Framework gives you the choice of when to scale
your application to a fully loaded application server.

PlatformTransactionManager

public interface PlatformTransactionManager {

 TransactionStatus getTransaction(TransactionDefinition definition)

 throws TransactionException;

 void commit(TransactionStatus status) throws TransactionException;

 void rollback(TransactionStatus status) throws TransactionException;

}

Propagation

● PROPAGATION_REQUIRES_NEW
● PROPAGATION_REQUIRED
● PROPAGATION_NESTED

● a participating transaction joins the characteristics
of the outer scope

Isolation
● DEFAULT: use the default isolation level of the underlying datastore.
● READ_COMMITTED: dirty reads are prevented; non-repeatable reads and

phantom reads can occur.
● READ_UNCOMMITTED: dirty reads, non-repeatable reads and phantom reads

can occur.
● REPEATABLE_READ: dirty reads and non-repeatable reads are prevented;

phantom reads can occur.
● SERIALIZABLE: dirty reads, non-repeatable reads and phantom reads are

prevented.

● Only applicable to propagation settings of REQUIRED or REQUIRES_NEW.

TimeOut

● Only applicable to propagation settings of
REQUIRED or REQUIRES_NEW.

 Transaction Defaults

● The propagation setting is PROPAGATION_REQUIRED.
● The isolation level is ISOLATION_DEFAULT.
● The transaction is read-write.
● The transaction timeout defaults to the default

timeout of the underlying transaction system, or to none
if timeouts are not supported.

● Any RuntimeException triggers rollback, and any
checked Exception does not.

@Transactional

● @Transactional, meaning that any failure causes
the entire operation to roll back to its previous
state, and to re-throw the original exception.

● Only to methods with public visibility, else ignored.
● Or use AspectJ

Usage
@Component

public class BookingService {

private final JdbcTemplate jdbcTemplate;

public BookingService(JdbcTemplate jdbcTemplate) {

 this.jdbcTemplate = jdbcTemplate;

 }

@Transactional

 public void book(String... persons) {

 for (String person : persons) {

 jdbcTemplate.update("insert into BOOKINGS(FIRST_NAME) values (?)", person);

 }

 }

Riferimenti
● https://docs.spring.io/spring/docs/current/spring-framework-refer

ence/data-access.html#transaction
● https://docs.spring.io/spring-data/mongodb/docs/current/refere

nce/html/#_transactions_with_code_mongotransactionmanager_code
● https://spring.io/guides/gs/managing-transactions/

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#_transactions_with_code_mongotransactionmanager_code
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#_transactions_with_code_mongotransactionmanager_code
https://spring.io/guides/gs/managing-transactions/

