
  

Spring.rest



  

REST

Representational State Transfer (REST) is a type of software 
architecture for distributed systems.



  

REST abstract

● An important concept in REST is the existence of 
resources (sources of information), which can be 
accessed through a global identifier (a URI). To use 
resources, the components of a network (client 
and server components) communicate through a 
standard interface (eg HTTP) and exchange 
representations of these resources (the document 
that transmits the information).



  

Verbi HTTP

● GET
● POST, PATCH, 
● PUT, DELETE, HEAD
● OPTIONS
● TRACE



  

URL Params
http://localhost:8080/sitename/controllerLevelMapping/1?someAttr=6

@RequestMapping("/{someID}")

public @ResponseBody int getAttr(@PathVariable(value="someID")      

                                                                                                                          String id, 

                                                                       @RequestParam String someAttr) {

}



  

@Request-ResponseBody
@Controller

@RequestMapping("/mail")

public class ExampleMailController {

  

    @PostMapping("/credentials")

    @ResponseBody

    public ResponseCredentials postCredentials(

      @RequestBody LoginForm loginForm) {

                  return new ResponseCredentials("Thanks For Posting!!!");

            }

}

// {"text":"Thanks For Posting!!!"}



  

ResponseEntity

@GetMapping("/hello")

ResponseEntity<String> hello() {

    return ResponseEntity.ok("Hello World!");

}

@GetMapping("/hello2")

ResponseEntity<String> hello2() {

    return ResponseEntity.status(HttpStatus.OK)

        .header("Custom-Header", "foo")

        .body("Custom header set");

}



  

@RestController

@RestController

@RequestMapping("books-rest")

public class SimpleBookRestController {

     

    @GetMapping("/{id}", produces = "application/json")

    public Book getBook(@PathVariable int id) {

        return findBookById(id);

    }

}

// @ResponseBody isn’t required



  

Actuator

● Actuator is mainly used to expose operational 
information about the running application – 
health, metrics, info, dump, env, etc. It uses HTTP 
endpoints or JMX beans to enable us to interact 
with it.

● Actuator comes with most endpoints disabled,

only two are available by default: /health and /info.



  

Actuator Endpoints (I)
●     /auditevents – lists security audit-related events such as user login/logout. Also, we 

can filter by principal or type among others fields
●     /beans – returns all available beans in our BeanFactory. Unlike /auditevents, it 

doesn’t support filtering
●     /conditions – formerly known as /autoconfig, builds a report of conditions around 

auto-configuration
●     /configprops – allows us to fetch all @ConfigurationProperties beans
●     /env – returns the current environment properties. Additionally, we can retrieve 

single properties
●     /flyway – provides details about our Flyway database migrations
●     /health – summarises the health status of our application
●     /heapdump – builds and returns a heap dump from the JVM used by our application
●     /info – returns general information. It might be custom data, build information or 

details about the latest commit



  

Actuator Endpoints (II)
●     /liquibase – behaves like /flyway but for Liquibase
●     /logfile – returns ordinary application logs
●     /loggers – enables us to query and modify the logging level of our application
●     /metrics – details metrics of our application. This might include generic metrics as 

well as custom ones
●     /prometheus – returns metrics like the previous one, but formatted to work with a 

Prometheus server
●     /scheduledtasks – provides details about every scheduled task within our 

application
●     /sessions – lists HTTP sessions given we are using Spring Session
●     /shutdown – performs a graceful shutdown of the application
●     /threaddump – dumps the thread information of the underlying JVM



  

 Richardson Maturity Model

● Level0: HTTP tunneling, single RPC endpoint
● Level1: Individual Resources
● Level2: HTTP verbs and response
● Level3: Hypermedia Links



  

HEATOAS

● Hypermedia as the Engine of Application State
● A hypermedia-driven site provides information to 

navigate the site's REST interfaces dynamically by 
including hypermedia links with the responses.



  

HEATOAS Example

{

    "name": "Alice",

    "links": [ {

        "rel": "self",

        "href": "http://localhost:8080/customer/1"

    } ]

}



  

Guide

● https://spring.io/guides/gs/spring-boot/
● https://spring.io/guides/gs/rest-hateoas/

https://spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/rest-hateoas/


  

Riferimenti

● http://restcookbook.com/
● https://docs.spring.io/spring-hateoas/docs/curren

t/reference/html/
● https://martinfowler.com/articles/richardsonMatu

rityModel.html
● https://www.iana.org/assignments/link-relations/li

nk-relations.xhtml
● https://spring.io/understanding/HATEOAS

http://restcookbook.com/
https://docs.spring.io/spring-hateoas/docs/current/reference/html/
https://docs.spring.io/spring-hateoas/docs/current/reference/html/
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://spring.io/understanding/HATEOAS

