

Spring.boot.security

Features

● Comprehensive and extensible support for both
Authentication and Authorization

● Protection against attacks like session fixation,
clickjacking, cross site request forgery, etc

● Servlet API integration
● Optional integration with Spring Web MVC
● Social integration

Dependency

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

Security Servlet Filter

Filter Chain Proxy

Authentication Strategy

public interface AuthenticationManager {

 Authentication authenticate(Authentication authentication)

 throws AuthenticationException;

}

ProviderManeger

● The most commonly used implementation of
AuthenticationManager is ProviderManager, which
delegates to a chain of AuthenticationProvider

Authentication Principal

 @RequestMapping(value = "/username", method = RequestMethod.GET)

 @ResponseBody

 public String currentUserName(Authentication authentication) {

 UserDetails userDetails = (UserDetails) authentication.getPrincipal();

 System.out.println("User has authorities: " userDetails.getAuthorities());

 return authentication.getName();

 }

Java Security Principal

import java.security.Principal;

 @RequestMapping(value = "/username", method = RequestMethod.GET)

 @ResponseBody

 public String currentUserNameSimple(HttpServletRequest request) {

 Principal principal = request.getUserPrincipal();

 return principal.getName();

 }

Authentication Bonus

● Cookie, Session
● Remember Me
● LDAP

MVC Integration

● Login/logout out of the box.
● Default closed protection to relax.

Authorization Strategy

● AccessDecisionManager delegate to a chain of
AccessDecisionVoter.

● An AccessDecisionVoter considers an
Authentication (representing a principal) and a
secure Object (web resource or method) which as
been decorated with ConfigAttributes (string for
principal role)

Authorization Bonus

● Declarative routes and annotations.
● WebSockets.

Social Authorizations

● Oauth2 client, server
● OpenID

UserDetails Strategy

public interface UserDetails extends Serializable {

 Collection<? extends GrantedAuthority> getAuthorities();

 String getPassword();

 String getUsername();

 boolean isAccountNonExpired();

 boolean isAccountNonLocked();

 boolean isCredentialsNonExpired();

 boolean isEnabled();

}

Custom UserDetailsService

@Service

public class MyUserService implements UserDetailsService {…}

public interface UserDetailsService {

UserDetails loadUserByUsername(String username) throws

 UsernameNotFoundException;

}

Enable Security Config
@Configuration

@EnableWebSecurity

@EnableGlobalMethodSecurity(securedEnabled = true)

public class WebSecurity extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {...}

 @Override

 protected void configure(AuthenticationManagerBuilder auth)

 throws Exception {...}

}

Config Routes

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .antMatchers("/","/index").permitAll()

 .antMatchers("/dashboard").authenticated()

 .antMatchers("/profile").hasAnyRole(Roles.ADMIN.name())

Config Login Logout

 .and()
.formLogin().loginPage("/user/login")

 .permitAll()

 .defaultSuccessUrl("/deck/my")

 .and()
.logout().logoutSuccessUrl("/user/login")

 .authenticated();

Config Credentials

 @Override

 protected void configure(AuthenticationManagerBuilder auth)

 throws Exception {

 userDetailService.setPasswordEncoder(passwordEncoder());

 auth.userDetailsService(userDetailService);

}

 @Bean

 public PasswordEncoder passwordEncoder() {

 return new BCryptPasswordEncoder();

 }

Method Securty

@Service

public class MyService {

 @Secured("ROLE_USER")

 public String secure() {

 return "Hello Security";

 }

}

OWASP Top 10

1) Injection

2) Broken Authentication

3) Sensitive Data Exposure

4) XML Extenal Entities (XEE)

5) Broken Access Control

6) Security Misconfiguration

7) Cross Site Scripting

8) Insecure Deserialization

9) Known Deps Vulnerability

10) Insufficient Monitoring

Config Protections

http.csrf().disable();

http.headers().disable();

http.headers().frameOptions().disable();

http.headers().xssProtection().enable();

http.headers().contentTypeOptions().disable();

http.headers().cache().enable();

Http.headers().httpStrictTransportSecurity()

Config Content Policy

http.headers()

 .contentSecurityPolicy(

"script-src 'self' https://trustedscripts.example.com;
object-src https://trustedplugins.example.com;
report-uri /csp-report-endpoint/");

Sessions

● Concurrency
● Timeout
● Fixation
● Delete on logout

Session Concurrency

@Bean

//

public HttpSessionEventPublisher httpSessionEventPublisher() {

 return new HttpSessionEventPublisher();

}

@Override

protected void configure(HttpSecurity http) throws Exception {

 http.sessionManagement().maximumSessions(2)

}

Session Timeout

http.sessionManagement()

 .invalidSessionUrl("/invalidSession.html");

Session Fixation

http.sessionManagement()

 .sessionFixation().migrateSession()

none - Don’t do anything. The original session will be retained.

newSession - Create a new "clean" session, without copying the existing
session data (Spring Security-related attributes will still be copied).

migrateSession - Create a new session and copy all existing session attributes
to the new session. This is the default in Servlet 3.0 or older containers.

changeSessionId - Do not create a new session. Instead, use the session
fixation protection provided by the Servlet container

Spring Session Project

● Clustered Sessions
● WebSocket Keep Alive
● WebFlux Reactive Application Containers

Guide

● https://spring.io/blog/2010/08/02/spring-security
-in-google-app-engine/

https://spring.io/blog/2010/08/02/spring-security-in-google-app-engine/
https://spring.io/blog/2010/08/02/spring-security-in-google-app-engine/

Riferimenti
● https://spring.io/guides/topicals/spring-security-architecture/

● https://spring.io/projects/spring-security

● https://spring.io/projects/spring-security-oauth

● https://oauth.net/

● https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%
29.pdf.pdf

https://spring.io/guides/topicals/spring-security-architecture/
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security-oauth
https://oauth.net/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

