
Angular	JS	services	and	path	

Services	

In	AngularJS,	a	service	is	a	function,	or	object,	
that	is	available	for,	and	limited	to,	your	
AngularJS	application.	
	
AngularJS	has	about	30	built-in	services.	
	
	
	

$timeout	

var	app	=	angular.module('myApp',	[]);	
app.controller('myCtrl',	function($scope,	
$timeout)	{	
				$scope.myHeader	=	"Hello	World!";	
				$timeout(function	()	{	
								$scope.myHeader	=	"How	are	you	today?";	
				},	2000);	
});	

$interval	

var	app	=	angular.module('myApp',	[]);	
app.controller('myCtrl',	function($scope,	$interval)	{	
				$scope.theTime	=	new	Date().toLocaleTimeString();	
				$interval(function	()	{	
								$scope.theTime	=	new	Date().toLocaleTimeString();	
				},	1000);	
});	

$location	

var	app	=	angular.module('myApp',	[]);	
app.controller('customersCtrl',	function($scope,	
$location)	{	
				$scope.myUrl	=	$location.absUrl();	
});	

$http	
<div	ng-app="myApp"	ng-controller="myCtrl">		
	
<p>Today's	welcome	message	is:</p>	
<h1>{{myWelcome}}</h1>	
	
</div>	
	
<script>	
var	app	=	angular.module('myApp',	[]);	
app.controller('myCtrl',	function($scope,	$http)	{	
				$http.get("welcome.html")	
				.then(function(response)	{	
								$scope.myWelcome	=	response.data;	
				});	
});	
</script>	

welcome.html:	
<h1>	This	is	today’s	greeting	</h1>	

Methods	
	

The	.get	method	is	a	shortcut	method	of	the	$http	
service.	There	are	several	shortcut	methods:	
	
.delete()	
.get()	
.head()	
.jsonp()	–	deprecated		
.patch()	
.post()	
.put()	

RESTful	API	HTTP	methods	(wikipedia)	

HTTP	Patch	

The	HTTP	PATCH	request	method	applies	partial	modifications	to	a	
resource.	
	
The	HTTP	PUT	method	only	allows	complete	replacement	of	a	
document.		
	
Unlike	PUT,	PATCH	is	not	idempotent,	meaning	successive	identical	
patch	requests	may	have	different	effects.	However,	it	is	possible	to	
issue	PATCH	requests	in	such	a	way	as	to	be	idempotent.	
	
PATCH	(like	PUT)	may	have	side-effects	on	other	resources.	

Full	version	
var	app	=	angular.module('myApp',	[]);	
app.controller('myCtrl',	function($scope,	$http)	{	
				$http({	
								method	:	"GET",	
								url	:	"welcome.htm"	
				}).then(function	mySuccess(response)	{	
								$scope.myWelcome	=	response.data;	
				},	function	myError(response)	{	
								$scope.myWelcome	=	response.statusText;	
				});	
});	

JSON	

Example	
{	
	"records":[
{"Name":"Alfreds	Futterkiste","City":"Berlin","Country":"Germany"},	
{"Name":"Ana	Emparedados","City":"México	D.F.","Country":"Mexico"},	
{"Name":"Antonio	Taquería","City":"México	D.F.","Country":"Mexico"},	
{"Name":"Around	the	Horn","City":"London","Country":"UK"},
{"Name":"Comércio	Mineiro","City":"São	Paulo","Country":"Brazil"}	
]	
	}	

Jason	and	the	Argonauts	

Argo	(Parsing	JSON	in	Java)	
{
 "name": "Black Lace",
 "sales": 110921,
 "totalRoyalties": 10223.82,
 "singles": [
 "Superman", "Agadoo"
]
}	

String	secondSingle	=	new	JdomParser().parse(jsonText)	
				.getStringValue("singles",	1);	

http://argo.sourceforge.net/index.html	

Parsing	JSON	in	JavaScript	
var	text	=	'{	"name":"John",	"birth":"1986-12-14",	"city":"New	York"}';	
	
var	obj	=	JSON.parse(text,	function	(key,	value)	{	
		if	(key	==	"birth")	{	
				return	new	Date(value);	
		}	else	{	
				return	value;	
		}	
});	
	
document.getElementById("demo").innerHTML	=	obj.name	+	",	"	+	
obj.birth;	
	

Parsing	JSON	in	JavaScript	-	simpler	
var	text	=	'{	"name":"John",	"birth":"1986-12-14",	"city":"New	York"}';	
var	obj	=	JSON.parse(text);	
obj.birth	=	new	Date(obj.birth);	
	
document.getElementById("demo").innerHTML	=	obj.name	+	",	"	+	
obj.birth;	

Creating	your	own	services	

AngularJS	services	are	singletons		
	
A	typical	use	of	service	is	sharing	data	or	
functionalities	among	different	controllers.		
	
There	are	two	ays	to	access	them:	
service()	and		factory()	
	
	

Two	ways	

angular.module("myApp")	
	.controller("myController",	

				 	function($scope,	somma1,	somma2)	{	
				 	 	$scope.x	=	somma1.somma(1,2);	
				 	 	$scope.y	=	somma2(1,2)	
		 	});	

angular.module("myApp")	
	.service("somma1",	function()	{	
	 	this.somma	=	function(a,b)	{	return	a	+	b};	
	});	

	
angular.module("myApp")	

	.factory("somma2",	function()	{	
	 	return	function(a,	b)	{	return	a	+	b;}	
	});	

An	example	
app.service('hexafy',	function()	{	
				this.myFunc	=	function	(x)	{	
								return	x.toString(16);	
				}	
});	
	
app.controller('myCtrl',	function($scope,	hexafy)	{	
				$scope.hex	=	hexafy.myFunc(255);	
});	

ng-path	<!DOCTYPE	html>	
<html>	
<script	src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/
angular.min.js"></script>	
<script	src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular-
route.js"></script>	
	
<body	ng-app="myApp”>	
<p>Main</p>	
Red	
Green	
Blue	
<div	ng-view></div>	
	
<p>Click	on	the	links	to	navigate	to		
"red.html",	"green.html",	"blue.html",	
	or	back	to	"main.html"</p>	
</body>	
</html>	
	
	
	

<script>	
var	app	=	angular.module("myApp",	["ngRoute"]);	
app.config(function($routeProvider)	{	
											$routeProvider	
											.when("/",	{	
																	template	:	”h1>main	with	local	template</h1>"	
																	})	
											.when("/red",	{	
																	templateUrl	:	"red.html"	
																	})	
											.when("/green",	{	
																	templateUrl	:	"green.html"	
																	})	
											.when("/blue",	{	
																	templateUrl	:	"blue.html"	
																	});	
											});	
</script>	
	

red.html:	
<h1>this	is	the	"red"	page"</h1>	
green.html:	
<h1>this	is	the	”green"	page"</h1>	
blue.html:	
<h1>this	is	the	”blue"	page"</h1>	
	
	
	

Output	

You	can	add	an	“.otherwise”	clause	
	
You	can	add	behaviours,	by	adding	controllers	to	
the	“.when”	

