
Intro	to	SPA	framework	
Based	on	a	presentation	by		

Jussi	Pohjolainen	

Rise	of	the	Responsive	Single	Page	App	

Image:	http://johnpolacek.github.io/scrolldeck.js/decks/responsive/	

Responsive	

•  Unified	across		
experiences	

•  Can	be	embedded	as		
mobile	app	

•  Better	deployment	and		
&	maintanence	

•  Mobile	users	need	to		
get	access	to	everything	

Image:	http://coenraets.org/blog/wp---content/uploads/2011/10/
directory11.png	

Single---page	Applications	(SPA)	

•  Web	app	that	fits	on	a	single	web	page	
– Fluid	UX,	like	desktop	app	
– Examples	like	Gmail,	Google	maps	

•  Html	page	contains	mini---views	(HTML		
Fragments)	that	can	be	loaded	in	the		
background	

•  No	reloading	of	the	page,		
•  Requires	handling	of	browser	history,		
navigation	and	bookmarks	

JavaScript	

•  SPAs	are	implemented	using	JavaScript	and	
HTML	

Challenges	in	SPA	
•  DOM	Manipulation	

–  How	to	manipulate	the	view	efficiently?	
•  History	

– What	happens	when	pressing	back	button?	
•  Routing	

–  Readable	URLs?	
•  Data	Binding	

–  How	bind	data	from	model	to	view?	
•  View	Loading	

–  How	to	load	the	view?	
•  Lot	of	coding!	You	could	use	a	framework	instead	...	

Single-page	Application	

Single	page	apps	typically	have	
“application	like”	interaction	
dynamic	data	loading	from	the	server-side	API	
fluid	transitions	between	page	states	
more	JavaScript	than	actual	HTML	

They	typically	do	not	have	
support	for	crawlers	(not	for	sites	relying	on	search	traffic)	
support	for	legacy	browsers	(IE7	or	older,		dumbphone	browsers)	
	

	

SPAs	Are	Good	For	…	

•  “App-like	user	experience”	
•  Binding	to	your	own	(or	3rd	party)	RESTful	API	
•  Replacement	for	Flash	or	Java	in	your	web	
pages	

•  Hybrid	(native)	HTML5	applications	
•  Mobile	version	of	your	web	site	
	
The	SPA	sweet	spot	is	likely	not	on	web	sites,	
but	on	content-rich	cross-platform	mobile	apps	

PJAX	

Pjax	is	a	technique	that	allows	you	to	
progressively	enhance	normal	links	on	a	page	so	
that	clicks	result	in	the	linked	content	being	
loaded	via	Ajax	and	the	URL	being	updated	using	
HTML5	pushState,	avoiding	a	full	page	load.		
In	browsers	that	don't	support	pushState	or	that	
have	JavaScript	disabled,	link	clicks	will	result	in	
a	normal	full	page	load.	The	Pjax	Utility	makes	it	
easy	to	add	this	functionality	to	existing	pages.	

http://yuilibrary.com/yui/docs/pjax/	
	

SPAs	and	Other	Web	App	Architectures	
Server-side	 Server-side	+	AJAX	 PJAX	 SPA	

What	 Server	round-trip	on	
every	app	state	
change	

Render	initial	page	
on	server,	state	
changes	on	the	client	

Render	initial	page	
on	server,	state	
changes	on	server,	
inject	into	DOM	on	
client-side	

Serve	static	page	
skeleton	from	server;	
render	every	change	
on	client-side	

How	 UI	code	on	server;	
links	&	form	posting	

UI	code	on	both	
ends;	AJAX	calls,	ugly	
server	API	

UI	code	on	server,	
client	to	inject	HTTP,	
server	API	if	you	like	

UI	code	on	client,	
server	API	

Ease	of	development	

UX	&	responsiveness	

Robots	&	old	
browsers	

Who’s	using	it?	 Amazon,	Wikipedia;	
banks,	media	sites	
etc.	

Facebook?;	
widgets,	search	

Twitter,	Basecamp,	
GitHub	

Google+,	Gmail,		FT;	
mobile	sites,	startups	

FROM:	LAURI	SVAN	

Lifecycle	of	new	JS	frameworks	

There	appears	to	be	a	
quick	ascent,	as	the	
framework	gains	
popularity	and	then	a	
slightly	less	quick	but	
steady	decline	as	
developers	adopt	
newer	technologies.	
These	lifecycles	only	
last	a	couple	of	years.	

Jquery,	Angular	JS,	Angular,	React	

ANGULAR_JS	

Angular	JS	

•  Single	Page	App	Framework	for	JavaScript	
•  Implements	client---side	MVC	pattern	

– Separation	of	presentation	from	business	logic		
and	presentation	state	

•  No	direct	DOM	manipulation,	less	code	
•  Support	for	all	major	browsers	
•  Supported	by	Google	
•  Large	and	fast	growing	community	

AngularJS	–	Main	Concepts	

•  Templates	
•  Directives	
•  Expressions	
•  Data	binding	
•  Scope	

•  Controllers	
•  Modules	
•  Filters	
•  Services	
•  Routing	

Anatomy	of	a	Backbone	SPA	
•  Application	as	a	
‘singleton’	reference	
holder	

•  Router	handles	the	
navigation	and	toggles	
between	views	

•  Models	synchronize	with	
Server	API	

•  Bulk	of	the	code	in	views	
•  All	HTML	in	templates	
	

Model /
Controller

View Template

emits
 events

changes
using

changes
instantiates

using

Backend

DOM

synchronizes
changes with

Application

Router

initializes

toggles

FROM:	LAURI	SVAN	

From	Gary	Arora	

SPA	Client-Server	Communication	
•  HTML	and	all	the	assets	are	
loaded	in	first	request	

•  Additional	data	is	fetched	
over	XMLHTTPRequest	

•  If	you	want	to	go	real-time,	
WebSockets	(socket.io)	can	
help	you	

•  When	it	gets	slow,	cluster	
the	backend	behind	a	
caching	reverse	proxy	like	
Varnish	

	

Storage

Business Logic

Browser

Presentation / Server API

XMLHTTP-
Request WebSocket

HTTP
Server

Browser
(page load)

REST API Socket
API

Data
storage

Business
Logic

HTTP / * HTTP / JSON TCP / JSON

Auth & Access
Control

FROM:	LAURI	SVAN	

HOW		IT	WORKS?	

		

From	Rouson	

HOW		IT	WORKS?	

		

From	Rouson	

HOW		IT	WORKS?	

		

From	Rouson	

GETTING	STARTED	WITH		
ANGULAR_JS	

Basic	Concepts	

•  1)	Templates	
– HTML	with	additional	markup,	directives,		
expressions,	filters	...	

•  2)	Directives	
– Extend	HTML	using	ng-app,	ng-bind,	ng-model

•  3)	Filters	
– Filter	the	output:	filter,	orderBy,	uppercase

•  4)	Data	Binding	
– Bind	model	to	view	using	expressions	{{ }}

First	Example	–	Template	
<!DOCTYPE html>
<html>
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <style media="screen"></style>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/
1.4.8/angular.min.js"></script>
 </head>
 <body>
 <div ng-app>
<!-- store the value of input field into a variable name -->
<p>Name: <input type="text" ng-model="name"></p>
<!-- display the variable name inside (innerHTML) of p -->
<p ng-bind="name"></p>
</div>
</body>
</html>

Template	

2)	Directives	
•  Directives	apply	special	behavior	to	attributes	or		
elements	in	HTML	
– Attach	behaviour,	transform	the	DOM	

•  Some	directives	
– ng-app

•  Initializes	the	app	
– ng-model

•  Stores/updates	the	value	of	the	input	field	into	a	variable	
– ng-bind

•  Replace	the	text	content	of	the	specified	HTML	with	the		
value	of	given	expression	

About	Naming	

•  AngularJS	HTML	Compiler	supports	multiple		
formats	
– ng-bind

•  Recommended	Format	

– data-ng-bind
•  Recommended	Format	to	support	HTML	validation	

– ng_bind, ng:bind, x-ng-bind
•  Legacy,	don't	use	

Lot	of	Built	in	Directives	

•  ngApp
•  ngClick
•  ngController
•  ngModel
•  ngRepeat
•  ngSubmit

•  ngDblClick
•  ngMouseEnter
•  ngMouseMove
•  ngMouseLeave	
•  ngKeyDown
•  ngForm

2)	Expressions	

•  Angular	expressions	are	JavaScript---like	code		
snippets	that	are	usually	placed	in	bindings	
– {{ expression }}.

•  Valid	Expressions	
– {{ 1 + 2 }}
– {{ a + b }}
– {{ items[index] }}

•  Control	flow	(loops,	if)	are	not	supported!	
•  You	can	use	filters	to	format	or	filter	data	

3)	Filter	

•  With	filter,	you	can	format	or	filter	the	output	
•  Formatting 	

– currency, number, date, lowercase,
uppercase

•  Filtering	
– filter, limitTo

•  Other	
– orderBy, json

Directives	
The	ng-app	Directive	
The	ng-app	directive	defines	the	root	element	of	an	AngularJS	application.	
It	will	auto-bootstrap	(automatically	initialize)	the	application	when	a	web	
page	is	loaded.	
The	ng-init	Directive	
The	ng-init	directive	defines	initial	values	for	an	AngularJS	application.	
The	ng-model	Directive	
The	ng-model	directive	binds	the	value	of	HTML	controls	(input,	select,	
textarea)	to	application	data.	
The	ng-bind	Directive	
The	ng-model	directive	binds	the	innerHTML	of	the	element	to	the	
specified	model	property	

Directives:	ng-app,	ng-model,	ng-bind	

<!DOCTYPE	html>	
<html>	
<script	src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>	
<body>	
	
<div	ng-app="">	
		<p>Name:	<input	type="text"	ng-model="name"></p>	
		<p	ng-bind="name"></p>	
</div>	
	
</body>	
</html>	

Directives:	ng-init,	and	version	for	
valid	HTML	

<div	ng-app=""	ng-init="firstName='John'">	
	
<p>The	name	is	</p>	
	
</div>	

<div	ng-app=""	data-ng-init="firstName='John'">	
	
<p>The	name	is	</p>	
	
</div>	

Form	input	

Checkbox	=>	true,	false	
Radio	=>	values	
Select	=>	values	
Text	=>	value	

	<form>	
				Check	to	show	a	header:	
				<input	type="checkbox"	ng-model="myVar">	
</form>	
<h1	ng-show="myVar">My	Header</h1>	

	<input	type="radio"	ng-model="myVar"	value="dogs">Dogs</input>	
<input	type="radio"	ng-model="myVar"	value="tuts">Tutorials</input>	
<input	type="radio"	ng-model="myVar"	value="cars">Cars</input>	

	<select	ng-model="myVar">	
				<option	value="">	
				<option	value="dogs">Dogs	
				<option	value="tuts">Tutorials	
				<option	value="cars">Cars	
</select>	

	<input	type="text"	ng-model="user.firstName">	

Input	field	properties	

Input	fields	have	the	following	states:	
$untouched	The	field	has	not	been	touched	yet	
$touched	The	field	has	been	touched	
$pristine	The	field	has	not	been	modified	yet	
$dirty	The	field	has	been	modified	
$invalid	The	field	content	is	not	valid	
$valid	The	field	content	is	valid	

Values:	either	true	or	false.	
	
Forms	have	the	following	states:	
$pristine	No	fields	have	been	modified	yet	
$dirty	One	or	more	have	been	modified	
$invalid	The	form	content	is	not	valid	
$valid	The	form	content	is	valid	
$submitted	The	form	is	submitted	

Values:	either	true	or	false.	

Show	an	error	message	if	the	field	has	been	touched	AND	
is	empty:	
	
<input	name="myName"	ng-model="myName"	required>	
<span	ng-show="myForm.myName.$touched	&&	
myForm.myName.$invalid">The	name	is	required.	

Basic	validation	
<form	name="myForm">	
<input	name="myInput"		
													ng-model="myInput"	required>	
</form>	
	
<p>The	input's	valid	state	is:</p>	
<h1>{{myForm.myInput.$valid}}</h1>	

<form	name="myForm">	
<input	name="myInput"	ng-model="myInput"	type="email">	
</form>	
	
<p>The	input's	valid	state	is:</p>	
<h1>{{myForm.myInput.$valid}}</h1>	

Directives	for	DOM	control	

<p	ng-show="false">I	am	not	visible.</p>	
<button	ng-disabled="mySwitch">Click	Me!</
button>	
	

Control	this	variable	
via	code	

Expressions	
<!DOCTYPE	html>	
<html	lang="en-US">	
<script	src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></
script>	
<body>	
	
<div	ng-app="">	
		<p>Name	:	<input	type="text"	ng-model="name"></p>	
		<h1>Hello	{{name}}</h1>	
</div>	
	
</body>	
</html>	

Angular	JS	vs	plain	JS	

Like	JavaScript	expressions,	AngularJS	expressions	can	
contain	literals,	operators,	and	variables.	
	
Unlike	JavaScript	expressions,	AngularJS	expressions	
can	be	written	inside	HTML.	
	
AngularJS	expressions	do	not	support	conditionals,	
loops,	and	exceptions,	while	JavaScript	expressions	do.	
	
AngularJS	expressions	support	filters,	while	JavaScript	
expressions	do	not	

Expressions	
<div	ng-app=""	ng-init="myCol='lightblue'">	
	
<input	style="background-color:{{myCol}}"	ng-model="myCol">	
	
</div>	

<div>{{5*8}}</div>	

Objects	
<div	ng-app=""	ng-init="person={firstName:'John',lastName:'Doe'}">	
	
<p>The	name	is	{{	person.lastName	}}</p>	
	
</div>	

<div	ng-app=""	ng-init="person={firstName:'John',lastName:'Doe'}">	
	
<p>The	name	is	</p>	
	
</div>	

Arrays	
<div	ng-app=""	ng-init="points=[1,15,19,2,40]">	
	
<p>The	third	result	is	{{	points[2]	}}</p>	
	
</div>	

<div	ng-app=""	ng-init="points=[1,15,19,2,40]">	
	
<p>The	third	result	is	</p>	
	
</div>	

Directives:	ng-repeat	

The	ng-repeat	directive	clones	HTML	elements	once	for	
each	item	in	a	collection.	
The	ng-repeat	directive	is	used	on	an	array	of	objects:	

<div	ng-app=""	ng-init="names=[
{name:'Jani',country:'Norway'},	
{name:'Hege',country:'Sweden'},	
{name:'Kai',country:'Denmark'}]">	
	
	
		<li	ng-repeat="x	in	names">	
				{{	x.name	+	',	'	+	x.country	}}	
			
	
	
</div>	

Filters	
AngularJS	provides	filters	to	transform	data:	
	
currency	 	Format	a	number	to	a	currency	format.	
date	 	 	Format	a	date	to	a	specified	format.	
number	 	Format	a	number	to	a	string.	
filter	 	 	Select	a	subset	of	items	from	an	array.	
json	 	 	Format	an	object	to	a	JSON	string.	
lowercase	 	Format	a	string	to	lower	case.	
uppercase	 	Format	a	string	to	upper	case.	
orderBy	 	Orders	an	array	by	an	expression.	
limitTo	 	Limits	an	array/string,	into	a	specified	number	of	
elements/characters.	
	

Filters	
Filters	can	be	added	to	expressions	by	using	the	
pipe	character	|,	followed	by	a	filter.	
	
<div	ng-app="myApp"	ng-init="lastName='ronchetti'">	
	
<p>The	name	is	{{	lastName	|	uppercase	}}</p>	
	
</div>	

API	Reference	
https://docs.angularjs.org/api/ng/filter/filter	
	

More	examples	

Example	
<!DOCTYPE html>
<html>
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <style media="screen"></style>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>
 </head>
 <body>
 <div ng-app>
 <p>Number 1: <input type="number" ng-model="number1"></p>
 <p>Number 2: <input type="number" ng-model="number2"></p>
 <!-- expression -->
 <p>{{ number1 + number2 }}</p>
 </div>
 </body>
</html>

Directive	

Expression	

Directive	

ng---init	and	ng---repeat	directives	

<!DOCTYPE html>
<html data-ng-app="">
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>
 </head>
<body>
<div data-ng-init="names = ['Jack', 'John', 'Tina']">
<h1>Cool loop!</h1>

<li data-ng-repeat="name in names">{{ name }}

</div>
</body>

</html>

Using	Filters	---									Example	
<!DOCTYPE html>
<html data-ng-app="">
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <style media="screen"></style>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>
 </head>
 <body>
<div data-ng-init="customers = [{name:’tina'}, {name:’jack'}]">
<h1>Cool loop!</h1>

<li data-ng-repeat="customer in customers | orderBy:'name'">
{{ customer.name | uppercase }}

</div>
</body>

</html> Filter	

Filter	

Using	Filters	---									Example	
<!DOCTYPE html>
<html data-ng-app="">
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <style media="screen"></style>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js"></
script>
 </head>
 <body>
<div data-ng-init=
"customers = [{name:'jack'}, {name:'tina'}, {name:'john'}, {name:'donald'}]">
<h1>Customers</h1>

<li data-ng-repeat="customer in customers | orderBy:'name' |
filter:'john'">{{ customer.name | uppercase }}

</div>
</body>

</html>

Using	Filters	–	User	Input	Filters	the	Data	
<!DOCTYPE html>
<html data-ng-app="">
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <style media="screen"></style>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>
 </head>
 <body>
<div data-ng-init=
"customers = [{name:'jack'}, {name:'tina'}, {name:'john'},
{name:'donald'}]">
<h1>Customers</h1>

<input type="text" data-ng-model="userInput" />

<li data-ng-repeat="customer in customers | orderBy:'name' |
filter:userInput">{{ customer.name | uppercase }}

</div>
</body>

</html>

Example:	Own	Filter	
// declare a module

var myAppModule = angular.module('myApp', []);

filter

// configure the module.
// in this example we will create a greeting
myAppModule.filter('greet', function() {

return function(name) {
' + name + '!'; return 'Hello,

};

});

HTML	using	the	Filter	

<div ng-app="myApp">
<div>
{{ 'World' | greet }}

</div>
</div>

VIEWS,	CONTROLLERS,	SCOPE	

Model	–	View	---									Controllers	

•  Controllers	provide	the	logic	behind	your	app.	
– So	use	controller	when	you	need	logic	behind		
your	UI	

•  AngularJS	apps	are	controlled	by	controllers	
•  Use	ng---controller	to	define	the	controller	
•  Controller	is	a	JavaScript	Object,	created	by	
standard	JS	object	constructor	

Model	–	View	---									Controllers	

a	controller	is	a	JavaScript	function		
○		It	contains	data		
○		It	specifies	the	behavior		
○		It	should	contain	only	the	business	logic	
needed	for	a	single	view.		

Modules	

A	module	is	created	by	using	the	AngularJS	function	
angular.module.	To	it	you	can	add	components	(your	
own	controllers,	directives,	filters…)	

<div	ng-app="myApp">...</div>	
	
<script>	
	
var	app	=	angular.module("myApp",	[]);		
	
</script>	

Controllers	

A	simple	AngularJS	application	to	consist	of:	
	
•  View,	which	is	the	HTML.	
•  Model,	which	is	the	data	available	for	the	

current	view	(scope)	
•  Controller,	which	is	the	JavaScript	function	

that	makes/changes/removes/controls	the	
data.	

Controllers	

AngularJS	applications	are	controlled	by	
controllers.	
	
The	ng-controller	directive	defines	the	
application	controller.	
	
A	controller	is	a	JavaScript	Object,	created	by	a	
standard	JavaScript	object	constructor.	

Controllers	
<div	ng-app="myApp"	ng-controller="myCtrl">	
	
First	Name:	<input	type="text"	ng-model="firstName">
	
Last	Name:	<input	type="text"	ng-model="lastName">
	

	
Full	Name:	{{firstName	+	"	"	+	lastName}}	
	
</div>	
	
<script>	
var	app	=	angular.module('myApp',	[]);	
app.controller('myCtrl',	function($scope)	{	
				$scope.firstName	=	"John";	
				$scope.lastName	=	"Doe";	
});	
</script>	

•  Add	a	controller	which	implements	some	logic	
•  Define	variables	in	app	space	
•  Access	variables	from	controller	by	using	$scope	

Local	and	global	scope	

<body	ng-app="myApp”>	
<p>The	rootScope's	favorite	color:</p>	
<h1>{{color}}</h1>	
	
<div	ng-controller="myCtrl">	
				<p>The	scope	of	the	controller's	favorite	color:</p>	
				<h1>{{color}}</h1>	
</div>	
	
<p>The	rootScope's	favorite	color	is	still:</p>	
<h1>{{color}}</h1>	
	

All	applications	have	a	$rootScope	which	is		
the	scope	created	on	the	HTML	element		
that	contains	the	ng-app	directive.	

<script>	
var	app	=	angular.module('myApp',	[]);	
	
app.run(function($rootScope)	{	
				$rootScope.color	=	'blue';	
});	
	
app.controller('myCtrl',	function($scope)	{	
				$scope.color	=	"red";	
});	
	
</script>	
</body>	
	

View,	Controller	and	Scope	

View	
(html	fragment)	

Controller	 $scope 		

$scope is	an	object	that	can	be	used		
to	communicate	between	

View	and	Controller	

Scope	

<!DOCTYPE html>
<html>
 <head>
 <title>Title</title>
 <meta charset="UTF-8" />
 <style media="screen"></style>
 <script src="https://ajax.googleapis.com/
ajax/libs/angularjs/1.4.8/angular.min.js">
</script>

 </head>
 <body>
<div data-ng-app="myApp" data-ng-controller="NumberCtrl">
<p>Number: <input type="number" ng-model="number"></p>
<p>Number = {{ number }}</p>
<button ng-click="showNumber()">Show Number</button>
</div>
<script>
var app = angular.module('myApp', []);
app.controller('NumberCtrl', function($scope) {
 $scope.number = 1;
 $scope.showNumber = function(){
 window.alert("your number= " + $scope.number);
 };
});
</script>
</body>
</html>

Modules	

•  Module	is	an	reusable	container	for	different		
features	of	your	app	
– Controllers,	services,	filters,	directives...	

•  If	you	have	a	lot	of	controllers,	you	are	
polluting	JS	namespace	

•  Modules	can	be	loaded	in	any	order	
•  We	can	build	our	own	filters	and	directives!	

When	to	use	Controllers	

•  Use	controllers	
– set	up	the	initial	state	of	$scope	object	
– add	behavior	to	the	$scope	object	

•  Do	not	
– Manipulate	DOM	(use	databinding,	directives)	
– Format	input	(use	form	controls)	
– Filter	output	(use	filters)	
– Share	code	or	state	(use	services)	

App	Explained	

•  App	runs	inside	ng-app (div)	
•  AngularJS	will	invoke	the	constructor	with	a	
$scope	–	object	

•  $scope	is	an	object	that	links	controller	to	the		
view	

MODULES,	ROUTES,	SERVICES	

Template	for	Controllers	
// Create new module 'myApp' using angular.module method.
// The module is not dependent on any other module
var myModule = angular.module('myModule',

[]);

myModule.controller('MyCtrl', function ($scope) {

// Your controller code here!

});

Creating	a	Controller	in	Module	
var myModule = angular.module('myModule',

[]);

myModule.controller('MyCtrl', function ($scope) {

var model = { "firstname": "Jack",

"lastname": "Smith" };

$scope.model = model;
$scope.click = function() {

alert($scope.model.firstname);

};

});

<!DOCTYPE html>
<html>
<head>

<title>Title</title>
<meta charset="UTF-8" />
<style media="screen"></style>
<script
<script

src="../angular.min.js"></script>
src="mymodule.js"></script>

</head>
<body>
<div ng-app="myModule"

<div ng-controller="MyCtrl">

<p>Firstname: <input type="text" ng-model="model.firstname"></p>
<p>Lastname: <input type="text" ng-model="model.lastname"></p>

<p>{{model.firstname + " " + model.lastname}}</p>

<button ng-click="click()">Show Number</button>

</div>

</div>
</body>

</html>

This	is	now	the	model		
object	from	MyCtrl.	Model		
object	is	shared	with	view		

and	controller	

ROUTING	

Routing	

•  Since	we	are	building	a	SPA	app,	everything		
happens	in	one	page	
– How	should	back---button	work?	
– How	should	linking	between	"pages"	work?	
– How	about	URLs?	

•  Routing	comes	to	rescue!	

<html data-ng-app="myApp">
<head>
<title>Demonstration of Routing - index</title>

<meta charset="UTF-8" />
src="../angular.min.js" type="text/javascript"></script>
src="angular-route.min.js" type="text/javascript"></script>
src="myapp.js" type="text/javascript">

<script
<script
<script

</script>
</head>

<body>
<div data-ng-view=""></div>

</body>
</html>

The	content	of		
this	will	change		
dynamically	

We	will	have	to		
load	additional		

module	

// This module is dependent on ngRoute. Load ngRoute
// before this.
var myApp = angular.module('myApp', ['ngRoute']);

views.

// Configure routing.
myApp.config(function($routeProvider) {

// Usually we have different controllers for different
// In this demonstration, the controller does nothing.
$routeProvider.when('/', {

templateUrl: 'view1.html',
controller: 'MySimpleCtrl' });

$routeProvider.when('/view2', {
templateUrl: 'view2.html',
controller: 'MySimpleCtrl' });

$routeProvider.otherwise({ redirectTo: '/' });

});

// Let's add a new controller to MyApp
myApp.controller('MySimpleCtrl', function ($scope) {

});

Views	

•  view1.html:	
<h1>View 1</h2>
<p>To View 2</p>

•  view2.html:	
<h1>View 2</h2>
<p>To View 1</p>

Working	in	Local	Environment	

•  If	you	get	"cross	origin	requests	are	only		
supported	for	HTTP"	..	

•  Either	
– 1)	Disable	web	security	in	your	browser	
– 2)	Use	some	web	server	and	access	files	http://..	

•  To	disable	web	security	in	chrome	
–  taskkill /F /IM chrome.exe
–  "C:\Program Files (x86)\Google\Chrome\Application

\chrome.exe" --disable-web-security --allow-file-access-
from-files

EXERCISE	4:	ROUTING	

Services	
•  View---independent	business	logic	should	not	be	in	a		
controller	
–  Logic	should	be	in	a	service	component	

•  Controllers	are	view	specific,	services	are	app---spesific	
– We	can	move	from	view	to	view	and	service	is	still	alive	

•  Controller's	responsibility	is	to	bind	model	to	view.		
Model	can	be	fetched	from	service!	
–  Controller	is	not	responsible	for	manipulating	(create,		
destroy,	update)	the	data.	Use	Services	instead!	

•  AngularJS	has	many	built---in	services,	see	
–  http://docs.angularjs.org/api/ng/service	
–  Example:	$http

Services	

ViewCustomers	
(html	fragment)	

ViewCustomersCtrl	

$scope

Service	

ModifyCustomers	
(html	fragment)	

ModifyCustomerCtrl	

$scope

AngularJS	Custom	Services	using	Factory	

// Let's add a new controller to MyApp. This controller uses Service!
myApp.controller('ViewCtrl', function ($scope, CustomerService) {

$scope.contacts = CustomerService.contacts;
});

// Let's add a new controller to MyApp. This controller uses Service!
myApp.controller('ModifyCtrl', function ($scope, CustomerService) {

$scope.contacts = CustomerService.contacts;
});

// Creating a factory object that contains services for the
// controllers.
myApp.factory('CustomerService', function() {

var factory = {};
factory.contacts = [{name: "Jack", salary: 3000}, {name: "Tina",

salary: 5000}, {name: "John", salary: 4000}];
return factory;

});

Also	Service	
is instantiated with new – keyword.

function can use "this" and the return

// Service

// Service
// value is this.
myApp.service('CustomerService', function()

{ this.contacts =

[{name: "Jack", salary: 3000},

{name:
{name:

"Tina",
"John",

salary:
salary:

5000},
4000}];

});

AJAX	+	REST	

AJAX	

•  Asynchronous	JavaScript	+	XML	
– XML	not	needed,	very	oden	JSON	

•  Send	data	and	retrieve	asynchronously	from		
server	in	background	

•  Group	of	technologies	
– HTML,	CSS,	DOM,	XML/JSON,	XMLHttpRequest		
object	and	JavaScript	

$http –	example	(AJAX)	and	AngularJS

<script type="text/javascript">
var myapp = angular.module("myapp", []);

myapp.controller("MyController", function($scope, $http) {

$scope.myData = {};
$scope.myData.doClick = function(item, event) {

var responsePromise = $http.get("text.txt");

responsePromise.success(function(data, status, headers, config) {

$scope.myData.fromServer = data;
});

responsePromise.error(function(data, status, headers, config)
{ alert("AJAX failed!");

});

}
});

</script>

RESTful	

•  Web	Service	APIs	that	adhere	to	REST		
architectural	constrains	are	called	RESTful	

•  Constrains	
– Base	URI,	such	as	http://www.example/resources	
–  Internet	media	type	for	data,	such	as	JSON	or	XML	
– Standard	HTTP	methods:	GET,	POST,	PUT,	DELETE	
– Links	to	reference	reference	state	and	related		
resources	

RESTful	API	HTTP	methods	(wikipedia)	

AJAX	+	RESTful	

•  The	web	app	can	fetch	using	RESTful	data		
from	server	

•  Using	AJAX	this	is	done	asynchronously	in	the		
background	

•  AJAX	makes	HTTP	GET	request	using	url	..	
– http://example.com/resources/item17

•  ..	and	receives	data	of	item17	in	JSON	...	
•  ..	which	can	be	displayed	in	view	(web	page)	

Example:	Weather	API	

•  Weather	information	available	from	
wunderground.com

– You	have	to	make	account	and	receive	a	key	

•  To	get	Helsinki	weather	in	JSON	
– http://api.wunderground.com/api/your-key/
conditions/q/Helsinki.json

{

"response":
{ "version":

"0.1",
"termsofService": "http:\/\/www.wunderground.com\/weather\/api\/d\/terms.html",
"features":

{ "conditions"

: 1

}

},
"current_observation":
{ "image": {

"url": "http:\/\/icons.wxug.com\/graphics\/wu2\/logo_130x80.png",

"title": "Weather Underground",

"link": "http:\/\/www.wunderground.com"

},

"display_location": {
"full": "Helsinki, Finland",

"city": "Helsinki",

"state": "",

"state_name": "Finland",

"country": "FI",

"country_iso3166": "FI",

"zip": "00000",
"magic": "1",

"wmo": "02974",

"latitude": "60.31999969",

"longitude": "24.96999931",

"elevation": "56.00000000"

},

<!DOCTYPE html>
<html>
<head>
<script src="../angular.min.js" type="text/javascript"></script>
<title></title>

</head>

<body data-ng-app="myapp">
<div data-ng-controller="MyController">
<button data-ng-click="myData.doClick(item, $event)">Get Helsinki Weather</button>

Data from server: {{myData.fromServer}}

</div>

<script type="text/javascript">
var myapp = angular.module("myapp", []);

myapp.controller("MyController", function($scope, $http) {
$scope.myData = {};
$scope.myData.doClick = function(item, event) {

var responsePromise = $http.get("http://api.wunderground.com/api/key/conditions/
q/Helsinki.json");

responsePromise.success(function(data, status, headers, config) {
$scope.myData.fromServer = "" + data.current_observation.weather +

" " + data.current_observation.temp_c + " c";
});
responsePromise.error(function(data, status, headers, config) {

alert("AJAX failed!");
});

}
});

</script>
</body>
</html>

This	is	JSON		
object!	

View	after	pressing	the	Button	

$resource	

•  Built	on	top	of	$http	service,	$resource	is	a		
factory	that	lets	you	interact	with	RESTful		
backends	easily	

•  $resource	does	not	come	bundled	with	main		
Angular	script,	separately	download	
– angular-resource.min.js

•  Your	main	app	should	declare	dependency	on		
the	ngResource	module	in	order	to	use	
$resource	

Getting	Started	with	$resource	

•  $resource	expects	classic	RESTful	backend	
– http://en.wikipedia.org/wiki/
Representational_state_transfer#Applied_t
o_web_services

•  You	can	create	the	backend	by	whatever		
technology.	Even	JavaScript,	for	example		
Node.js	

•  We	are	not	concentrating	now	how	to	build		
the	backend.	

Using	$resource	on	GET	
// Load ngResource before this
var restApp = angular.module('restApp',['ngResource']);

restApp.controller("RestCtrl", function($scope, $resource) {

$scope.doClick = function() {
var title = $scope.movietitle;
var searchString = 'http://api.rottentomatoes.com/api/

public/v1.0/movies.json?apikey=key&q=' + title + '&page_limit=5';

var result = $resource(searchString);

// {method:'GET' var root = result.get(function() {
$scope.movies = root.movies;

});
}

});

$resource	methods	

•  $resource	contains	convenient	methods	for	
– get ('GET')
– save ('POST')
– query ('GET', isArray:true)
– remove ('DELETE')

•  Calling	these	will	invoke	$http	(ajax	call)	with		
the	specified	http	method	(GET,	POST,		
DELETE),	destination	and	parameters	

Passing	Parameters	
// Load ngResource before this
var restApp = angular.module('restApp',['ngResource']);

restApp.controller("RestCtrl", function($scope, $resource) {
$scope.doClick = function() {

var searchString = 'http://api.rottentomatoes.com/api/public/
v1.0/movies.json?apikey=key&q=:title&page_limit=5';

var result = $resource(searchString);
var root = result.get({title: $scope.movietitle}, function() {

$scope.movies = root.movies;

});

}

});

:title	--->		
parametrized		
URL	template	

Giving	the		
parameter	from	

$scope	

Using	Services	
// Load ngResource before this
var restApp = angular.module('restApp',['ngResource']);

restApp.controller("RestCtrl", function($scope, MovieService) {
$scope.doClick = function() {

var root = MovieService.resource.get({title: $scope.movietitle},
function() {

$scope.movies = root.movies;
});

}

});

restApp.factory('MovieService', function($resource)

{ factory = {};

factory.resource = $resource('http://api.rottentomatoes...&q=:title&page_limit=5');
return factory;

});

Controller		
responsible	for		

binding	

Service		
responsible	for		
the	resource	

Simple	Version	
// Load ngResource before this
var restApp = angular.module('restApp',['ngResource']);

MovieService) {

$scope.movietitle},

restApp.controller("RestCtrl", function($scope,
$scope.doClick = function() {

var root = MovieService.get({title:
function() {

$scope.movies = root.movies;

});
}

});

restApp.factory('MovieService', function($resource) {
return $resource('http://api.rottentomatoes...&q=:title&page_limit=5');;

});

Just	call	get	from		
MovieService	

Returns	the		
resource	

ANIMATIONS	AND	UNIT	TESTING	

AngularJS	Animations	

•  Include	ngAnimate	module	as	dependency	
•  Hook	animations	for	common	directives	such		
as	ngRepeat,	ngSwitch,	ngView	

•  Based	on	CSS	classes	
– If	HTML	element	has	class,	you	can	animate	it	

•  AngularJS	adds	special	classes	to	your	
html---		elements	

Example	Form	
<body ng-controller="AnimateCtrl">
<button ng-click="add()">Add</button>
<button ng-click="remove()">Remove</button></p>

<li ng-repeat="customer in

customers">{{customer.name}}

</body>

Adds	and		
Removes	names	

Animation	Classes	

•  When	adding	a	new	name	to	the	model,	ng---		
repeat	knows	the	item	that	is	either	added	or		
deleted	

•  CSS	classes	are	added	at	runtime	to	the	repeated		
element	()	

•  When	adding	new	element:	
–  <li class="... ng-enter ng-enter-active">New Name

•  When	removing	element	
–  <li class="... ng-leave ng-leave-active">New Name

Directives	and	CSS	
Event	 Starting	CSS	 Ending	CSS	 Directives	

enter	 .ng---enter	 .ng---enter---active	 ngRepeat,		
ngInclude,	ngIf,		
ngView	

leave	 .ng---leave	 .ng---leave---active	 ngRepeat,		
ngInclude,	ngIf,		
ngView	

move	 .ng---move	 .ng---move.active	 ngRepeat	

Example	CSS	
/* starting animation */
.ng-enter {
-webkit-transition: 1s;
transition: 1s;

margin-left: 100%;
}

/* ending animation */

.ng-enter-active {
margin-left: 0;

}

/* starting animation */

.ng-leave {
-webkit-transition: 1s;
transition: 1s;

margin-left: 0;
}

/* ending animation */

.ng-leave-active {

margin-left: 100%;
}

Test	Driven	Design	

•  Write	tests	firsts,	then	your	code	
•  AngularJS	emphasizes	modularity,	so	it	can	be		
easy	to	test	your	code	

•  Code	can	be	tested	using	several	unit	testing		
frameworks,	like	QUnit,	Jasmine,	Mocha	...	

QUnit	

•  Download	qunit.js and	qunit.css
•  Write	a	simple	HTML	page	to	run	the	tests	
•  Write	the	tests	

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

<title>QUnit Example</title>
<link rel="stylesheet" href="qunit-1.10.0.css">
<script src="qunit-1.10.0.js"></script>

</head>
<body>
<div id="qunit"></div>
<script type="text/javascript">

function calculate(a, b) {

return a + b;

}

"Ok!"

"Ok!"
"OK!"

"calculate test", function() {
);

);
);

test(
ok(calculate(5,5) === 10,

ok(calculate(5,0) === 5,
ok(calculate(-5,5) === 0,

});

</script>
</body>
</html>

Three	Assertions	

•  Basic	
– ok(boolean [, message]);

•  If	actual	==	expected	
– equal(actual, expected [, message]);

•  if	actual	===	expected	
– deepEqual(actual, expected [, message));

•  Other	
– http://qunitjs.com/cookbook/#automating-
unit-testing

Testing	AngularJS	Service	
var myApp = angular.module('myApp', []);

// One service
myApp.service('MyService', function() {

function(a, b)
{ a + b;

this.add =
return

};
});

/* TESTS */
var injector = angular.injector(['ng', 'myApp']);

QUnit.test('MyService', function() {

var MyService = injector.get('MyService');
ok(2 == MyService.add(1, 1));

});

WRAPPING	UP	

Wrapping	UP	

•  AngularJS	is	a	modular	JavaScript	SPA		
framework	

•  Lot	of	great	features,	but	learning	curve	can		
be	hard	

•  Great	for	CRUD	(create,	read,	update,	delete)		
apps,	but	not	suitable	for	every	type	of	apps	

•  Works	very	well	with	some	JS	libraries		
(JQuery)	

Services	
	
The	AngularJS	$http	service	makes	a	request	to	
the	server,	and	returns	a	response.	
	

app.controller('myCtrl',	function($scope,	$http)	{	
				$http.get("welcome.htm")	
				.then(function(response)	{	
								$scope.myWelcome	=	response.data;	
				});	
});	

