NGULARJS

by GOOS[Q‘

Intro to SPA framework

Based on a presentation by
Jussi Pohjolainen

Rise of the Responsive Single Page App

Image: http://johnpolacek.github.io/scrolldeck.js/decks/responsive/

Responsive

Unified across
experiences

Can be embedded as
mobile app

Better deployment and
& maintanence

Mobile users need to
get access to everything

H* 102 12:03pm

Employee List

Kathleen Byrne >

Sales Representative

Gary Donovan S
Marketing

Paula Gates
o ©
: Software Architect
Amy Jones
y) 0 ©
Sales Representative
Paul Jones
J o ©
QA Manager

Image: http://coenraets.org/blog/wp---content/uploads/2011/10/

directoryll.png

Single---page Applications (SPA)

Web app that fits on a single web page
— Fluid UX, like desktop app
— Examples like Gmail, Google maps

Html page contains mini—views (HTML

Fragments) that can be loaded in the
background

No reloading of the page,

Requires handling of browser history,
navigation and bookmarks

JavaScript

* SPAs are implemented using JavaScript and
HTML

Challenges in SPA

DOM Manipulation
— How to manipulate the view efficiently?

History

— What happens when pressing back button?
Routing

— Readable URLs?

Data Binding
— How bind data from model to view?

View Loading
— How to load the view?

Lot of coding! You could use a framework instead ...

Single-page Application

Single page apps typically have
“application like” interaction
dynamic data loading from the server-side API
fluid transitions between page states
more JavaScript than actual HTML

They typically do not have

support for crawlers (not for sites relying on search traffic)
support for legacy browsers (IE7 or older, dumbphone browsers)

SPAs Are Good For ...

* “App-like user experience”

* Binding to your own (or 3 party) RESTful API

* Replacement for Flash or Java in your web
pages

e Hybrid (native) HTMLS5 applications

* Mobile version of your web site

The SPA sweet spot is likely not on web sites,
but on content-rich cross-platform mobile apps

PJAX

Pjax is a technique that allows you to
progressively enhance normal links on a page so
that clicks result in the linked content being
oaded via Ajax and the URL being updated using
HTMLS5 pushState, avoiding a full page load.

n browsers that don't support pushState or that
nave JavaScript disabled, link clicks will result in
a normal full page load. The Pjax Utility makes it

easy to add this functionality to existing pages.

http://yuilibrary.com/yui/docs/pjax/

SPAs and Other Web App Architectures

Server-side Server-side + AJAX PJAX SPA
What Server round-trip on Render initial page Render initial page Serve static page
every app state on server, state on server, state skeleton from server;
change changes on the client changes on server, render every change
inject into DOM on on client-side
client-side
How Ul code on server; Ul code on both Ul code on server, Ul code on client,
links & form posting ends; AJAX calls, ugly client to inject HTTP, server API
server API server API if you like

Ease of development ‘

UX & responsiveness ’

®
@,
O

o ®
200

Robots & old
browsers

Who's using it? Amazon, Wikipedia; Facebook?; Twitter, Basecamp, Google+, Gmail, FT;
banks, media sites widgets, search GitHub mobile sites, startups
etc.

FROM: LAURI SVAN

Lifecycle of new JS frameworks

There appears to be a

quick ascent, as the | omes
framework gains A s
popularity and then a * v
slightly less quick but ¢ . d ALY |
steady decline as F oo
developers adopt £ 7 iy

T T T ’.‘I.... .‘.IA.... Au.l-.‘—~ - I—-‘ | |
2009 2010 2011 2012 2013 2014 2015 2016 2017

newer technologies.
These lifecycles only
last a couple of years.

Year

Jquery, Angular JS, Angular, React

8.00% -

7.00% -

6.00% —

5.00% -

4.00% —

3.00% —

2.00% —

0.00% -

% of Stack Overflow questions that month

1.00%

-r=x

T T
2010 2011 2012

2013

Year

i
2014

=
20

S

15

T I
2016 2017

Tag

® jquery
® angularjs
® angular
® reactis

ANGULAR JS

Angular JS

Single Page App Framework for JavaScript
Implements client-—-side MVC pattern

— Separation of presentation from business logic
and presentation state

No direct DOM manipulation, less code
Support for all major browsers
Supported by Google

Large and fast growing community

AngularJS — Main Concepts

Templates
Directives

Expressions
Data binding
Scope

Controllers
Modules
Filters
Services
Routing

Anatomy of a Backbone SPA

* Application as a
- 1 changes ‘singleton’ reference
et T Iy holder
e — vew 7= ™= o Router handles the
—— changes [ttgt navigation and toggles
— oder between views | |
monizes * Models synchronize with
changes wit Server API

Backend

 Bulk of the code in views
 All HTML in templates

FROM: LAURI SVAN

View

~ I Template
Models

Angular

JavaScript Html

From Gary Arora

SPA Client-Server Communication

Browser

Browser XMLHTTP-
(page load) $ Request $ WebSocket

HTTP/* HTTP /JSON

TCP / JSON

Presentation / Server API

\

H'IyI'P Socket
$ Server %REST API $ API
Business Logic v_—
Auth & Access
Control
Business
Logic
I
Storage \1,
Data
storage

FROM: LAURI SVAN

HTML and all the assets are
loaded in first request
Additional data is fetched
over XMLHTTPRequest

If you want to go real-time,
WebSockets (socket.io) can
help you

When it gets slow, cluster
the backend behind a
caching reverse proxy like
Varnish

HOW IT WORKS?

One-Way Data Binding | | Two-Way Data Binding

Change 10 View ;
updates Model

From Rouson

HOW IT WORKS?

’ HTML
B—;ows_ : _. _______ . AngularJS
DOM
DOM [Loaded [—*| Pe~app="module" |
Event +
: $injector I
| o X
: [$compile H $rootScope l
v : [
Dynamic : $compile
DOM . (dom)
(view) : ($rootScope)

From Rouson

HOW IT WORKS?

1 Dependency injector identifies Service Factory Repository
St Sxhr service as PhoneListCtrl
controller's only dependency

2 DI checks if Sxhr service has
N already been instantiated, and if
not uses the factory function
from the service factory
repository to construct it

3 DI provides the instance of Sxhr
So.s Sservice to the PhonelListCrrl

controller constructor.
agicontroller || function Fhonelistcerl(®ani()) | -
d 3 phones: Array
Controller Model
---+ | Implicit Scope Declaration | ~— | Scope Inheritance | <> | _Dependency Injection |

From Rouson

GETTING STARTED WITH
ANGULAR JS

Basic Concepts

1) Templates

— HTML with additional markup, directives,
expressions, filters ...

2) Directives

— Extend HTML using ng—app, ng—bind, ng—model
3) Filters

— Filter the output: filter, orderBy, uppercase
4) Data Binding

— Bind model to view using expressions {{ }}

Name: pippo

pippo

First Example — Template

Template

<!DOCTYPE html>

<html>

<head>

<title>Title</title>

<meta charset="UTF-8" />

<style media="screen"></style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/
1.4.8/angular.min.js"></script>

</head>

<body>

<div ng-app>
<!-- store the wvalue of input field into a variable name -->
<p>Name: <input type="text" ng-model="name"></p>
<!-- display the variable name inside (innerHTML) of p -->
<p ng-bind="name"></p>
</div>
</body>

</html>

2) Directives

* Directives apply special behavior to attributes or
elements in HTML

— Attach behaviour, transform the DOM

* Some directives
— ng-app
* Initializes the app
— ng-model
» Stores/updates the value of the input field into a variable
— ng-bind

* Replace the text content of the specified HTML with the
value of given expression

About Naming

* Angular]JS HTML Compiler supports multiple
formats
—ng—bind
* Recommended Format
— data—ng-bind
« Recommended Format to support HTML validation
—ng bind, ng:bind, x—ng—-bind

* Legacy, don't use

Lot of Built in Directives

ngApp
ngClick
ngController
ngModel
ngRepeat
ngSubmit

ngDbl1Click
ngMousebnter
ngMouseMove
ngMouseleave
ngKeyDown

ngborm

2) Expressions

Angular expressions are JavaScript-—-like code
snippets that are usually placed in bindings

— {{ expression }}.
Valid Expressions

—{{1+21})
—{{a+b}}
— {{ items|index] }}

Control flow (loops, if) are not supported!
You can use filters to format or filter data

With filter, you can format or filter the output

3) Filter

Formatting

— currency, number, date,

uppercase
Filtering
—filter, limitTo
Other

— orderBy,

json

lowercase,

Directives

The ng-app Directive

The ng-app directive defines the root element of an AngularlS application.
It will auto-bootstrap (automatically initialize) the application when a web
page is loaded.

The ng-init Directive

The ng-init directive defines initial values for an AngularJS application.
The ng-model Directive

The ng-model directive binds the value of HTML controls (input, select,
textarea) to application data.

The ng-bind Directive

The ng-model directive binds the innerHTML of the element to the
specified model property

Directives: ng-app, ng-model, ng-bind

<IDOCTYPE html>

<htmli>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></script>
<body>

<div ng-app="">
<p>Name: <input type="text" ng-model="name"></p>
<p ng-bind="name"></p>

</div>

</body>
</html>

Directives: ng-init, and version for
valid HTML

<div ng-app="" ng-init="firstName="John'">
<p>The name is </p>

</div>

<div ng-app="" data-ng-init="firstName="'John'">
<p>The name is </p>

</div>

<form>

Form |npUt Check to show a header:
<input type="checkbox" ng-model="myVar">
</form>

Checkbox => true, false <h1 ng-show="myVar">My Header</h1>
Radio => values
Select => values <select ng-model="myVar">

Text => value <option value="">
<option value="dogs">Dogs

<option value="tuts">Tutorials
<option value="cars">Cars
</select>

<input type="text" ng-model="user.firstName">
<input type="radio" ng-model="myVar" value="dogs">Dogs</input>

<input type="radio" ng-model="myVar" value="tuts">Tutorials</input>
<input type="radio" ng-model="myVar" value="cars">Cars</input>

Input field properties

Input fields have the following states:

Suntouched The field has not been touched yet
Stouched The field has been touched

Spristine The field has not been modified yet
Sdirty The field has been modified

Sinvalid The field content is not valid

Svalid The field content is valid

Values: either true or false.

Show an error message if the field has been touched AND
is empty:

Forms have the following states:

Spristine No fields have been modified yet
Sdirty One or more have been modified
Sinvalid The form content is not valid
Svalid The form content is valid
Ssubmitted The form is submitted

Values: either true or false.

. . . <form name="myForm">
BaS|C Va||dat|0n <input name="mylnput"
ng-model="mylnput" required>
</form>

<p>The input's valid state is:</p>
<h1>{{myForm.mylnput.Svalid}}</h1>

<form name="myForm">
<input name="mylnput" ng-model="mylnput" type="email">
</form>

<p>The input's valid state is:</p>
<h1>{{myForm.mylnput.Svalid}}</h1>

Directives for DOM control

<p ng-show="false">l am not visible.</p>
<button ng-disabled="mySwitch">Click Me!</
button>

Control this variable
via code

Expressions

<IDOCTYPE html>

<html lang="en-US">

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js"></
script>

<body>

<div ng-app="">
<p>Name : <input type="text" ng-model="name"></p>
<h1>Hello {{name}}</h1>

</div>

</body>
</html>

Angular JS vs plain JS

Like JavaScript expressions, Angular]S expressions can
contain literals, operators, and variables.

Unlike JavaScript expressions, AngularJS expressions
can be written inside HTML.

Angular]S expressions do not support conditionals,
loops, and exceptions, while JavaScript expressions do.

Angular]S expressions support filters, while JavaScript
expressions do not

Expressions

<div ng-app="" ng-init="myCol='lightblue'"'>
<input style="background-color:{{myCol}}" ng-model="myCol">
</div>

Change the value of the input field:
red

<div>{{5*8}}</div>

Objects

<div ng-app="" ng-init="person={firstName:'John',lastName:'Doe'}">
<p>The name is {{ person.lastName }}</p>

</div>

<div ng-app="" ng-init="person={firstName:'John',lastName:'Doe'}">
<p>The name is </p>

</div>

Arrays

<div ng-app="" ng-init="points=[1,15,19,2,40]">
<p>The third result is {{ points[2] }}</p>

</div>

<div ng-app="" ng-init="points=[1,15,19,2,40]">
<p>The third result is </p>

</div>

Directives: ng-repeat

The ng-repeat directive clones HTML elements once for
each item in a collection.
The ng-repeat directive is used on an array of objects:

<div ng-app="" ng-init="names=|
{name:'Jani',country:'Norway'},

{name:'Hege',country:'Sweden'},
{name:'Kai',country:'Denmark'}]">

<li ng-repeat="x in names">
{{ x.name +', ' + x.country }}

</div>

Filters

AngularlS provides filters to transform data:

currency Format a number to a currency format.

date Format a date to a specified format.

number Format a number to a string.

filter Select a subset of items from an array.

json Format an object to a JSON string.

lowercase Format a string to lower case.

uppercase Format a string to upper case.

orderBy Orders an array by an expression.

limitTo Limits an array/string, into a specified number of

elements/characters.

Filters

Filters can be added to expressions by using the
pipe character |, followed by a filter.

<div ng-app="myApp" ng-init="lastName="ronchetti'">
<p>The name is {{ lastName | uppercase }}</p>

</div>

APl Reference

https://docs.angularjs.org/api/ng/filter/filter

® 006 AngularJS: API: filter x \8 L4
&« C # [https://docs.angularjs.org/api/ng/filter/filter % 0E=
Apps [:I TAMK Y% Yammer n Facebook Twitter = Endomondo [Gmail b Bit.ly D Kurssit | g EditGrid m lltapulu.fi m TVkaista W Solo D Radio S Imported From Safari » \: Other Bookmarks
Brcua: o - omen o CEITITT
v1.3.0-build.3422 (snapshot} / AP| Reference / ng / filter components in ng / filter
filter .
currenc fl Ite r & View Source @ Improve this Doc

Selects a subset of items from array and returns it as a new array.

Usage
auto In HTML Template Binding

service
{{ filter_expression | filter : expression : comparator}}

) In JavaScript

ngAnimate

provider $filter('filter')(array, expression, comparator)

service Arguments
Param Type Details

ngAria
array The source array.

provider

ariaP expression [EELFI o The predicate to be used for selecting items from array .

service [function) | Can be one of:

More examples

Number 1: s

Number 2: 7

Example .

<!DOCTYPE html>

<html>

<head>

<title>Title</title>

<meta charset="UTF-8"\ />

<style media="screen"></style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></seript>

</head>

<body>

<div ng-app>

<p>Number 1: <input type="number" ng-model="numberl"></p>
<p>Number 2: <input type="number" ng-model="number2"></p>
<!-- expression -->

<p>{{ numberl + number2 }}</p>

</div>

</body>

</html>

ng—init and ng—repeat directives
Cool loop!

<!DOCTYPE html> e Jack
<html data-ng-app=""> oJ@m
<head> * Tina

<title>Title</title>

<meta charset="UTF-8" />

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>

</head>
<body>
<div data-ng-init="names = ['Jack', 'John', 'Tina']">
<hl>Cool loop!</hl>

<li data-ng-repeat="name in names">{{ name }}</1i>

</div>
</body>

</html>

Cool loop!

Using Filters —Example

« JACK
<!DOCTYPE html> o TINA
<html data-ng-app="">

<head>

<title>Title</title>

<meta charset="UTF-8" />

<style media="screen"></style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>

</head>

<body>

<div data-ng-init="customers = [{name:’tina'}, {name:’jack'}]">
<hl>Cool loop!</hl>

<li data-ng-repeat="customer in customers | orderBy: 'name'">
{{ customer.name | uppercase }}</1i>

</div>

</body>

</html>

Using Filters —Example Customers

<!DOCTYPE html>

<html data-ng-app=""> e JOHN
<head>
<title>Title</title>

<meta charset="UTF-8" />

<style media="screen"></style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.min.js"></
script>

</head>

<body>

<div data-ng-init=

"customers = [{name:'jack'}, {name:'tina'}, {name:'john'}, {name:'donald'}]">
<hl>Customers</hl>

<li data-ng-repeat='"customer in customers | orderBy: 'name' |
filter:'john'">{{ customer.name | uppercase }}</1i>

</div>

</body>

</html>

Using Filters — User Input Filters the Data

Customers

<!DOCTYPE html>

<html data-ng-app="">

<head> J
<title>Title</title>

<meta charset="UTF-8" />

<style media="screen"></style>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/
angular.min.js"></script>

</head>

<body>

<div data-ng-init=

"customers = [{name:'jack'}, {name:'tina'}, {name:'john'},

{name: 'donald'}]">

<hl>Customers</hl>

<input type="text" data-ng-model="userInput" />

<li data-ng-repeat="customer in customers | orderBy: 'name' |
filter:userInput">{{ customer.name | uppercase }}</1i>

</div>

</body>

</html>

« JACK
« JOHN

Example: Own Filter

// declare a module

var myAppModule = angular.module ('myApp', []);

// configure the module.
// in this example we will create a greeting filter
myAppModule.filter ('greet', function () {
return function (name) ({
return 'Hello, ' + name + '!';
b
b) s

HTML using the Filter

<div ng-app="myApp">
<div>
{{ "World' | greet }}
</div>
</div>

VIEWS, CONTROLLERS, SCOPE

Model — View —Controllers

Controllers provide the logic behind your app.

— So use controller when you need logic behind
your Ul

AngularlS apps are controlled by controllers
Use ng-—controller to define the controller

Controller is a JavaScript Object, created by
standard JS object constructor

Model — View —Controllers

a controller is a JavaScript function

O It contains data

O It specifies the behavior

O It should contain only the business logic
needed for a single view.

Modules

A module is created by using the AngularJS function
angular.module. To it you can add components (your
own controllers, directives, filters...)

<div ng-app="myApp">...</div>
<script>
var app = angular.module("myApp", [1);

</script>

Controllers

A simple Angularl]S application to consist of:

* View, which is the HTML.

e Model, which is the data available for the
current view (scope)

* Controller, which is the JavaScript function

that makes/changes/removes/controls the
data.

Controllers

Angular]S applications are controlled by
controllers.

The ng-controller directive defines the
application controller.

A controller is a JavaScript Object, created by a
standard JavaScript object constructor.

Controllers

<div ng-app="myApp" ng-controller="myCtrl">

First Name: <input type="text" >

Last Name: <input type="text" >

Full Name: {{ +" "+ }

</div>

<script>

var app = angular.module('myApp’, [1);

app.controller('myCtrl', function(Sscope) {
Sscope.firstName = "John";
Sscope.lastName = "Doe";

HE

</script> L. .
* Add a controller which implements some logic

* Define variables in app space
* Access variables from controller by using Sscope

Local and global scope

<body ng-app="myApp”>

All applications have a SrootScope which is
<p>The rootScope's favorite color:</p> PP S P

the scope created on the HTML element

that contains the ng-app directive.
<div ng-controller="myCtrl">

<p>The scope of the controller's favorite color:</p>
<h1>{{color}}</h1> <script>
</div> var app = angular.module('myApp’, [1);

<p>The rootScope's favorite color is still:</p>

app.controller('myCtrl', function(Sscope) {
Sscope.color = "red";

hE

</script>
</body>

View, Controller and Scope

A Sseope Controller
(html fragment)

$scope is an object that can be used
to communicate between
View and Controller

Scope

<html ng-app>]— ---------

<table ng-controller="TodoCtrl">

[<tr ng-repeat="todo in todos">

-

<td>{{todo.id}}</td> J

</tr>]
[</table>]
[</html>]

Template

Repeater
Scope

Model

1001 | false | Groceries | 2V

08

01/

1002 | false Barber 08
View

Number: 6

<!DOCTYPE html> Number = 6
<html>

<head> |_Show Number |

<title>Title</title>

<meta charset="UTF-8" />

<style media=" Screen"></style> www.w3schools.com dice:

<script src="https://ajax.googleapis.com/ o number=6
ajax/libs/angularjs/1.4.8/angular.min.js">

</script> Impedisci alla pagina di creare altre finestre di dialogo.

</head> OK

<body>
<div data-ng-app="myApp" data-ng-controller="NumberCtrl">
<p>Number: <input type="number" ng-model="number"></p>
<p>Number = {{ number }}</p>
<button ng-click="showNumber () ">Show Number</button>
</div>
<script>
var app = angular.module('myApp', []):
app.controller ('NumberCtrl', function ($scope) {
$Sscope.number = 1;
S$Sscope.showNumber = function () {
window.alert("your number= " + $scope.number) ;

};

})
</script>
</body>
</html>

Modules

Module is an reusable container for different
features of your app
— Controllers, services, filters, directives...

If you have a lot of controllers, you are
polluting JS namespace

Modules can be loaded in any order
We can build our own filters and directives!

When to use Controllers

e Use controllers
— set up the initial state of Sscope object
— add behavior to the Sscope object

* Do not
— Manipulate DOM (use databinding, directives)
— Format input (use form controls)
— Filter output (use filters)
— Share code or state (use services)

App Explained

* App runs inside ng-app (div)
* Angularl]S will invoke the constructor with a
Sscope — object

* Sscope is an object that links controller to the
view

MODULES, ROUTES, SERVICES

Template for Controllers

// Create new module 'myApp' using angular.module method.
// The module is not dependent on any other module

var myModule = angular.module ('myModule',

[1)7

myModule.controller ('MyCtrl', function (Sscope) {

// Your controller code here!

b) s

Creating a Controller in Module

var myModule = angular.module ('myModule',

L) 7

myModule.controller ('MyCtrl', function ($scope) {

var model = { "firstname": "Jack",
"lastname": "Smith" };

Sscope.model = model;

$Sscope.click = function () {

alert ($Sscope.model.firstname) ;

b

<!DOCTYPE html>
<html>

<head>
<title>Title</title>
<meta charset="UTF-8" />
<style media="screen"></style>

<script src="../angular.min.js"></script>
<script src="mymodule.js"></script>

</head>
<body>

<div ng-app="myModule"
<div ng-controller="MyCtrl">
<p>Firstname: <input type="text" ng-model="model.firstname"></p>
<p>Lastname: <input type="text" ng-model="model.lastname"></p>
<p>{{model.firstname + " " + model.lastname}}</p>

<button ng-click="click()">Show Number</button>

</div>
</div>
</body>
</html>

ROUTING

Routing

* Since we are building a SPA app, everything
happens in one page
— How should back---button work?
— How should linking between "pages" work?
— How about URLs?

* Routing comes to rescue!

<html data-ng-app="myApp">

<head>
<title>Demonstration of Routing - index</title>
<meta charset="UTF-8" />
<script src="../angular.min.]js" type="text/javascript"></script>
<script src="angular-route.min.js" type="text/javascript"></script>
<script src="myapp.js" type="text/javascript">

</script>
</head>
ill have to
<body> load additional
<div data-ng-view=""></div> module
</body>
</html>

p—

The content of
this will change
dynamically

// This module is dependent on ngRoute. Load ngRoute
// before this.
var myApp = angular.module ('myApp', ['ngRoute']);

// Configure routing.
myApp.config (function (SrouteProvider) {
// Usually we have different controllers for different views.

// In this demonstration, the controller does nothing.

SrouteProvider.when('/"', {
templateUrl: 'viewl.html',

controller: 'MySimpleCtrl' });

SrouteProvider.when ('/view2', {
templateUrl: 'view2.html',

controller: 'MySimpleCtrl' });

SrouteProvider.otherwise ({ redirectTo: '/' });

1) o;

// Let's add a new controller to MyApp
myApp.controller ('MySimpleCtrl', function (Sscope) {

1) ;

Views

e viewl.html:
<hl>View 1</h2>
<p>To View 2</p>

 view2.html:
<hl>View 2</h2>
<p>To View 1</p>

Working in Local Environment

* |f you get "cross origin requests are only
supported for HTTP" ..

e Either
— 1) Disable web security in your browser
— 2) Use some web server and access files http://..

* To disable web security in chrome

— taskkill /F /IM chrome. exe

— ”C:\Program Files (x86)\Google\Chrome\Application

\chrome. exe” ——disable—web-security ——allow—file—access-
from—files

EXERCISE 4: ROUTING

Services

View---independent business logic should not be in a
controller

— Logic should be in a service component
Controllers are view specific, services are app-—spesific
— We can move from view to view and service is still alive

Controller's responsibility is to bind model to view.
Model can be fetched from service!

— Controller is not responsible for manipulating (create,
destroy, update) the data. Use Services instead!

Angular]S has many built—in services, see

— http://docs.angularjs.org/api/ng/service
— Example: $http

Services

ViewCustomers ModifyCustomers
(html fragment) (html fragment)
$scope $scope

ViewCustomersCtrl ModifyCustomerCtrl

I I

Service

Angular]S Custom Services using Factory

// Let's add a new controller to MyApp. This controller uses Service!
myApp.controller ('ViewCtrl', function (Sscope, CustomerService)
Sscope.contacts = CustomerService.contacts;

b)) ;

// Let's add a new controller to MyApp. This controller uses Service!
myApp.controller ("ModifyCtrl', function ($scope, CustomerService) {
Sscope.contacts = CustomerService.contacts;

1) o;

// Creating a factory object that contains services for the
// controllers.

myApp.factory ('CustomerService', function() ({
var factory = {};
factory.contacts = [{name: "Jack", salary: 3000}, {name: "Tina",

salary: 5000}, {name: "John", salary: 4000}];
return factory;

1)

Also Service

// Service is instantiated with new - keyword.

// Service function can use "this" and the return
// value 1is this.

myApp.service ('CustomerService', function()

{ this.contacts =
[{name: "Jack", salary: 3000},

{name: "Tina", salary: 5000},
{name: "John", salary: 4000}];

AJAX + REST

AJAX

* Asynchronous JavaScript + XML
— XML not needed, very oden JSON

e Send data and retrieve asynchronously from
server in background
* Group of technologies

— HTML, CSS, DOM, XML/JSON, XMLHttpRequest
object and JavaScript

$http —example (AJAX) and AngularJS

<script type="text/javascript">
var myapp = angular.module ("myapp", []);

myapp.controller ("MyController", function (Sscope, Shttp) {

Sscope.myData = {};

Sscope.myData.doClick = function (item, event) {

var responsePromise = Shttp.get ("text.txt");

responsePromise.success (function (data, status, headers, config) {
Sscope.myData.fromServer = data;

}) g

responsePromise.error (function (data, status, headers, confiqg)
{ alert ("AJAX failed!");

}) s

P
</script>

RESTful

* Web Service APIls that adhere to REST
architectural constrains are called RESTful

* Constrains
— Base URI, such as http://www.example/resources
— Internet media type for data, such as JSON or XML
— Standard HTTP methods: GET, POST, PUT, DELETE

— Links to reference reference state and related
resources

RESTful API HTTP methods (wikipedia)

RESTful APl HTTP methods

Resource GET PUT POST DELETE
Create a new entry in the
List the URlIs and Replace the collection. The new entry's Deléte iFa
Collection URI, such as perhaps other details of |entire collection |URlI is assigned R
http://example.com/resources the collection's with another automatically and is collestor.
members. collection. usually returned by the

operation.[17]

Retrieve a Replace the
. Not generally used. Treat |Delete the
representation of the addressed
the addressed member as |addressed
Element URI, such as addressed member of member of the . .
. |acollection in its own right /member
http://example.com/resources/iteml7 the collection, expressed collection, or if it i
. . . and create a new entry in |of the
in an appropriate doesn't exist, - [17] .
it. collection.

Internet media type. create it.

AJAX + RESTful

The web app can fetch using RESTful data
from server

Using AJAX this is done asynchronously in the
background

AJAX makes HTTP GET request using url ..

— http://example.com/resources/item17

.. and receives data of item17 in JSON ...

.. which can be displayed in view (web page)

Example: Weather API

e Weather information available from
wunderground. com

— You have to make account and receive a key

* To get Helsinki weather in JSON
—http://api. wunderground. com/api/vour-key/

conditions/q/Helsinki. json

"response":
{ "version":
"o.1",
"termsofService": "http:\/\/www.wunderground.com\/weather\/api\/d\/terms.html",
"features":
{ "conditions"
1

}y

"current observation":

{ "image": {
"url": "http:\/\/icons.wxug.com\/graphics\/wu2\/logo 130x80.png",
"title": "Weather Underground",
"link": "http:\/\/www.wunderground.com"

y

"display location": {

"full": "Helsinki, Finland",
"city": "Helsinki",
"state": "",

"state name": "Finland",
"country": "FI",

"country iso3l66": "FI",
"zip": "00000",

"magic": "1",

"wmo": "02974",

"latitude": "60.31999969",
"longitude": "24.96999931",

"elevation": "56.00000000"
by

<!DOCTYPE html>
<html>

<head>
<script src="../angular.min.js" type="text/javascript"></script>
<title></title>

</head>

<body data-ng-app="myapp">
<div data-ng-controller="MyController">
<button data-ng-click="myData.doClick (item, Sevent)">Get Helsinki Weather</button>

Data from server: {{myData.fromServer}}
</div>

<script type="text/javascript">
var myapp = angular.module ("myapp", [])-

myapp.controller ("MyController", function (Sscope, S$Shttp) {
$scope.myData = {};

Sscope.myData.doClick = function (item, event) {

var responsePromise = Shttp.get ("http://api.

ground.com/api/key/conditions/

g/Helsinki.json");

responsePromise.success (function (data, status, headers, config) {
$scope.myData.fromServer = "" + data.current observation.weather +

+ data.current observation.temp c + " c";
b
responsePromise.error (function (data, status, headers, config) {
alert ("AJAX failed!");
1)
}
P
</script>
</body>
</html>

View after pressing the Button

® OO0 /|| ajax.html X \ \ ®
C A [file///Users/jus... 3 () @ =
Apps [:I TAMK Y(- Yammer » [:] Other Bookmarks

Get Helsinki Weather
Data from server: Mostly Cloudy 7 ¢

Sresource

* Built on top of Shttp service, Sresource is a
factory that lets you interact with RESTful

backends easily

e Sresource does not come bundled with main
Angular script, separately download
—angular—-resource. min. js

* Your main app should declare dependency on
the ngResource module in order to use
Sresource

Getting Started with Sresource

* Sresource expects classic RESTful backend

—http://en. wikipedia. org/wiki/
Representational state transferfApplied t
o web services

* You can create the backend by whatever
technology. Even JavaScript, for example
Node.js

 We are not concentrating now how to build
the backend.

Using Sresource on GET

// Load ngResource before this
var restApp = angular.module ('restApp', ['ngResource']);

restApp.controller ("RestCtrl", function (Sscope, S$resource) {
Sscope.doClick = function() {
var title = $scope.movietitle;

var searchString = ‘'http://api.rottentomatoes.com/api/
public/v1.0/movies.json?apikey=key&g="' + title + '&page limit=5"';

var result = Sresource (searchString);

var root = result.get (function () { // {method:'GET'
Sscope.movies = root.movies;

})

Tuntematon fetch |

e Tuntematon sotilas (The Unknown Soldier) - 1955
e Tuntematon emanta (The Unknown Woman) - 2011
e The Unknown Soldier (Tuntematon sotilas) - 1985

Sresource methods

* Sresource contains convenient methods for
—get CGET)
—save (" POST)
—query CGET, isArray:true)
—remove (DELETE’)

* Calling these will invoke Shttp (ajax call) with
the specified http method (GET, POST,
DELETE), destination and parameters

Passing Parameters

// Load ngResource before this
var restApp = angular.module ('restApp', ['ngResource'y) ;

restApp.controller ("RestCtrl", function ($scope, Sresource) {

Sscope.doClick = function() {
var searchString = ‘'http:s/api.rottentomatoes.com/api/public/
v1l.0/movies.json?apikey=key&g=:title&page limit=5";
var result = Sresource (searchString);
var root = result.get({title: Sscope.movietitle}, function () {

S$Sscope.movies = root.movies;

1) ;

Using Services

Controller
responsible for

// Load ngResource before this

binding

var restApp = angular.module ('restApp', ['ngResource']);

restApp.controller ("RestCtrl", function ($scope, MovieService) {
S$Sscope.doClick = function() {
var root = MovieService.resource.get ({title: S$scope.movietitle},
function () {
Sscope.movies = root.movies;

1)

b ; | Service
responsible for

the resource

restApp.factory ('MovieService', function (Sresource)

{ factory = {};
factory.resource = Sresource ('http://api.rottentomatoes...&g=:title&page limit=5");
return factory;

1) ;

Simple Version

Just call get from

// Load ngResource before this MovieService
var restApp = angular.module ('restApp', ['ngResource']); =

restApp.controller ("RestCtrl", function ($scope /
Sscope.doClick = function() { //’
var root = MovieService.get({title: Sscope.movietitle},
function () {

Sscope.movies = root.movies;

eSS L.

1)
} Returns the

R > resource

restApp.factory ('MovieService', function (Sresource) {
return Sresource ('http://api.rottentomatoes...&g=:title&page limit=5");;
Y

ANIMATIONS AND UNIT TESTING

AngularJS Animations

Include ngAnimate module as dependency
Hook animations for common directives such
as ngRepeat, ngSwitch, ngView

Based on CSS classes

— If HTML element has class, you can animate it

Angular]S adds special classes to your
html— elements

Example Form

<body ng-controller="AnimateCtrl">
<button ng-click="add () ">Add</button>
<button ng-click="remove () ">Remove</button></p>

<li ng-repeat="customer 1in
customers">{{customer.name} }</1li>

< /bOd > ° °
o Animation Test

Add Remove

e Jack
e Tina
e John

Animation Classes

When adding a new name to the model, ng—
repeat knows the item that is either added or
deleted

CSS classes are added at runtime to the repeated
element ()
When adding new element:

— <1i class="... ng—enter ng—enter—active”>New Name</1i>

When removing element

— <1i class="... ng—leave ng—leave—active”>New Name</1i>

Directives and CSS
Event strtigcss__Enaingcss | Directives

enter .ng—enter .ng—enter—active ngRepeat,
nginclude, nglf,
ngView

leave .ng—leave .ng—leave—active ngRepeat,
nginclude, nglf,
ngView

move .ng—move .ng---move.active ngRepeat

/* starting animation */

.ng-enter {
-webkit-transition: 1s;
transition: 1s;

margin-left: 100%;

/* ending animation */
.ng-enter-active {
margin-left: 0O;

/* starting animation */

.ng-leave {
-webkit-transition: 1s;
transition: 1s;

margin-left: 0O;

/* ending animation */
.ng-leave-active {

margin-left: 100%;

Example CSS

Test Driven Design

* Write tests firsts, then your code

* AngularlS emphasizes modularity, so it can be
easy to test your code

* Code can be tested using several unit testing
frameworks, like QUnit, Jasmine, Mocha ...

QUnit

e Download qunit. jsand qunit. css
* Write a simple HTML page to run the tests
* Write the tests

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>QUnit Example</title>
<link rel="stylesheet" href="qunit-1.10.0.css">
<script src="qunit-1.10.0.js"></script>
</head>
<body>
<div id="qunit"></div>

<script type="text/javascript">

function calculate(a, b) {

return a + b;

test ("calculate test", function() {
ok(calculate(5,5) === 10, "ok!");
ok (calculate(5,0) ===5, "Ok!");
ok (calculate(-5,5) === 0, "OK!");
}) s
</secript>
</body>

</html>

Three Assertions

Basic
— ok (boolean [, message]):

If actual == expected

—equal (actual, expected [, messagel):

if actual === expected
— deepEqual (actual, expected |, message)):

Other
—http://qunitjs. com/cookbook/#automating—

unit—testing

Testing AngularlS Service

var myApp = angular.module ('myApp', []1);

// One service

myApp.service ('MyService', function () {
this.add = function(a, b)
return { a + b;
I
b))

/* TESTS */

var injector = angular.injector(['ng', 'myRApp'l);
QUnit.test ('MyService', function () {
var MyService = 1njector.get ('MyService');

ok (2 == MyService.add(1l, 1));
}) s

WRAPPING UP

Wrapping UP

Angularl]S is a modular JavaScript SPA
framework

Lot of great features, but learning curve can
be hard

Great for CRUD (create, read, update, delete)
apps, but not suitable for every type of apps

Works very well with some JS libraries
(JQuery)

Services

The Angular)S Shttp service makes a request to
the server, and returns a response.

app.controller('myCtrl', function(Sscope, Shttp) {
Shttp.get("welcome.htm")
.then(function(response) {
Sscope.myWelcome = response.data;

1;
1;

