DAO — Data Access Object
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DTO — Data Transfer Object

also known as Value Object or VO,

used to transfer data between software
application subsystemes.

DTQO's are often used in conjunction with DAOs
to retrieve data from a database.

DTOs do not have any behaviour except for
storage and retrieval of its own data (mutators
and accessor).



Session Facade

Uses a session bean to encapsulate the
complexity of interactions between the business
objects participating in a workflow.

Manages the business objects, and provides a
uniform coarse-grained servic
access layer to clients .
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Mapping Session Facade on use cases

Session Beans Entity Beans

BankTeller

transfer
withdraw
deposit

LoanServices

approveloan
creatloan

InvestmentServices

buyStock
sellStock
buyBond




Business Delegate Pattern

Use a BusinessDelegate to

— Reduce coupling between presentation-tier and
business service components

— Hide the underlying implementation details of the
business service components

— Cache references to business services components
— Cache data

— Translate low level exceptions to application level
exceptions — Transparently retry failed transactions
— Can create dummy data for clients

Business Delegate is a plain java class



Service Locator

Have an object that knows how to get hold of all of the services that an
application might need.

A service locator has a method that, given a key value, returns the
implementation of a service when one is needed.

Of course this just shifts the burden: ——
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Use a Servicelocator to
— Abstract naming service usage
— Shield complexity of service lookup and creation

— Promote reuse
— Enable optimize service lookup and creation functions

e Usually called within BusinessDelegate or Session Facade object



Service Locator

package ...; import ...;

public class Servicelocator throws Exception ({
private static ServicelLocator servicelocator;

private static Context context;
private Servicelocator() { context = getInitialContext(); }
private Context getInitialContext() {
Hashtable environment = new Hashtable() ;
environment.put(..);
return new InitialContext (environment) ;
} public static synchronized ServiceLocator getInstance() {
if (servicelocator == null) {
servicelLocator = new Servicelocator(); }
return servicelocator;

}
public Object getBean(..) {return context.lookup(..)}
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