DAO — Data Access Object

BusinessObject DAO DataSource
l 1: Create ! }
L '
| 2. GetData | :
{==
2.1: GetData |
TransferObje
2.2: Create
{~==

2. 3. Return Ohject

IT' 4: SetProperty

D 5. SetData

[ 3. SetProperty T
|
i
|

5.1: GetPropeny
5.2 GetPropeny
5.3:SetData

1
I
|
|
|
|
|
|
|
T
|
I
|
|
|
|
|
|

SR o T S



DTO — Data Transfer Object

also known as Value Object or VO,

used to transfer data between software
application subsystemes.

DTQO's are often used in conjunction with DAOs
to retrieve data from a database.

DTOs do not have any behaviour except for
storage and retrieval of its own data (mutators
and accessor).



Session Facade

Uses a session bean to encapsulate the
complexity of interactions between the business
objects participating in a workflow.

Manages the business objects, and provides a
uniform coarse-grained servic
access layer to clients .
ocode
Client
=
e




Mapping Session Facade on use cases

Session Beans Entity Beans

BankTeller

transfer
withdraw
deposit

LoanServices

approveloan
creatloan

InvestmentServices

buyStock
sellStock
buyBond




Business Delegate Pattern

Use a BusinessDelegate to

— Reduce coupling between presentation-tier and
business service components

— Hide the underlying implementation details of the
business service components

— Cache references to business services components
— Cache data

— Translate low level exceptions to application level
exceptions — Transparently retry failed transactions
— Can create dummy data for clients

Business Delegate is a plain java class



Service Locator

Have an object that knows how to get hold of all of the services that an
application might need.

A service locator has a method that, given a key value, returns the
implementation of a service when one is needed.

Of course this just shifts the burden: ——
. . . _,-"'? ~
we still have to get the locator into the client, .-~ M
: : : ' "
but this scales well for multiple services. E .

. . Client p======-- Service _
Example: the rmi registry "*

(2]
(v
o
b3
o
w

------
‘ Service Impl. F

T -



2 - Verify

Service Locator

Locator

1 - lookUp O : .
for SEV services cache &igt geice
/6 - Return \
el 4 - Return

senvice

-

(":"l"i";": 7 - Use service

Use a Servicelocator to
— Abstract naming service usage
— Shield complexity of service lookup and creation

— Promote reuse
— Enable optimize service lookup and creation functions

e Usually called within BusinessDelegate or Session Facade object



Service Locator

package ...; import ...;

public class Servicelocator throws Exception ({
private static ServicelLocator servicelocator;

private static Context context;
private Servicelocator() { context = getInitialContext(); }
private Context getInitialContext() {
Hashtable environment = new Hashtable() ;
environment.put(..);
return new InitialContext (environment) ;
} public static synchronized ServiceLocator getInstance() {
if (servicelocator == null) {
servicelLocator = new Servicelocator(); }
return servicelocator;

}
public Object getBean(..) {return context.lookup(..)}



Overall view ety

dCCesses

creates
DTOAssembler > DTO SessionBean

manage

Search the
other beans

Facade |In the simplest case it's a DAO
SessionBean

ServicelLocator

interact (exchanging a DTO)

Business
Delegate

Sarch the faca




