
DAO(–(Data(Access(Object(

DTO(–(Data(Transfer(Object(

also(known(as(Value&Object&or(VO,((
used(to(transfer(data(between(soQware(

applica9on(subsystems.((
DTO's(are(oQen(used(in(conjunc9on(with(DAOs(

to(retrieve(data(from(a(database.((
DTOs(do(not(have(any(behaviour(except(for(

storage(and(retrieval(of(its(own(data((mutators(
and(accessor).((

(

Session(Facade(

Uses(a(session(bean(to(encapsulate(the(
complexity(of(interac9ons(between(the(business(
objects(par9cipa9ng(in(a(workflow.((
Manages(the(business(objects,(and(provides(a(
uniform(coarseegrained(service((
access(layer(to(clients((

Mapping(Session(Facade(on(use(cases((

Business(Delegate(PaNern((
(

Use(a(BusinessDelegate(to((
–(Reduce(coupling(between(presenta9one9er(and(
business(service(components((
–(Hide(the(underlying(implementa9on(details(of(the(
business(service(components((
–(Cache(references(to(business(services(components(
–(Cache(data(
–(Translate(low(level(excep9ons(to(applica9on(level(
excep9ons(–(Transparently(retry(failed(transac9ons(
–(Can(create(dummy(data(for(clients((
Business(Delegate(is(a(plain(java(class((
(

Service(Locator(
Have(an(object(that(knows(how(to(get(hold(of(all(of(the(services(that(an(
applica9on(might(need.((
(
A(service(locator(has(a(method(that,(given(a(key(value,((returns(the(
implementa9on(of(a(service(when(one(is(needed.((
(
Of(course(this(just(shiQs(the(burden:(
we(s9ll(have(to(get(the(locator(into(the(client,(
(but(this(scales(well(for(mul9ple(services.(
(
Example:(the(rmi(registry((((Client((((((Service(

(Interface(

Service(Impl.(

Use(a(ServiceLocator(to((
–(Abstract(naming(service(usage((
–(Shield(complexity(of(service(lookup(and(crea9on(
–(Promote(reuse(
–(Enable(op9mize(service(lookup(and(crea9on(func9ons((
•(Usually(called(within(BusinessDelegate(or(Session(Facade(object((
(

Service(Locator(

Service(Locator(
package ...; import ...;
public class ServiceLocator throws Exception {
 private static ServiceLocator serviceLocator;
 private static Context context;
 private ServiceLocator() { context = getInitialContext(); }
 private Context getInitialContext(){
 Hashtable environment = new Hashtable();
 environment.put(..);
 return new InitialContext(environment);
 } public static synchronized ServiceLocator getInstance(){
 if (serviceLocator == null) {
 serviceLocator = new ServiceLocator(); }
 return serviceLocator;
 }
 public Object getBean(…) {return context.lookup(…)}
}

Overall(view(

